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Abstract
Short-chain fatty acid (SCFA) degradation is an important process in methanogenic ecosystems, and is usually catalyzed by
SCFA-oxidizing bacteria in syntrophy with methanogens. Current knowledge of this functional guild is mainly based on
isolates or enrichment cultures, but these may not reflect the true diversity and in situ activities of the syntrophs
predominating in full-scale systems. Here we obtained 182 medium to high quality metagenome-assembled genomes
(MAGs) from the microbiome of two full-scale anaerobic digesters. The transcriptomic response of individual MAG was
studied after stimulation with low concentrations of acetate, propionate, or butyrate, separately. The most pronounced
response to butyrate was observed for two MAGs of the recently described genus Candidatus Phosphitivorax (phylum
Desulfobacterota), expressing a butyrate beta-oxidation pathway. For propionate, the largest response was observed for an
MAG of a novel genus in the family Pelotomaculaceae, transcribing a methylmalonyl-CoA pathway. All three species were
common in anaerobic digesters at Danish wastewater treatment plants as shown by amplicon analysis, and this is the first
time their syntrophic features involved in SCFA oxidation were revealed with transcriptomic evidence. Further, they also
possessed unique genomic features undescribed in well-characterized syntrophs, including the metabolic pathways for
phosphite oxidation, nitrite and sulfate reduction.

Introduction

Microbial syntrophy describes the obligatory mutualistic
metabolism that occurs between two or more microorgan-
isms, where the metabolic end-product of the primary
metabolizer is immediately consumed as substrate by the
others. This shifts the equilibrium of the catabolic reaction

in the primary metabolizer which would otherwise not
yield enough energy to support growth [1–4]. Syntrophic
fatty acid oxidizing bacteria play an essential role in
the conversion of short-chain fatty acids (SCFAs) such
as butyrate and propionate to methanogenic precursors
(acetate, H2, and formate). This conversion accounts for
much of the carbon flux in methanogenic ecosystems [5],
for instance, the full-scale anaerobic digesters (ADs)
treating biological sludge with recovery of biogas that are
widely used in wastewater treatment plants (WWTPs).
The SCFA metabolism can only occur when methanogens
rapidly consume the produced methanogenic precursors
[3, 6]. Due to the fastidious metabolism type, these syn-
trophic bacteria can only grow at low rates and yield [7]
and are commonly found in low abundance [8, 9]. There-
fore, syntrophic SCFA degradation can easily become
a bottleneck step for the anaerobic digestion process.
Disturbances at this step would induce SCFA accumulation
and performance instability, which frequently occur during
operation of full-scale ADs [10, 11]. Hence, a better
understanding of this functional guild might ultimately
improve the digestion efficiency.
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Our current knowledge of syntrophic bacteria involved in
SCFA oxidation is mostly based on studies performed on a
few model organisms such as Syntrophomonas wolfei,
Syntrophobacter fumaroxidans, and Pelotomaculum ther-
mopropionicum incubated as mono- or defined co-cultures
[2, 12] or in enrichments [13]. However, these well-
characterized syntrophic butyrate or propionate oxidizers
were not detected as core populations in previous surveys of
full-scale ADs [8, 9, 14–16], and other taxa may participate
in SCFA degradation as indicated by stable isotope probing
of nucleic acids or enrichment experiments [13, 17, 18]. It is
therefore important to identify the key bacterial members
directly and actively involved in SCFA oxidation in full-
scale systems.

The functional importance of specific microbial taxa in
complex communities can be characterized using a genome-
guided metatranscriptomic approach. This has previously
been applied to identify taxa involved in the anaerobic
degradation of cellulosic biomass [19] and oleate [20]
using lab-scale enrichments. The transcriptomic response
of individual taxon can also be measured in response to a
defined environmental stimulus [21]. When combined
with short-term incubations, this may provide a direct link
between the native members of microbial communities and
the stimulus-related function.

To identify the key SCFA degrading bacteria and elu-
cidate their activities in full-scale systems, we obtained
metagenome-assembled genomes (MAGs) from two dif-
ferent full-scale ADs in Denmark that represent typical
anaerobic digestion systems treating waste activated sludge
at WWTPs. We then applied a genome-centric metatran-
scriptomic approach to study the change of transcriptomes
of targeted microbial members in response to SCFA stimuli.
A comprehensive dataset from this study enabled the
discovery of novel syntrophic bacterial species, and
manually curated genome annotation revealed the energy
conservation metabolisms related to SCFA oxidation in the
three most responsive members.

