Diversity and biogeography of SAR11 bacteria from the Arctic Ocean

Abstract

The Arctic Ocean is relatively isolated from other oceans and consists of strongly stratified water masses with distinct histories, nutrient, temperature, and salinity characteristics, therefore providing an optimal environment to investigate local adaptation. The globally distributed SAR11 bacterial group consists of multiple ecotypes that are associated with particular marine environments, yet relatively little is known about Arctic SAR11 diversity. Here, we examined SAR11 diversity using ITS analysis and metagenome-assembled genomes (MAGs). Arctic SAR11 assemblages were comprised of the S1a, S1b, S2, and S3 clades, and structured by water mass and depth. The fresher surface layer was dominated by an ecotype (S3-derived P3.2) previously associated with Arctic and brackish water. In contrast, deeper waters of Pacific origin were dominated by the P2.3 ecotype of the S2 clade, within which we identified a novel subdivision (P2.3s1) that was rare outside the Arctic Ocean. Arctic S2-derived SAR11 MAGs were restricted to high latitudes and included MAGs related to the recently defined S2b subclade, a finding consistent with bi-polar ecotypes and Arctic endemism. These results place the stratified Arctic Ocean into the SAR11 global biogeography and have identified SAR11 lineages for future investigation of adaptive evolution in the Arctic Ocean.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Morris RM, Rappé MS, Connon SA, Vergin KL, Siebold WA, Carlson CA, et al. SAR11 clade dominates ocean surface bacterioplankton communities. Nature. 2002;420:806–10.

    Article  CAS  Google Scholar 

  2. 2.

    Brown MV, Lauro FM, DeMaere MZ, Muir L, Wilkins D, Thomas T, et al. Global biogeography of SAR11 marine bacteria. Mol Syst Biol. 2012;8:1–13.

    Article  CAS  Google Scholar 

  3. 3.

    Giovannoni SJ. SAR11 bacteria: the most abundant plankton in the Oceans. Ann Rev Mar Sci. 2017;9:231–55.

    Article  Google Scholar 

  4. 4.

    Carlson CA, Morris R, Parsons R, Treusch AH, Giovannoni SJ, Vergin K. Seasonal dynamics of SAR11 populations in the euphotic and mesopelagic zones of the northwestern Sargasso Sea. ISME J. 2009;3:283–95.

    Article  CAS  Google Scholar 

  5. 5.

    Ngugi DK, Stingl U. Combined analyses of the ITS Loci and the corresponding 16S rRNA genes reveal high micro- and macrodiversity of SAR11 populations in the Red Sea. PLoS One. 2012;8:e50274.

    Article  CAS  Google Scholar 

  6. 6.

    Pommier T, Pinhassi J, Hagström Å. Biogeographic analysis of ribosomal RNA clusters from marine bacterioplankton. Aquat Micro Ecol. 2005;41:79–89.

    Article  Google Scholar 

  7. 7.

    Tsementzi D, Wu J, Deutsch S, Nath S, Rodriguez-R LM, Burns AS, et al. SAR11 bacteria linked to ocean anoxia and nitrogen loss. Nature. 2016;536:179–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    García-Martínez J, Rodríguez-Valera F. Microdiversity of uncultured marine prokaryotes: the SAR11 cluster and the marine Archaea of Group I. Mol Ecol. 2000;9:935–48.

    Article  Google Scholar 

  9. 9.

    Herlemann DPR, Woelk J, Labrenz M, Jürgens K. Diversity and abundance of ‘Pelagibacterales’ (SAR11) in the Baltic Sea salinity gradient. Syst Appl Microbiol. 2014;37:601–4.

    Article  CAS  Google Scholar 

  10. 10.

    Oh HM, Kang I, Lee K, Jang Y, Lim SI, Cho JC. Complete genome sequence of strain IMCC9063, belonging to SAR11 subgroup 3, isolated from the Arctic Ocean. J Bacteriol. 2011;193:3379–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Bahr M, Hobbie JE, Sogin ML. Bacterial diversity in an arctic lake: a freshwater SAR11 cluster. Aquat Micro Ecol. 1996;11:271–7.

    Article  Google Scholar 

  12. 12.

    McLaughlin FA, Carmack EC, Macdonald RW, Melling H, Swift JH, Wheeler PA, et al. The joint roles of Pacific and Atlantic-origin waters in the Canada Basin, 1997-1998. Deep Res Part I Oceano Res Pap. 2004;51:107–28.

    Article  CAS  Google Scholar 

  13. 13.

