Syntrophic growth of alkaliphilic anaerobes controlled by ferric and ferrous minerals transformation coupled to acetogenesis

Article metrics

Abstract

Redox-active iron minerals can act as energy sources or electron-transferring mediators in microbial syntrophic associations, being important means of interspecies metabolic cooperation in sedimentary environments. Alkaline conditions alter the thermodynamic stability of iron minerals, influencing their availability for interspecies syntrophic interactions. We have modeled anaerobic alkaliphilic microbial associations in ethanol-oxidizing co-culture of an obligate syntroph Candidatus “Contubernalis alkalaceticum” and a facultative lithotroph Geoalkalibacter ferrihydriticus, which is capable of dissimilatory Fe(III) reduction and homoacetogenic oxidation of Fe(II) with CO2. The co-cultures were cultivated with thermodynamically metastable ferric-containing ferrihydrite, or ferrous-containing siderite, or without minerals. Mössbauer spectral analysis revealed the transformation of both minerals to the stable magnetite. In the presence of ferrihydrite, G. ferrihydriticus firstly reduced Fe(III) with ethanol and then switched to syntrophic homoacetogenesis, providing the growth of obligate syntroph on ethanol. The ability of G. ferrihydriticus to accept hydrogen from its syntrophic partner and produce extra acetate from carbonate during ethanol oxidation was confirmed by co-culture growth without minerals. In the presence of siderite, G. ferrihydriticus performed homoacetogenesis using two electron donors simultaneously— siderite and hydrogen. Pieces of evidence for direct and indirect hydrogen-mediated electron exchange between partner organisms were obtained. Relative abundancies of partner organisms and the rate of acetate production by their co-cultures were strongly determined by thermodynamic benefits, which G. ferrihydriticus got from redox transformations of iron minerals. Even the minor growth of G. ferrihydriticus sustained the growth of the syntroph. Accordingly, microbe-to-mineral interactions could represent underestimated drivers of syntrophic interactions in alkaline sedimentary environments.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Schink B. Synergistic interactions in the microbial world. Antonie Van Leeuwenhoek. 2002;81:257–61.

  2. 2.

    Bryant MP, Wolin EA, Wolin MJ, Wolfe RS. Methanobacillus omelianskii, a symbiotic association of two species of bacteria. Arch Microbiol. 1967;59:20–31.

  3. 3.

    Stams AJ, de Bok FA, Plugge CM, van Eekert MH, Dolfing J, Schraa G. Exocellular electron transfer in anaerobic microbial communities. Environ Microbiol. 2006;8:371–82.

  4. 4.

    Morris BE, Henneberger R, Huber H, Moissl-Eichinger C. Microbial syntrophy: interaction for the common good. FEMS Microbiol Rev. 2013;37:384–406.

  5. 5.

    Kouzuma A, Kato S, Watanabe K. Microbial interspecies interactions: recent findings in syntrophic consortia. Front Microbiol. 2015;6:477. https://doi.org/10.3389/fmicb.2015.00477.

  6. 6.

    Lovley DR, Fraga JL, Coates JD, Blunt-Harris EL. Humics as an electron donor for anaerobic respiration. Environ Microbiol. 1999;1:89–98.

  7. 7.

    Kaden J, Galushko A, Schink B. Cysteine-mediated electron transfer in syntrophic acetate oxidation by co-cultures of Geobacter sulfurreducens and Wolinella succinogenes. Arch Microbiol. 2002;178:53–8.

  8. 8.

    Zhuang L, Ma J, Tang J, Tang Z, Shungui Z. Cysteine-accelerated methanogenic propionate degradation in paddy soil enrichment. Micro Ecol. 2016;73:916–24.

  9. 9.

    Overmann J, Schubert K. Phototrophic consortia: model systems for symbiotic interrelations between prokaryotes. Arch Microbiol. 2002;177:201–8.

  10. 10.

    Stams AJ, Oude Elferink SJ, Westermann P. Metabolic interactions between methanogenic consortia and anaerobic respiring bacteria. Adv Biochem Eng Biotechnol. 2003;81:31–56.

  11. 11.