Materials and methods

SCFA stimuli experiments

The two full-scale ADs investigated (Table S1) are located
at two municipal WWTPs (at Randers and Fredericia,
Denmark) and have been stably operated at mesophilic
condition for more than 5 years. The digester at Randers
treats surplus activated sludge and primary sludge, and the
digester at Fredericia uses surplus activated sludge pre-
treated by thermal hydrolysis process (THP) as feedstock.
Slurry directly taken from these digesters was immediately
used for the lab-scale SCFA stimulation experiments, which

were performed in the automatic methane potential test
system (AMPTS) II (Bioprocess control, Lund, Sweden) at
temperature and stirring conditions identical to those in full-
scale digesters. Each 500 mL reactor was filled with 400 mL
freshly collected digester slurry at the volatile solids con-
centrations of 22.8 g/L (Randers) and 25.2 g/L (Fredericia),
flushed with N2 gas for 20 min and immersed in a water
bath (38 ± 0.5 °C). The slurry from each digester was
incubated for about 3 days anaerobically with continuous
stirring. Each incubation included an initial starvation per-
iod of 17 h to exhaust the residual carbon in the fluid.
To stimulate the microbial community, 4 mL of a con-
centrated SCFA solution (acetate, propionate, or butyrate
separately) was added into individual reactors after the
starvation period to reach a final concentration of 3 mM for
acetate, and 2 mM for propionate and butyrate. The same
volume of distilled water was used as a negative control.
Experiments were performed in triplicate reactors for each
SCFA and in duplicate for the control. During the SCFA
degradation periods, sludge fluid was sequentially sampled
and immediately frozen in liquid nitrogen, and preserved at
−80 °C in several aliquots for further use. SCFA con-
centration and methane yield during incubation were ana-
lyzed as detailed in Supplementary Methods. The SCFA
stimulation was repeated 24 h after starting the first stimuli
event to confirm the reproducibility of the SCFA degrada-
tion behavior.

Metagenomic analyses

Slurry samples originating from digesters at Fredericia and
Randers WWTPs were used for DNA extraction and
metagenomic sequencing (Data S1, Supplementary Meth-
ods Section 1.2). The raw metagenomic sequences were
trimmed and assembled with CLC Genomics Workbench
v.9.5.2 (QIAGEN Bioinformatics), generating 12 single-
assemblies and 6 co-assemblies (Table S2). Details are
provided in Supplementary Methods.

The assemblies and associated mapping data were
exported as FASTA and BAM files, respectively. Script
jgi_summarize_bam_contig_depths from the MetaBAT2
package was used to calculate coverage from the BAM files
for each assembly. Metagenomic binning was applied to both
single- and co-assemblies using MetaBAT2 v.2.12.1 [22],
with options –minContigLength 2000, –minContigDepth 2.
This resulted in 491 bins for the digester at Fredericia WWTP
and 1007 for that at Randers WWTP. The bins from each
digester were dereplicated to produce medium to high quality
MAGs using dRep v.2.2.1 [23] with options dereplicate_wf
-p 16 -comp 50 -con 25.

The completeness and contamination of each MAG were
assessed based on the presence of lineage-specific, con-
served, single-copy marker genes using CheckM v.1.0.11
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[24]. Objective taxonomic classifications were assigned to
the MAGs according to the Genome Taxonomy DataBase
(GTDB) taxonomy (release 03-RS86) using the toolkit
GTDB-Tk (v.0.1.3) with the classify workflow [25]. A
phylogenetic genome tree of the bacterial MAGs was cre-
ated and refined as detailed in Supplementary Methods.

The MAGs were annotated using Prokka (v.1.12) [26]
with the bacteria or archaea database based on their taxo-
nomic classification [25]. An e-value threshold of 10−6 was
used for prediction of coding sequences (CDSs). The CDSs
and contigs of each MAG were labeled with the MAG
name and merged to create the CDS and MAG reference
database for further metatranscriptomic analysis. The entire
CDS set of the MAGs was further analyzed using
EnrichM (v.0.2.0) (https://github.com/geronimp/enrichM),
and annotated with Kyoto Encyclopedia of Genes and
Genome (KEGG) orthologous group ids (KO) for ensuing
metabolic pathway analysis [27]. KOs involved in oxidation
of propionate via the methylmalonyl-CoA pathway, buty-
rate via the beta-oxidation pathway, and acetate via the
reversed Wood–Ljungdahl pathway [28], were selected
based on a list of gene families (determined by KO) which
are directly associated with the corresponding KEGG
metabolisms (Fig. S1, Data S2).

