Presence of toxin-antitoxin systems in picocyanobacteria and their ecological implications

Abstract

Picocyanobacteria (mainly Synechococcus and Prochlorococcus) contribute significantly to ocean’s primary production. Toxin-Antitoxin (TA) systems present in bacteria and archaea are known to regulate cell growth in response to environmental stresses. However, little is known about the presence of TA systems in picocyanobacteria. This study investigated complete genomes of Synechococcus and Prochlorococcus to understand the prevalence of TA systems in picocyanobacteria. Using the TAfinder software, Type II TA systems were predicted in 27 of 33 (81%) Synechococcus strains, but none of 38 Prochlorococcus strains contain TA genes. Synechococcus strains with larger genomes tend to contain more putative type II TA systems. The number of TA pairs varies from 0 to 42 in Synechococcus strains isolated from various environments. A linear correlation between the genome size and the number of putative TA systems in both coastal and freshwater Synechococcus was established. In general, open ocean Synechococcus contain no or few TA systems, while coastal and freshwater Synechococcus contain more TA systems. The type II TA systems inhibit microbial translation via ribonucleases and allow cells to enter the “dormant” stage in adverse environments. Inheritance of TA genes in freshwater and coastal Synechococcus could confer a recoverable persister mechanism important to survive in variable environments.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Occurrence frequency of putative TA systems in 33 strains of Synechococcus isolated from various aquatic environments.
Fig. 2: Relationship between genome size and the number of putative TA pairs in Synechococcus.
Fig. 3: Conserved domain regions of putative toxins and antitoxins.

References

  1. 1.

    Flombaum P, Gallegos JL, Gordillo RA, Rincón J, Zabala LL, Jiao N, et al. Present and future global distributions of the marine Cyanobacteria Prochlrococcus and Synechococcus. Proc Natl Acad Sci. 2013;110:9824–9.

    CAS  PubMed  Google Scholar 

  2. 2.

    Li WKW, Url S. Primary production of prochlorophytes, cyanobacteria, and eucaryotic ultraphytoplankton: Measurements from flow cytometric sorting. Limnol Oceanogr. 1994;39:169–75.

    CAS  Google Scholar 

  3. 3.

    Dvořák P, Casamatta DA, Poulíčková A, Hašler P, Ondřej V, Sanges R. Synechococcus: 3 billion years of global dominance. Mol Ecol. 2014;23:5538–51.

    PubMed  Google Scholar 

  4. 4.

    Morel A, Ahn YH, Partensky F, Vaulot D, Claustre H. Prochlorococcus and Synechococcus: a comparative study of their optical properties in relation to their size and pigmentation. J Mar Res. 1993;51:617–49.

    CAS  Google Scholar 

  5. 5.

    Partensky F, Blanchot J, Vaulot D. Differential distribution and ecology of Prochlorococcus and Synechococcus in oceanic waters: a review. Bull l’Institut océanographique. 1999;19:457–75.

    Google Scholar 

  6. 6.

    Biller SJ, Berube PM, Lindell D, Chisholm SW. Prochlorococcus: the structure and function of collective diversity. Nat Rev Microbiol. 2015;13:13–27.

    CAS  PubMed  Google Scholar 

  7. 7.

    Sun Z, Blanchard JL. Strong Genome-Wide Selection Early in the Evolution of Prochlorococcus Resulted in a Reduced Genome through the Loss of a Large Number of Small Effect Genes. PLoS ONE. 2014;9:e88837.

    PubMed  PubMed Central  Google Scholar 

  8. 8.

    Larsson J, Nylander JAA, Bergman B. Genome fluctuations in cyanobacteria reflect evolutionary, developmental and adaptive traits. BMC Evol Biol. 2011;11:187.

    PubMed  PubMed Central  Google Scholar 

  9. 9.

    Dufresne A, Garczarek L, Partensky F. Accelerated evolution associated with genome reduction in a free-living prokaryote. Genome Biol. 2005;6:R14.1–R14.10.

    Google Scholar 

  10. 10.

    Scanlan DJ, Ostrowski M, Mazard S, Dufresne A, Garczarek L, Hess WR, et al. Ecological genomics of marine picocyanobacteria. Microb Mol Biol Rev. 2009;73:249–99.

    CAS  Google Scholar 

  11. 11.

    Scanlan DJ. Marine Picocyanobacteria. In: Whitton B. (eds). Ecology of Cyanobacteria II: Their Diversity in Space and Time. Springer Netherlands: Dordrecht, Netherlands 2012, pp. 503–33.

  12. 12.