    Stams AJ, Plugge CM, de Bok FA, van Houten BH, Lens P, Dijkman H, et al. Metabolic interactions in methanogenic and sulfate-reducing bioreactors. Water Sci Technol. 2005;52:13–20.

  12. 12.

    Lovley DR. Syntrophy goes electric: direct interspecies electron transfer. Annu Rev Microbiol. 2017. https://doi.org/10.1146/annurev-micro-030117-020420.

  13. 13.

    Summers ZM, Fogarty H, Leang C, Franks AE, Malvankar NS, Lovley DR. Direct exchange of electrons within aggregates of an evolved syntrophic co-culture of anaerobic bacteria. Science. 2010;330:1413–5.

  14. 14.

    Rotaru A-E, Shrestha PM, Liu F, Shrestha M, Shrestha D, Embree M, et al. A new model for electron flow during anaerobic digestion: direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane. Energy Environ Sci. 2014;7:408–15.

  15. 15.

    Kato S, Hashimoto K, Watanabe K. Methanogenesis facilitated by electric syntrophy via (semi)conductive iron-oxide minerals. Environ Microbiol. 2012;14:1646–54.

  16. 16.

    Jin Q, Kirk MF. pH as a primary control in environmental microbiology: 1. thermodynamic perspective. Front Environ Sci. 2018;6:21. https://doi.org/10.3389/fenvs.2018.00021.

  17. 17.

    Jin Q, Kirk MF. pH as a primary control in environmental microbiology: 2. kinetic perspective. Front Environ Sci. 2018;6:101. https://doi.org/10.3389/fenvs.2018.00101.

  18. 18.

    Zhilina TN, Zavarzina DG, Kolganova TV, Tourova TP, Zavarzin GA. Candidatus “Contubernalis alkalaceticum” an obligately syntrophic alkaliphilic bacterium capable of anaerobic acetate oxidation in a co-culture with Desulfonatronum cooperativum. Microbiology (Engl translation Mikrobiologiya). 2005;74:695–703.

  19. 19.

    Sorokin DY, Abbas B, Tourova TP, Bumazhkin BK, Kolganova TV, Muyzer G. (2014) Sulfate-dependent acetate oxidation at extremely natron-alkaline conditions by syntrophic associations from hypersaline soda lakes. Microbiology. 2014;160:723–32.

  20. 20.

    Zhilina TN, Zavarzina DG, Kuever J, Lysenko AM, Zavarzin GA. Desulfonatronum cooperativum sp. nov., a novel hydrogenotrophic, alkaliphilic, sulfate-reducing bacterium, from a syntrophic culture growing on acetate. Int J Syst Evol Microbiol. 2005;55:1001–6.

  21. 21.

    Sorokin DY, Abbas B, Geleijnse M, Kolganova TV, Kleerebezem R, van Loosdrecht MC. Syntrophic associations from hypersaline soda lakes converting organic acids and alcohols to methane at extremely haloalkaline conditions. Environ Microbiol. 2016;18:3189–202.

  22. 22.

    Zavarzina DG, Chistyakova NI, Shapkin AV, Savenko AV, Zhilina TN, Kevbrin VV, et al. Oxidative biotransformation of biotite and glauconite by alkaliphilic anaerobes: the effect of Fe oxidation on the weathering of phyllosilicates. Chem Geol. 2016;439:98–109.

  23. 23.

    Zavarzina DG, Kolganova TV, Bouligina ES, Kostrikina NA, Tourova TP, Zavarzin GA. Geoalkalibacter ferrihydriticus gen. nov., sp. nov., the first alkaliphilic representative of the family Geobacteraceae, isolated from a soda lake. Microbiol (Engl translation Mikrobiologiya). 2006;78:723–31.

  24. 24.

    Yoho R, Popat S, Rago L, Guisasola A, Torres C. Anode biofilms of Geoalkalibacter ferrihydriticus exhibit electrochemical signatures of multiple electron transport pathways. Langmuir: ACS J Surf Colloids. 2015;31:12552–9.

  25. 25.

    Badalamenti JP, Krajmalnik-Brown R, Torres CI. Generation of high current densities by pure cultures of anode-respiring Geoalkalibacter spp. under alkaline and saline conditions in microbial electrochemical cells. mBio. 2013;4:e00144–13.

  26. 26.