In order to estimate the relative abundance of each MAG,
we calculated the fraction of trimmed metagenomic reads
which were mapped (>95% sequence identity, 100% read-
length) to the contigs of each MAG (Table S3, Data S3).

Genome-centric metatranscriptomic analyses

Total RNA was extracted from the samples of two time
points, i.e., 1 h before and 1 h after the first SCFA addition
in three biological replicates, and rRNA was depleted
before metatranscriptomic sequencing. Finally, 30 meta-
transcriptomes were generated (Data S1, Supplementary
Methods Section 1.3). The cDNA reads, after trimming of
raw reads and further removal of detected rRNA, were
considered as the mRNA sequences for later use.

The processed mRNA reads were mapped to the CDS
reference database made from the constructed MAGs using
the CLC Genomics workbench (identity of ≥98% and ≥80%
of the read length). Datasets originating from Fredericia or
Randers were studied separately (Table S4, Data S3). The
transcriptomic data (reads mapped per CDS) were analyzed
in R v.3.5.0 [29] using the DESeq2 v.1.20.0 differential
gene expression workflow [30]. The fold change (FC) and
p value were calculated for the expression of individual
CDS after each SCFA stimulation relative to the baseline
before stimuli. CDSs with FC ≥ 2 and p value < 0.05 or
FC ≤ 0.5 and p value < 0.05 were described as “upregu-
lated” or “downregulated” genes. Prior to analysis, CDSs
with less than five reads mapped were removed due to a low

signal-to-noise ratio. 61 gene families determined by KO,
which were related to oxidation of propionate, butyrate, and
acetate (Data S2), were selected as targets to further analyze
the different SCFA-oxidation metabolisms in the micro-
biome. The plots and heatmaps were made using the
ggplot2 package v.3.1.0 [31].

Amplicon sequencing analysis

Bacterial community composition was investigated based
on previous data derived from amplicon sequencing the V1-
3 variable regions of the bacterial 16S rRNA genes [8]. Raw
sequences were processed with usearch v.10.0.240 [32] in
order to generate amplicon sequence variants (ASVs) and
an ASV table. To evaluate the relative read abundance of
the three novel syntrophs described in this study, nearly
full-length 16S rRNA gene sequences associated with the
MAGs were extracted and used as reference. ASVs were
mapped to the full-length 16S rRNA sequences using
usearch_global with a minimum identity of 94.5%, and
annotated based on their percentage identity to the reference
sequences with the thresholds for genera (94.5%) and spe-
cies (98.7%) proposed by Yarza et al. [33]. Amplicon data
were further analyzed using Ampvis2 [34]. Both novel and
previously described syntrophic bacterial genera [3, 35]
were specifically analyzed. For details see Supplementary
Methods.

Genome curation and improved annotation

Three bacterial MAGs demonstrating strong positive
responses to SCFA stimuli were selected for further genome
curation and annotation. Genome annotation was performed
in the ‘MicroScope’ annotation pipeline (v.3.12.0) [36].
Automatic annotations were validated and curated manually
for the genes involved in metabolic pathways of interest
with the assistance of the integrated MicroCyc [37] and
KEGG [27] databases. The hydrogenases identified were
further checked and classified using the HydDB tool [38].

Results and discussion

Stimulation of the microbiome by SCFAs

Biomass from full-scale mesophilic digesters at Fredericia
and Randers WWTPs were incubated in lab-scale reactors
to investigate the response of the microbial communities to
the addition of acetate, propionate, and butyrate separately,
after a preincubation without feeding to exhaust the residual
carbon. The conversion of all SCFAs started immediately
after addition and showed the same conversion patterns for
the microbiome from both digesters (Fig. 1). Acetate and
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propionate were consumed following zero-order kinetics,
whereas butyrate followed first-order kinetics. Methane
production occured with the degradation of SCFAs.
Generation of acetate accompanied the degradation of
propionate and butyrate. Furthermore, for butyrate, first
accumulation and later consumption of isobutyrate occur-
red, indicating interconversion of the two isomers catalyzed
by the active microbes in AD systems as previously
observed [39, 40]. The degradation patterns were repro-
duced in each reactor following a second SCFA stimulus.
This demonstrated high similarity between the two digesters
in terms of microbial transformations, and is in accordance
with previous results of similar SCFA-degradation experi-
ments [10, 41, 42].