    Sánchez-Baracaldo P, Hayes PK, Blank CE. Morphological and habitat evolution in the Cyanobacteria using a compartmentalization approach. Geobiology. 2005;3:145–65.

    Google Scholar 

  13. 13.

    Wang K, Wommack KE, Chen F. Abundance and distribution of Synechococcus spp. and cyanophages in the Chesapeake Bay. Appl Environ Microbiol. 2011;77:7459–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Callieri C. Picophytoplankton in freshwater ecosystems: the importance of small-sized phototrophs. Freshw Rev. 2008;1:1–28.

    Google Scholar 

  15. 15.

    Stockner JG. Phototrophic picoplankton: an overview from marine and freshwater ecosystems. Limnol Oceanogr. 1988;33:765–75.

    CAS  Google Scholar 

  16. 16.

    Callieri C, Stockner JG. Freshwater autotrophic picoplankton: a review. J Limnol. 2002;61:1–14.

    Google Scholar 

  17. 17.

    Honda D, Yokota A, Sugiyama J. Detection of seven major evolutionary lineages in cyanobacteria based on the 16S rRNA gene sequence analysis with new sequences of five marine Synechococcus strains. J Mol Evol. 1999;48:723–39.

    CAS  PubMed  Google Scholar 

  18. 18.

    Rippka R, Deruelles J, Waterbury JB. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol. 1979;111:1–61.

    Google Scholar 

  19. 19.

    Wilmotte AMR, Stam WT. Genetic relationships among cyanobacterial strains originally designated as ‘Anacystis nidulans’ and some other Synechococcus strains. J Gen Microbiol. 1984;130:2737–40.

    Google Scholar 

  20. 20.

    Coutinho F, Tschoeke DA, Thompson F. Comparative genomics of Synechococcus and proposal of the new genus Parasynechococcus. PeerJ. 2016;4:e1522 1–18.

    Google Scholar 

  21. 21.

    Robertson BR, Tezuka N, Watanabe MM. Phylogenetic analyses of Synechococcus strains (cyanobacteria) using sequences of 16S rDNA and part of the phycocyanin operon reveal multiple evolutionary lines and reflect phycobilin content. Int J Syst Evol Microbiol. 2001;51:861–71.

    CAS  PubMed  Google Scholar 

  22. 22.

    Zwirglmaier K, Jardillier L, Ostrowski M, Mazard S, Garczarek L, Vaulot D, et al. Global phylogeography of marine Synechococcus and Prochlorococcus reveals a distinct partitioning of lineages among oceanic biomes. Environ Microbiol. 2008;10:147–61.

    PubMed  Google Scholar 

  23. 23.

    Rocap G, Distel DL, Waterbury JB, Chisholm SW. Resolution of Prochlorococcus and Synechococcus ecotypes by using 16S-23S ribosomal DNA internal transcribed spacer sequences. Appl Environ Microbiol. 2002;68:1180–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Toledo G, Palenik B. Synechococcus diversity in the California Current as seen by RNA polymerase (rpoC1) gene sequences of isolated strains. Appl Environ Microbiol. 1997;63:4298–303.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Fuller NJ, Marie D, Partensky F, Vaulot D, Post AF, Scanlan DJ. Clade-specific 16S ribosomal DNA oligonucleotides reveal the predominance of a single marine Synechococcus clade throughout a stratified water column in the Red Sea. Appl Environ Microbiol. 2003;69:2430–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Dufresne A, Ostrowski M, Scanlan DJ, Garczarek L, Mazard S, Palenik BP, et al. Unraveling the genomic mosaic of a ubiquitous genus of marine cyanobacteria. Genome Biol. 2008;9:R90.

    PubMed  PubMed Central  Google Scholar 

  27. 27.

    Huang S, Wilhelm SW, Harvey HR, Taylor K, Jiao N, Chen F. Novel lineages of Prochlorococcus and Synechococcus in the global oceans. ISME J. 2012;6:285–97.

    CAS  PubMed  Google Scholar 

  28. 28.

    Callieri C, Coci M, Corno G, Macek M, Modenutti B, Balseiro E, et al. Phylogenetic diversity of nonmarine picocyanobacteria. FEMS Microbiol Ecol. 2013;85:293–301.

    CAS  PubMed  Google Scholar 

  29. 29.

    Crosbie ND, Pockl M, Weisse T. Dispersal and phylogenetic diversity of nonmarine picocyanobacteria inferred from 16S rRNA gene and cpcBA-intergenic spacer sequence analyses. Appl Environ Microbiol. 2003;69:5716–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Jasser I, Królicka A, Karnkowska-Ishikawa A. A novel phylogenetic clade of picocyanobacteria from the Mazurian lakes (Poland) reflects the early ontogeny of glacial lakes. FEMS Microbiol Ecol. 2011;75:89–98.