    Badalamenti JP, Krajmalnik-Brown R, Torres CI, Bond DR. Genomes of Geoalkalibacter ferrihydriticus Z-0531T and Geoalkalibacter subterraneus Red1T, two haloalkaliphilic metal-reducing Deltaproteobacteria. Genome Announc. 2015;3:e00039–15.

  27. 27.

    Zavarzina DG, Kevbrin VV, Zhilina TN, Chistyakova NI, Shapkin AA, Zavarzin GA. Reduction of synthetic ferrihydrite by a binary anaerobic culture of Anaerobacillus alkalilacustris and Geoalkalibacter ferrihydriticus grown on mannitol at pH 9.5. Microbiology (English translation of Mikrobiologiya). 2011; 80: 743–57.

  28. 28.

    Chistyakova NI, Rusakov VS, Nazarova KA, Koksharov YuA, Zavarzina DG, Greneche J-M. Iron minerals formed by dissimilatory iron-and sulfur reducing bacteria studied by mossbauer spectrometry. Hyper Inter. 2008;182:55–63.

  29. 29.

    Kevbrin VV, Zavarzin GA. The effect of sulfur compounds on growth of halophilic the homoacetic bacterium Acetohalobium arabaticum. Microbiol (Engl translation Mikrobiologiya). 1992;61:812–7.

  30. 30.

    Stookey LL. Ferrozine—a new spectrophotometric reagent for iron. Anal Chem. 1970;42:779–81.

  31. 31.

    Matsnev ME, Rusakov VS. SpectrRelax: an application for Mössbauer spectra modeling and fitting. AIP Conf Proc. 2012;1489:178–85.

  32. 32.

    Shvarov YV. HCh: new potentialities for the thermodynamic simulation of geochemical systems offered by Windows. Geochem Int. 2008;46:834–9.

  33. 33.

    Shvarov Y. A suite of programs, OptimA, OptimB, OptimC, and OptimS compatible with the Unitherm database, for deriving the thermodynamic properties of aqueous species from solubility, potentiometry and spectroscopy measurements. Appl Geochem. 2015;55:17–27.

  34. 34.

    Helgeson HC. Evaluation of irreversible reactions in geochemical processes involving minerals and aqueous solutions I. Thermodynamic relations. Geochim et Cosmoch Acta. 1968;32:853–77.

  35. 35.

    Lever MA, Torti A, Eickenbusch P, Michaud AB, Šantl-Temkiv T, Jørgensen BB. A modular method for the extraction of DNA and RNA, and the separation of DNA pools from diverse environmental sample types. Front Microbiol. 2015; May. https://doi.org/10.3389/fmicb.2015.00476.

  36. 36.

    Fadrosh DW, Ma B, Gajer P, Sengamalay N, Ott S, Brotman RM, et al. Animproved dual-indexing approach for multiplexed 16S rRNA gene sequencing on the Illumina MiSeq platform. Microbiome. 2014;2:6.

  37. 37.

    Merkel AY, Pimenov NV, Rusanov II, Slobodkin AI, Slobodkina GB, Tarnovetckii IY, et al. Microbial diversity and autotrophic activity in Kamchatka hot springs. Extremophiles. 2017;21:307–17.

  38. 38.

    Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335–6.

  39. 39.

    Holmes DE, Dang Y, Walker DJ, Lovley DR. The electrically conductive pili of Geobacter species are a recently evolved feature for extracellular electron transfer. Micro Genom. 2016;2:e000072.

  40. 40.

    Poehlein A, Schmidt S, Kaster A-K, Goenrich M, Vollmers J, Thürmer A, et al. An ancient pathway combining carbon dioxide fixation with the generation and utilization of a sodium ion gradient for ATP synthesis. PLoS ONE. 2012;7:e33439.

  41. 41.

    Martin WF, Sousa FL, Lane N. Evolution. Energy at life’s origin. Science. 2014;344:1092–3.

  42. 42.

    Vargas M, Kashefi K, Blunt-Harris EL, Lovley DR. Microbiological evidence for Fe(III) reduction on early Earth. Nature. 1998;395:65–7.

  43. 43.

    Straub KL, Benz M, Schink B. (2001) Iron metabolism in anoxic environments at near neutral pH. FEMS Microbiol Ecol. 2001;34:181–6.