One hundred and ninety-eight draft genomes
derived from metagenomics

We sequenced 12 metagenomic libraries from biomass
samples originating from the two full-scale digesters and the
SCFA stimuli experiments (Data S1). This yielded 66.6
giga bp of paired-end Illumina data after quality filtering
(Table S3). Metagenomic binning and further dereplication
of the genome bins resulted in the recovery of 95 and 103
MAGs (≥50% completeness, ≤25% contamination) from the

digesters at Frederica and Randers, respectively (Data S3).
About 60% and 40% of the DNA reads could be mapped to
the 95 Fredericia MAGs and 103 Randers MAGs, respec-
tively (Table S3). We therefore assume that the obtained
MAGs provide a fair representation of the complete
microbial communities. The MAGs included 184 bacterial
and 14 archaeal genomes spanning 30 bacterial and 4
archaeal phyla (Data S3). For the bacterial community, a
large clade (57 out of 95) of Fredericia MAGs were
assigned to the highly diverse Firmicutes phylum, while the
Randers MAGs were more evenly distributed in different
phyla including Bacteroidetes, Chloroflexi, Desulfobacter-
ota, Firmicutes, and Patescibacteria (Fig. 2). This difference
in bacterial composition was consistent with previous
results from 16S rRNA gene amplicon analyses [8].

Transcriptional responses of MAGs to SCFA stimuli

In order to identify MAGs responding to the SCFA stimuli,
the transcriptomic responses were investigated using samples
collected an hour before and an hour after the first SCFA
addition for each microbiome. Thirty rRNA depleted meta-
transcriptomic libraries were sequenced from the two
digesters under five different conditions before and after the
stimuli events (Data S1). The libraries generated 11.8 million
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(Frederica) and 18.5 million (Randers) reads after quality
filtering. mRNA reads were mapped to the predicted CDSs
of the MAGs from the corresponding digester, resulting in
9.6–13.8% reads mapped to the Fredericia CDSs and
9.5–12.6% to the Randers CDSs (Table S4). Reduced
mapping percentage of mRNA reads compared with meta-
genomic reads is common in genome-centric metatran-
scriptomics [19, 43]. This is partly a result of setting more

stringent mapping criteria for mRNA, but the error prone
automated identification of CDS may also play a role.

Key genes directly involved in syntrophic oxidation of
propionate, butyrate, and acetate (Data S2) were found to be
expressed in 157 MAGs spanning 29 bacterial phyla
(Fig. S2). However, increased transcription of these genes
after stimulation by the corresponding SCFA was only
observed in 20 MAGs (Fig. 3). Eight of the MAGs
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belonged to the Desulfobacterota and Desulfobacterota_B
phyla, which include the bacterial genera Smithella and
Syntrophorhabdus that comprise typical known syntrophic
bacteria.

We identified two bacterial MAGs that displayed strong
positive responses to SCFAs, which expressed genes for
more than 80% of the bioconversion steps (Data S2) in the
SCFA oxidation pathways and significantly upregulated
genes in at least three of the steps after SCFA addition.
They were MAG F70 for propionate, and MAG F81 for
butyrate. In addition, we included R76 in the following
analysis as it is phylogenetically closely related to F81 and
significantly upregulated two successive steps after butyrate
addition. No bacterial MAGs responded to acetate as
strongly as to propionate and butyrate. Other bacterial
MAGs with low but significant positive responses to SCFA
addition and the responses of archaeal members are
described in the Supplementary Notes.

To gain a comprehensive understanding of the physiol-
ogy and ecology of the three putative SCFA oxidizers
discovered here, manually curated genome annotation and
metabolic pathway reconstruction were performed, and
expression of related genes was further analyzed.

Butyrate oxidation via two Candidatus
Phosphitivorax species (F81 and R76)

Genome-based taxonomy analysis assigned MAGs F81
and R76 to the same genus as the recently discovered Ca.
Phosphitivorax anaerolimi strain Phox-21 (See Supple-
mentary Notes), which was not previously described as a
syntrophic butyrate oxidizing bacterium (SBOB) [44].
Based on the following genomic and transcriptomic
characteristics, we propose Ca. Phosphitivorax anaerolimi
F81 and Ca. Phosphitivorax butyraticus R76 for naming
the two MAGs.