    CAS  PubMed  Google Scholar 

  31. 31.

    Ernst A, Becker S, Wollenzien UIA, Postius C. Ecosystem-dependent adaptive radiations of picocyanobacteria inferred from 16S rRNA and ITS-1 sequence analysis. Microbiology. 2003;149:217–28.

    CAS  PubMed  Google Scholar 

  32. 32.

    Palenik B, Brahamsha B, Larimer FW, Land M, Hauser L, Chain P, et al. The genome of a motile marine Synechococcus. Nature. 2003;424:1037–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Palenik B, Ren Q, Dupont CL, Myers GS, Heidelberg JF, Badger JH, et al. Genome sequence of Synechococcus CC9311: Insights into adaptation to a coastal environment. Proc Natl Acad Sci. 2006;103:13555–9.

    CAS  PubMed  Google Scholar 

  34. 34.

    Stuart RK, Dupont CL, Johnson DA, Paulsen IT, Palenik B. Coastal strains of marine Synechococcus species exhibit increased tolerance to copper shock and a distinctive transcriptional response relative to those of open-ocean strains. Appl Environ Microbiol. 2009;75:5047–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Stuart RK, Brahamsha B, Busby K, Palenik B. Genomic island genes in a coastal marine Synechococcus strain confer enhanced tolerance to copper and oxidative stress. ISME J. 2013;7:1139–49.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Fucich D, Marsan D, Sosa A, Chen F. Complete genome sequence of Subcluster 5.2 Synechococcus sp. strain CB0101, isolated from the Chesapeake Bay. Microbiol Resour Announc. 2019;8:6–8.

    Google Scholar 

  37. 37.

    Marsan D, Place A, Fucich D, Chen F. Toxin-antitoxin systems in estuarine Synechococcus strain CB0101 and their transcriptomic responses to environmental stressors. Front Microbiol. 2017;8:1–11.

    Google Scholar 

  38. 38.

    Page R, Peti W. Toxin-antitoxin systems in bacterial growth arrest and persistence. Nat Chem Biol. 2016;12:208–14.

    CAS  PubMed  Google Scholar 

  39. 39.

    Unterholzner SJ, Poppenberger B, Rozhon W. Toxin-antitoxin systems. Mob Genet Elem. 2013;3:e26219 1–13.

    Google Scholar 

  40. 40.

    Makarova KS, Wolf YI, Koonin EV. Comprehensive comparative-genomic analysis of type 2 toxin-antitoxin systems and related mobile stress response systems in prokaryotes. Biol Direct. 2009;4:19.

    PubMed  PubMed Central  Google Scholar 

  41. 41.

    Kaneko T, Nakamura Y, Sasamoto S, Watanabe A, Kohara M, Matsumoto M, et al. Structural analysis of four large plasmids harboring in a unicellular cyanobacterium, Synechocystis sp. PCC 6803. DNA Res. 2003;10:221–8.

    CAS  PubMed  Google Scholar 

  42. 42.

    Chen Y, Holtman CK, Magnuseon RD, Youderian PA, Golden SS. The complete sequence and functional analysis of pANL, the large plasmid of the unicellular freshwater cyanobacterium Synechococcus elongatus PCC 7942. Plasmid. 2011;23:1–7.

    Google Scholar 

  43. 43.

    Chen F, Wang K, Kan J, Suzuki MT, Wommack KE. Diverse and unique picocyanobacteria in Chesapeake Bay, revealed by 16S-23S rRNA internal transcribed spacer sequences. Appl Environ Microbiol. 2006;72:2239–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Xie Y, Wei Y, Shen Y, Li X, Zhou H, Tai C, et al. TADB 2.0: An updated database of bacterial type II toxin-antitoxin loci. Nucleic Acids Res. 2018;46:D749–D753.

    CAS  PubMed  Google Scholar 

  45. 45.

    O’Leary NA, Wright MW, Brister JR, Ciufo S, Haddad D, McVeigh R, et al. Reference sequence (RefSeq) database at NCBI: Current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 2016;44:D733–D745.

    PubMed  Google Scholar 

  46. 46.

    Agarwala R, Barrett T, Beck J, Benson DA, Bollin C, Bolton E, et al. Database resources of the national center for biotechnology information. Nucleic Acids Res. 2017;45:D12–D17.

    CAS  Google Scholar 

  47. 47.