    Macdonald RW, McLaughlin FA, Carmack EC. Fresh water and its sources during the SHEBA drift in the Canada Basin of the Arctic Ocean. Deep Res Part I Oceano Res Pap. 2002;49:1769–85.

    Article  CAS  Google Scholar 

  14. 14.

    Guéguen C, McLaughlin FA, Carmack EC, Itoh M, Narita H, Nishino S. The nature of colored dissolved organic matter in the southern Canada Basin and East Siberian Sea. Deep Res Part II Top Stud Oceano. 2012;81–84:102–13.

    Article  CAS  Google Scholar 

  15. 15.

    Pedrós-Alió C, Potvin M, Lovejoy C. Diversity of planktonic microorganisms in the Arctic Ocean. Prog Oceano. 2015;139:233–43.

    Article  Google Scholar 

  16. 16.

    Swan BK, Tupper B, Sczyrba A, Lauro FM, Martinez-Garcia M, Gonzalez JM, et al. Prevalent genome streamlining and latitudinal divergence of planktonic bacteria in the surface ocean. Proc Natl Acad Sci USA. 2013;110:11463–8.

    Article  Google Scholar 

  17. 17.

    Ghiglione J-F, Galand PE, Pommier T, Pedros-Alio C, Maas EW, Bakker K, et al. Pole-to-pole biogeography of surface and deep marine bacterial communities. Proc Natl Acad Sci USA. 2012;109:176330–17638.

    Article  Google Scholar 

  18. 18.

    Comeau AM, Li WKW, Tremblay JÉ, Carmack EC, Lovejoy C. Arctic ocean microbial community structure before and after the 2007 record sea ice minimum. PLoS One. 2011;6:e27492.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Alonso-Sáez L, Sánchez O, Gasol JM, Balagué V, Pedrós-Alio C. Winter-to-summer changes in the composition and single-cell activity of near-surface Arctic prokaryotes. Environ Microbiol. 2008;10:2444–54.

    Article  CAS  Google Scholar 

  20. 20.

    Shimada K, Itoh M, Nishino S, McLaughlin F, Carmack E, Proshutinsky A Halocline structure in the Canada Basin of the Arctic Ocean. Geophys Res Lett. 2005;32:1–5.

  21. 21.

    Monier A, Comte J, Babin M, Forest A, Matsuoka A, Lovejoy C. Oceanographic structure drives the assembly processes of microbial eukaryotic communities. ISME J. 2015;9:990–1002.

    Article  CAS  Google Scholar 

  22. 22.

    Colatriano D, Tran PQ, Guéguen C, Williams WJ, Lovejoy C, Walsh DA. Genomic evidence for the degradation of terrestrial organic matter by pelagic Arctic Ocean Chloroflexi bacteria. Commun Biol. 2018;1:90.

    Article  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Kang DD, Froula J, Egan R, Wang Z. MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ. 2015;3:e1165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Bushnell B. BBMap: a fast, accurate, splice-aware aligner. Joint Genome Instritute, department of energy. 2014. https://sourceforge.net/projects/bbmap/.

  25. 25.

    Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Lechner M, Findeiß S, Steiner L, Marz M, Stadler PF, Prohaska SJ. Proteinortho: detection of (Co-)orthologs in large-scale analysis. BMC Bioinforma. 2011;12:124.

    Article  Google Scholar 

  27. 27.

    Kumar S, Stecher G, Peterson D, Tamura K. MEGA-CC: computing core of molecular evolutionary genetics analysis program for automated and iterative data analysis. Bioinformatics. 2012;28:2685–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Huntemann M, Ivanova NN, Mavromatis K, Tripp HJ, Paez-Espino D, Tennessen K, et al. The standard operating procedure of the DOE-JGI metagenome annotation pipeline (MAP v.4). Stand Genom Sci. 2016;11:17.

    Article  CAS  Google Scholar 

  29. 29.

    Bairoch A, Apweiler R. The SWISS-PROT protein sequence data bank and its supplement TrEMBL in 1999. Nucleic Acids Res. 1999;27:49–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Landry Z, Swa BK, Herndl GJ, Stepanauskas R, Giovannoni SJ. SAR202 genomes from the dark ocean predict pathways for the oxidation of recalcitrant dissolved organic matter. MBio. 2017;8:e00413–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Karsenti E, Acinas SG, Bork P, Bowler C, de Vargas C, Raes J, et al. A holistic approach to marine Eco-systems biology. PLoS Biol. 2011;9:e1001177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, Mcglinn D, et al. Vegan: Community Ecology Package. https://cran.r-project.org, https://github.com/vegandevs/vegan. 2016.

  33. 33.