Butyrate beta-oxidation

A complete butyrate beta-oxidation pathway was recon-
structed for MAGs F81 and R76 (Fig. 4). Therein, butyrate
can be activated to butyryl-CoA by the ATP-consuming acyl-
CoA synthetases, of which the expression of a specific
butyrate-CoA ligase was detected. Acetyl-CoA transferases
can sacrifice one acetyl-CoA to activate butyrate
without energy consumption, but such genes were not highly
expressed. The produced butyryl-CoA was further converted
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Fig. 3 Transcriptional responses of MAGs after the SCFA stimu-
lation. To the left is a phylogenetic tree of the bacterial MAGs which
demonstrated upregulation of any of the genes directly involved in
oxidation of acetate, butyrate, and propionate after stimulation by the
corresponding SCFA. It is derived from the overall genome tree in
Fig. 2. The heatmap to the right shows the transcriptional responses of
genes involved in the bioconversion of SCFAs in the bacterial MAGs.
13, 19, and 31 gene families determined by KEGG ontology (KO)
numbers were used, representing the key genes directly involved in the
aforementioned pathways, which can catalyze bioconversion in 9, 5,
and 5 steps (as defined in Fig. S1 and Data S2). The heatmap is colored
according to fold change (FC) and the corresponding p value (not

corrected for multiple testing to increase sensitivity) of CDSs for the
given KO and are categorized as follows: Downregulated: FC ≤ 0.5
and p value < 0.05; Upregulated: FC ≥ 2 and p value < 0.05; Not
regulated: 0.5 < FC < 2 or p > 0.05; Not detected: no expression or not
encoded. For each MAG, the corresponding SCFA stimuli and control
conditions are shown in the upper- and lower-half of the tile, respec-
tively. The three MAGs in bold red were expressing ≥80% of the
bioconversion steps in the associated pathways highlighted in black
squares, with ≥3 steps upregulated (two steps for R76). The columns
represent different genes (KOs), which are clustered into steps based
on similar functions in the pathway.
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to crotonyl-CoA with acyl-CoA dehydrogenases, of which a
specific butyryl-CoA dehydrogenase (Bcd) was upregulated
(1.7-fold for F81 and 2.5-fold for R76) following butyrate
addition. Further oxidation proceeds via 3-hydroxybutyryl-
CoA to acetoacetyl-CoA with the bifunctional enoyl-CoA
hydratase/3-hydroxyacyl-CoA dehydrogenases, that were
elevated (up to 2.2-fold for F81 and 3.0-fold for R76) after
butyrate addition. The acetoacetyl-CoA was cleaved to two

acetyl-CoA moieties with the acetyl-CoA acetyltransferases
(upregulated up to 2.3-fold for F81 and 3.5-fold for R76),
which can be further transformed to acetate with ATP pro-
duction via the acetyl-CoA synthetases. Both MAGs encoded
multiple paralogs for each step, with only some of these being
upregulated for most steps after butyrate addition, which was
similar to the well-characterized SBOBs, such as S. wolfei
[45] and Syntrophus aciditrophicus [46].
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A comparative genomic analysis demonstrated that the
beta-oxidation pathway also exists for Ca. Phosphitivorax
anaerolimi strain Phox-21 (Data S5), but was not discovered
by Figueroa et al. [44], perhaps due to the automatic
annotation pipeline applied therein.

Electron flow from acyl-CoA dehydrogenases

Beta-oxidation of each molecule of butyrate results in net
synthesis of one ATP. In addition, two sets of electrons
are generated at two different redox potentials: the first
pair is generated during the oxidation of butyryl-CoA to
crotonyl-CoA in the form of reduced electron transfer
flavoprotein (ETF) and the second pair is generated from
the oxidation of 3-hydroxybutyryl-CoA to acetoacetyl-
CoA (E0′ =−250 mV) which is directly used to reduce
NAD+. The first electron pair have high redox potential
(E0′=−125 mV), which can be only used by the mem-
brane complexes utilizing chemiosmotic energy (such as
the Fe–S oxidoreductase, the Fix complexes) in S. wolfei
and S. aciditrophicus [7, 45, 46]. Such complexes can
transfer the electrons from the reduced ETF to menaqui-
none (MK) with inward translocation of protons, and
the reduced form: menaquinol (MKH2) can be further
oxidized by the membrane bound, externally oriented
formate dehydrogenases or hydrogenases with transloca-
tion of two other protons.

F81 and R76 encoded and expressed three gene clusters
related to ETF, but seem to lack the Fix complex. The Fe–S
oxidoreductase-EtfAB complex, including ETF alpha-,
beta-subunits, and a membrane-bound Fe–S oxidoreductase
(lacking in R76 probably due to genome incompleteness),
was clustered with the beta-oxidation specific genes and
actively expressed with butyrate. The other two gene clus-
ters related to ETF subunits both clustered with acyl-CoA
dehydrogenases (bcd/etfAB), which could reduce NAD+

with electrons derived from butyryl-CoA and reduced fer-
redoxin (Fdred) [7], but demonstrated much fewer transcripts
compared with the aforementioned one.