    Nordberg H, Cantor M, Dusheyko S, Hua S, Poliakov A, Shabalov I, et al. The genome portal of the Department of Energy Joint Genome Institute: 2014 updates. Nucleic Acids Res. 2014;42:26–31.

    Google Scholar 

  48. 48.

    Shao Y, Harrison EM, Bi D, Tai C, He X, Ou HY, et al. TADB: a web-based resource for Type 2 toxin-antitoxin loci in bacteria and archaea. Nucleic Acids Res. 2011;39:606–11.

    Google Scholar 

  49. 49.

    Marchler-Bauer A, Bo Y, Han L, He J, Lanczycki CJ, Lu S, et al. CDD/SPARCLE: Functional classification of proteins via subfamily domain architectures. Nucleic Acids Res. 2017;45:D200–D203.

    CAS  PubMed  Google Scholar 

  50. 50.

    R Core Team. R: A Language and Environment for Statistical Computing. 2018. Vienna, Austria.

  51. 51.

    Wickham H. ggplot2: elegant graphics for data analysis. New York: Springer-Verlag; 2009.

    Google Scholar 

  52. 52.

    Bertelli C, Laird MR, Williams KP, Lau BY, Hoad G, Winsor GL, et al. IslandViewer 4: Expanded prediction of genomic islands for larger-scale datasets. Nucleic Acids Res. 2017;45:W30–W35.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Winther KS, Gerdes K. Enteric virulence associated protein VapC inhibits translation by cleavage of initiator tRNA. Prok Natl Acad Sci. 2011;108:7403–7.

    CAS  Google Scholar 

  54. 54.

    Harms A, Brodersen DE, Matarai N, Gerdes K. Toxins,targets,and triggers: an overview of toxin-antitoxin biology. Mol Cell. 2018;70:768–84.

    CAS  PubMed  Google Scholar 

  55. 55.

    Kopfmann S, Roesch S, Hess W. Type II toxin–antitoxin systems in the unicellular cyanobacterium Synechocystis sp. PCC 6803. Toxins. 2016;8:228.

    PubMed Central  Google Scholar 

  56. 56.

    Leplae R, Geeraerts D, Hallez R, Guglielmini J, Drze P, Van Melderen L. Diversity of bacterial type II toxin-antitoxin systems: a comprehensive search and functional analysis of novel families. Nucleic Acids Res. 2011;39:5513–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Xia K, Bao H, Zhang F, Linhardt RJ, Liang X. Characterization and comparative analysis of toxin – antitoxin systems in Acetobacter pasteurianus. J Ind Microbiol Biotechnol. 2019;46:869–82.

    CAS  PubMed  Google Scholar 

  58. 58.

    Biller SJ, Berube PM, Berta-Thompson JW, Kelly L, Roggensack SE, Awad L, et al. Genomes of diverse isolates of the marine cyanobacterium Prochlorococcus. Sci Data. 2014;1:1–11.

    Google Scholar 

  59. 59.

    Palenik B, Barahamsha B, Larimer FW, Land M, Hauser L, Chain P, et al. The genome of a motile marine Synechococcus. Nature. 2003;424:1037–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Scanlan DJ, West NJ. Molecular ecology of the marine cyanobacterial genera Prochlorococcus and Synechococcus. FEMS Microbiol Ecol. 2002;40:1–12.

    CAS  PubMed  Google Scholar 

  61. 61.

    McWilliam H, Li W, Uludag M, Squizzato S, Park YM, Buso N, et al. Analysis tool web services from the EMBL-EBI. Nucleic Acids Res. 2013;41:W597–W600.

    PubMed  PubMed Central  Google Scholar 

  62. 62.

    Sevin EW, Barloy-Hubler F. RASTA-bacteria: a web-based tool for identifying toxin-antitoxin loci in prokaryotes. Genome Biol. 2007;8:R155.1–R155.14.

    Google Scholar 

  63. 63.

    Robson J, McKenzie JL, Cursons R, Cook GM, Arcus VL. The vapBC operon from mycobacterium smegmatis Is an autoregulated toxin-antitoxin module that controls growth via inhibition of translation. J Mol Biol. 2009;390:353–67.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge the grant support of U.S. National Science Foundation (Award #1829888) to FC. and the Ratcliffe Environmental Entrepreneurial Fellowship (REEF) to DF from. We thank Tsvetan Bachvaroff for his help with bioinformatics.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Feng Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fucich, D., Chen, F. Presence of toxin-antitoxin systems in picocyanobacteria and their ecological implications. ISME J 14, 2843–2850 (2020). https://doi.org/10.1038/s41396-020-00746-4

Download citation

Search