  44. 44.

    Nevin KP, Woodard TL, Franks AE, Summers ZM, Lovley DR. Microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds. mBio. 2010;1. https://doi.org/10.1128/mBio.00103-10.

  45. 45.

    Nevin KP, Hensley SA, Franks AE, Summers ZM, Ou JH, Woodard TL, et al. Electrosynthesis of organic compounds from carbon dioxide is catalyzed by a diversity of acetogenic microorganisms. Appl Environ Microbiol. 2011;77:2882–6.

  46. 46.

    Zavarzin GA. The lithotrophyc microorganisms. Moscow: Nauka; 1972.

  47. 47.

    Legrand L, Mazerolles L, Chaussé A. The oxidation of carbonate green rust into ferric phases: solid-state reaction or transformation via solution. Geoch Cosm Acta. 2004;68:3497–507.

  48. 48.

    Viggi CC, Rossetti S, Fazi S, Paiano P, Majone M, Aulenta F. Magnetite particles triggering a faster and more robust syntrophic pathway of methanogenic propionate degradation. Environ Sci Technol. 2014;48:7536–43.

  49. 49.

    Fu L, Song T, Zhang W, Zhang J, Lu Y. (2018). Stimulatory effect of magnetite nanoparticles on a highly enriched butyrate-oxidizing consortium. Front Microbiol. 2018;9:1480. https://doi.org/10.3389/fmicb.2018.01480.

  50. 50.

    Li S-W, Sheng G-P, Cheng Y-Y, Yu H-Q. Redox properties of extracellular polymeric substances (EPS) from electroactive bacteria. Sci Rep. 2016;6:390–8.

  51. 51.

    Xiao Y, Zhang E, Zhang J, Dai Y, Yang Z, Christensen H, et al. Extracellular polymeric substances are transient media for microbial extracellular electron transfer. Sci Adv. 2017;3:e1700623.

  52. 52.

    Walker DJF, Ramesh Y, Adhikari RY, Holmes DE, Ward JE, Woodard TL, et al. Electrically conductive pili from pilin genes of phylogenetically diverse microorganisms. ISME J. 2018;12:48–58.

  53. 53.

    Trendall AF. The significance of iron-formation in the Precambrian stratigraphic record. International Association of Sedimentologists. Spec Publ. 2002;33:33–66.

  54. 54.

    Klein C. Some Precambrian banded iron formations (BIFs) from around the world. Their age, geologic setting, mineralogy, metamorphism, geochemistry,and origin. Am Miner. 2005;90:1473–99.

  55. 55.

    Konhauser KO, Planavsky NJ, Hardisty DS, Robbins LJ, Warchola TJ, Haugaard R, et al. Iron formations: a global record of Neoarchaean to Palaeoproterozoic environmental history. Earth Sci Rev. 2017;172:140–77.

  56. 56.

    Anbar AD, Duan Y, Lyons TW, Arnold GL, Kendall B, Creaser RA, et al. A whiff of oxygen before the Great Oxidation Event? Science. 2007;317:1903–6.

  57. 57.

    Poulton SW, Canfeld DE. Ferruginous conditions: a dominant feature of the ocean through Earth’s history. Elements. 2011;7:107–12.

  58. 58.

    Posth NR, Köhler I, Swanner ED, Schröder C, Wellmann E, Binder B, et al. (2013) Simulating Precambrian banded iron formation diagenesis. Chem Geol. 2013;362:66–73.

Download references

Acknowledgements

This work was supported by the Russian Science Foundation, project No. 17-74-30025 (cultivation experiments and iron minerals analysis), the Ministry of Science and Higher Education of the Russian Federation. Mössbauer analyses and thermodynamic calculations were performed with the support of the RFBR research projects No. 18-32-00349 and No. 18-05-00818 correspondingly.

Author information

Correspondence to Daria G. Zavarzina.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zavarzina, D.G., Gavrilov, S.N., Chistyakova, N.I. et al. Syntrophic growth of alkaliphilic anaerobes controlled by ferric and ferrous minerals transformation coupled to acetogenesis. ISME J (2019) doi:10.1038/s41396-019-0527-4

Download citation