H2/formate production and other confurcation/bifurcation
mechanisms

Three externally oriented formate dehydrogenases fdoIGH-
fdhA [47, 48] were encoded, one of which was actively
expressed. Each of these gene clusters encoded a
membrane-bound b-type cytochrome, which transfers the
electrons from MKH2 to an Fe–S protein, the catalytic
subunit of the formate dehydrogenases, and generates for-
mate in the periplasm, similar as that described for S. wolfei
[7, 49]. Three cytoplasmic formate dehydrogenases (FDH4-
6) and four putative hydrogenases (HYD1-4) were also
detected. FDH5 contains subunits of NADH-quinone

oxidoreductase, which was predicted to catalyze formate
production from electron bifurcation between Fdred and
NADH [7, 45]. HYD2-4 (hndABCD) were proposed to
catalyze the reversible H2-driven NADP+ reduction [50].
Among these hydrogenases, HYD4 was adjacent to FDH4,
forming a large hydrogenase/formate dehydrogenase gene
complex. This complex might catalyze the exchange
between H2 and formate generated from NAD(P)H, similar
to the complex found in S. wolfei [6]. Expression of another
cytoplasmic NAD-reducing hydrogenase (HoxS gamma
subunit) indicated active H2 formation from NADH. The
produced H2 can spontaneously diffuse through the cell
membrane, while formate in the cytoplasm can be exported
by the formate transporters (FocA and an oxalate/formate
antiporter). F81 and R76 also encoded Rnf (rnfABCDEG)
and Nfn (nfnAB) complexes, which can catalyze electron
confurcation/bifurcation between NADH, NADPH, and
Fdred. Both complexes could thus be a source of Fdred for
formate production, but were not actively expressed.

Inactive phosphite oxidation and CO2 fixation metabolisms

Ca. Phosphitivorax anaerolimi strain Phox-21 was descri-
bed to live a chemolithoautotrophic life by obtaining energy
from phosphite oxidation and fixing CO2 via a proposed
reductive glycine pathway [44]. In our study, the entire ptx-
ptd gene cluster for dissimilatory phosphite oxidation was
reconstructed for F81 (but not found in R76, which could be
due to a low MAG completeness of 79.6%). Only the genes
involved in the reductive glycine pathway were found for
inorganic carbon assimilation in both MAGs (Fig. S3,
Data S4), while essential genes for other autotrophic CO2

fixation pathways were lacking. However, these genes were
not actively expressed under any condition, indicating that
these microorganisms did not live as autotrophs, but prob-
ably as heterotrophic syntrophs, unlike Ca. Phosphitivorax
anaerolimi strain Phox-21, which was enriched with exter-
nally added phosphate and CO2 [44].

PMF and ATP synthesis

F81 and R76 may generate proton motive force (PMF) with
the membrane-embedded pyrophosphatase and Rnf com-
plex, or could export protons via dissimilatory nitrite
reduction coupled to formate oxidation as catalyzed by
nitrite reductase and relevant formate dehydrogenase.
Nevertheless, only the pyrophosphatase was significantly
upregulated (2.3-fold) with butyrate, indicating its impor-
tance in PMF formation during syntrophic growth.

Both MAGs encoded multiple F-type and V-type ATP
synthases, and part of them were expressed and demon-
strated upregulation specifically after butyrate addition.
The two types of ATPases might translocate sodium and
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proton, respectively [44], but could also function as
PMF or ATP generators in different metabolisms. The
other model SBOB only encoded one type of ATPase
[7, 46], probably due to their less versatile metabolisms
(see Supplementary Notes).

Propionate oxidation via a Pelotomaculaceae
member (F70)

The family Pelotomaculaceae contains several syntrophic
propionate oxidizing bacteria (SPOB) [51–54], but
as described below, the MAG F70 represented a novel
species (Supplementary Notes and Data S6) with a ver-
satile metabolism in addition to the syntrophic lifestyle.
We have given it the provisional name Ca. Propionivorax
syntrophicum F70.

Methylmalonyl-CoA pathway

F70 encoded and expressed the conventional propionate
oxidation pathway: propionate uptake, activation to pro-
pionyl-CoA, carboxylation to methylmalonyl-CoA, iso-
merization to succinyl-CoA, oxidative decarboxylation to
acetyl-CoA, dethiolation to acetate, and acetate export
(Fig. 4, Fig. S3, Data S4). To activate propionate, it encoded
a CoA ligase to catalyze the exergonic reaction, but also
encoded a CoA transferase to couple this reaction with the
downstream exergonic acetyl-CoA dethiolation, which can
otherwise be independently catalyzed by the acyl-CoA
synthetases. All three types of genes showed positive
responses to propionate addition. However, one of the acyl-
CoA synthetases was upregulated 38-fold, much higher
than the others, indicating this population likely decouples
propionate activation and acetyl-CoA hydrolysis and does
not conserve energy here. F70 encoded and expressed both
an ATP-consuming carboxylase and a carboxyltransferase.
The carboxyltransferase can couple carboxylation of
propionyl-CoA with the downstream oxaloacetate dec-
arboxylation, and the latter step could also be catalyzed by
solely an oxaloacetate decarboxylase (Oad) with extrusion
of two sodium ions. Therefore, from oxidizing each mole-
cule of propionate, this population could yield one ATP
from substrate-level phosphorylation at the succinyl-CoA
synthesis step and four reducing equivalents including:
one NADH and MKH2, and two Fdred, each carrying two
electrons.

H2/formate production and electron confurcation/
bifurcation mechanisms

The membrane bound succinate dehydrogenases transfer the
electrons to MK, and the formed MKH2 can be reoxidized
by the membrane-bound cytochrome b-linked quinone-

dependent hydrogenases (HydA–HybB) and formate
dehydrogenases (FdnGH–HybB), similar to other SPOB of
the genus Pelotomaculum [51]. F70 also encoded and
expressed several other cytoplasmic hydrogenases (HydA,
HndCD) and formate dehydrogenases (Fdh), which can
consume reducing equivalents of NADH (or NADPH) and
Fdred to form H2 and formate. The Fdh–Hyl complex is an
electron-confurcating formate dehydrogenase capable of
driving endergonic NADH oxidation using exergonic oxi-
dation of Fdred [51, 55]. It is suspected to function in this
bacterium, as the related genes found in the MAG
were specifically upregulated with propionate. The formate
produced inside the cytoplasm may be pumped out via
a formate transporter (FocA), which was upregulated
(7.7-fold) only after propionate addition. Generally, both
formate dehydrogenases (such as FdnGH–HybB and
Fdh–Hyl) and hydrogenases (like HydA) were upregulated
in response to propionate, implying formate and H2 may
both contribute to interspecies electron transfer between
SPOB and methanogens.

Other electron transferring proteins indicating sulfate-
reducing metabolism

In MAG F70, three complexes (HDR1-3) containing het-
erodisulfide reductases (Hdr) were encoded and expressed:
the first two were highly upregulated after propionate
addition, and HDR3 was expressed under all conditions.
Similar Hdr-containing complexes have been detected in
sulfate-reducing bacteria (SRB) [56] and some syntrophic
bacteria, such as S. fumaroxidans [57], indicating their
potential roles in sulfur metabolism or specialized low-
energy metabolisms. In addition, several genes required
for dissimilatory sulfate reduction (DSR) were detected in
this genome, including sulfate adenylyltransferase (sat), a
dsrC subunit, pyrophosphatase (hppA), and putative
anaerobic sulfite reductase (asrAB), indicating F70 might
also play an important function in sulfate-reducing meta-
bolism (SR) under sulfidogenic conditions. The Hdr with
the Flx proteins were proposed to couple the reduction of
ferredoxin by NAD(P)H with the reduction of DsrC in
many SRB [58]. Expression of such related genes by F70
could thus serve as another Fdred source for H2 or formate
production.

PMF and ATP synthesis

Besides substrate-level phosphorylation, ATP could also be
produced via an F0F1-type ATP synthase for F70, which
was expressed specifically with propionate. PMF could be
generated by the proton-translocating HppA, Oad, and
possibly the Hyb- and Fdn-containing membrane-bound
complexes [51] (see Supplementary Notes).
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Distribution of syntrophic bacterial populations in
Danish digesters

A survey into the bacterial composition based on 16S rRNA
gene amplicon sequencing was conducted on full-scale
anaerobic sludge digesters located at 18 WWTPs in Den-
mark. As the newly discovered syntrophs are not described
in the 16S rRNA reference database used for classification,
the 16S rRNA gene sequences associated with the three
MAGs were extracted and used as reference to investigate
their distribution in sludge digesters (Fig. 5a).

Ca. Phosphitivorax was detected in the mesophilic
reactors from all 14 plants, although only at low abun-
dance in two plants. It ranks as the third most abundant
genus comprising the currently known syntrophs

(called “syntrophic genus”) across all plants, suggesting
that it is important for the anaerobic digestion process.
It was also observed in one of the two investigated THP
plants, for which biomass in the digester feedstock has
been thermal hydrolyzed before digestion at mesophilic
condition. This genus was rarely detected in the thermo-
philic digesters.

Ca. Propionivorax was observed in mesophilic digesters
from 12 plants and in both THP plants. This population was
also fairly abundant in the full-scale digesters and ranked as
the sixth most abundant syntrophic genus (Fig. 5a). Its read
abundance was especially high in the THP plant, where it
was the second most abundant syntroph. Nevertheless, this
population was only observed at very low read abundance
in the thermophilic reactors.
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Fig. 5 Relative abundance of known and novel syntrophic bac-
terial genera in (a) full-scale digesters and (b) the SCFA stimulated
reactors. Data are based on 16S rRNA gene amplicon sequencing of
DNA extracted from digester slurry. The full-scale data were based
upon 103 samples collected from 30 full-scale digesters at 18 Danish
WWTPs in 2016 year with 2 to 12 samples per digester [8]. The
numbers in the heatmap are average relative read abundance in

percentage for each WWTP. The THP digesters are operated at
mesophilic conditions, but the substrates are thermally hydrolyzed
prior to anaerobic digestion. The lab-scale data were derived from
analyses on the inoculum and biomass sampled 2 h after each SCFA
addition, with two samples for each condition. Taxonomic classifica-
tion was based on the SILVA taxonomy. The novel syntrophic genera
described in this study are highlighted in red.
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Both Ca. Phosphitivorax and Ca. Propionivorax were not
detected in the incoming feedstocks, indicating they origi-
nate from and grow in digesters. The broad distribution of
these lineages across WWTPs indicates that they may be
important but previously overlooked syntrophs in full-scale
digesters.

Amplicon analysis of syntrophic bacteria in the lab-scale
reactors showed that Ca. Phosphitivorax and Ca. Propio-
nivorax were in low relative abundances and had no
detectable growth (Fig. 5b). A similar phenomenon was
observed for other syntrophs (Fig. 5b), as considered to be
in agreement with their slow growth rates. However, as
conversion of propionate and butyrate started immediately
after addition, and intermediates (like formate) did not
accumulate, we can thus conclude that even a low number
of syntrophs can effectively convert the SCFAs to metha-
nogenic precursors and transfer them to methanogens, as
also observed in other methanogenic systems [9, 17, 18].

Conclusions and future perspectives

Transcriptomic responses of 198 microbial members from
two full-scale ADs revealed three novel syntrophic bacteria,
including one SPOB of the family Pelotomaculaceae and two
SBOB of the genus Ca. Phosphitivorax, which were found to
be ubiquitous in ADs. Annotation of all three genomes
demonstrated common features of syntrophic SCFA-
oxidizing bacteria, such as a general beta-oxidation or
methylmalonyl-CoA pathway, multiple paralogs for each
enzymatic function but selective expression under different
environmental conditions, various formate dehydrogenase/
hydrogenase and electron bifurcation/confurcation metabo-
lisms. At the same time, they displayed specific character-
istics, such as multiple ATPases, NADPH-utilizing electron-
transfer system, and versatile metabolisms. Ca. Phosphiti-
vorax anaerolimi F81 can catalyze syntrophic butyrate oxi-
dation for energy, and could, based on genomic annotation,
probably use isobutyrate, ethanol, and other organics for a
heterotrophic lifestyle, but also has the genetic potential for
dissimilatory phosphite oxidation and nitrite reduction with
CO2 fixation. Ca. Phosphitivorax butyraticus R76 seems to
lack only the phosphite oxidation metabolism compared with
F81. Ca. Propionivorax syntrophicum F70 demonstrated
syntrophic propionate oxidation capability, but also encoded
genes for dissimilatory sulfate/sulfite reduction. Genomic
features for such chemolithotrophic metabolisms indicated
that these three bacteria may not strictly live a syntrophic
lifestyle, but could also survive via versatile metabolisms,
which need to be verified in further studies. The in situ
activities of these low-abundant microbial members can
be effectively detected by the genome-guided metatran-
scriptomic approach, demonstrating the high sensitivity of

this method in studying the behavior of individual members
in complex microbiomes. Nevertheless, future improved
sequencing technologies and genome construction tools are
expected to extend the range of microbial members studied
by this approach and increase the efficiency.

Data availability

All sequencing data have been submitted to European
Nucleotide Archive under the project ID PRJEB31310.
Accession numbers for individual dataset can be found in
Data S1.
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