    Tran P, Ramachandran A, Khawasik O, Beisner BE, Rautio M, Huot Y, et al. Microbial life under ice: metagenome diversity and in situ activity of verrucomicrobia in seasonally ice-covered lakes. Environ Microbiol. 2018;20:2568–84.

    Article  CAS  Google Scholar 

  34. 34.

    Bano N, Hollibaugh JT. Phylogenetic composition of bacterioplankton assemblages from the Arctic Ocean. Appl Environ Microbiol. 2002;68:505–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Kirchman DL, Cottrell MT, Lovejoy C. The structure of bacterial communities in the western Arctic Ocean as revealed by pyrosequencing of 16S rRNA genes. Environ Microbiol. 2010;12:1132–43.

    Article  CAS  Google Scholar 

  36. 36.

    Galand PE, Potvin M, Casamayor EO, Lovejoy C. Hydrography shapes bacterial biogeography of the deep Arctic Ocean. ISME J. 2010;4:564–76.

    Article  Google Scholar 

  37. 37.

    Cameron TJ, Temperton B, Swan BK, Landry ZC, Woyke T, Delong EF, et al. Single-cell enabled comparative genomics of a deep ocean SAR11 bathytype. ISME J. 2014;8:1440–51.

    Article  CAS  Google Scholar 

  38. 38.

    Grote J, Thrash JC, Huggett MJ. Streamlining and core genome conservation among highly divergent members of the SAR11 clade. MBio 2012;3:1–13.

    Article  CAS  Google Scholar 

  39. 39.

    Schwalbach MS, Tripp HJ, Steindler L, Smith DP, Giovannoni SJ. The presence of the glycolysis operon in SAR11 genomes is positively correlated with ocean productivity. Environ Microbiol. 2010;12:490–500.

    Article  CAS  Google Scholar 

  40. 40.

    Viklund J, Ettema TJG, Andersson SGE. Independent genome reduction and phylogenetic reclassification of the oceanic SAR11 clade. Mol Biol Evol. 2012;29:599–615.

    Article  CAS  Google Scholar 

  41. 41.

    Delmont TO, Kiefl E, Kilinc O, Esen OC, Uysal I, Rappe MS, et al. The global biogeography of amino acid variants within a single SAR11 population is governed by natural selection. bioRxiv. 2017.

  42. 42.

    Kirkpatrick M, Barton NH. Evolution of a species’ range. Am Nat. 1997;150:1–23.

    Article  CAS  Google Scholar 

  43. 43.

    Hellweger FL, Van Sebille E, Fredrick ND. Biogeographic patterns in ocean microbes emerge in a neutral agent-based model. Science. 2014;345:1246–349.

    Article  CAS  Google Scholar 

  44. 44.

    Eren AM, Maignien L, Sul WJ, Murphy LG, Grim SL, Morrison HG, et al. Oligotyping: differentiating between closely related microbial taxa using 16S rRNA gene data. Methods Ecol Evol 2013;4:1111–9.

  45. 45.

    Vergin KL, Beszteri B, Monier A, Cameron Thrash J, Temperton B, Treusch AH, et al. High-resolution SAR11 ecotype dynamics at the Bermuda Atlantic Time-series Study site by phylogenetic placement of pyrosequences. ISME J. 2013;7:1322–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Barton AD, Dutkiewicz S, Flierl G, Bragg J, Follows MJ. Patterns of diversity in marine phytoplankton. Science. 2010;327:1509–11.

    Article  CAS  Google Scholar 

  47. 47.

    Thomas MK, Kremer CT, Klausmeier CA, Litchman E. A global pattern of thermal adaptation in marine phytoplankton. Science. 2012;338:1085–8.

    Article  CAS  Google Scholar 

  48. 48.

    Ladau J, Sharpton TJ, Finucane MM, Jospin G, Kembel SW, O’Dwyer J, et al. Global marine bacterial diversity peaks at high latitudes in winter. ISME J. 2013;7:1669–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Cabello-Yeves PJ, Zemskay TI, Rosselli R, Coutinho FH, Zakharenko AS, Blinov VV, et al. Genomes of novel microbial lineages assembled from the sub-ice waters of Lake Baikal. Appl Environ Microbiol. 2018;84:e02132–17.

    PubMed  Google Scholar 

  50. 50.

    Morris RM, Vergin KL, Cho JC, Rappé MS, Carlson CA, Giovannoni SJ. Temporal and spatial response of bacterioplankton lineages to annual convective overturn at the Bermuda Atlantic Time-series Study site. Limnol Oceano. 2005;50:1687–96.

    Article  CAS  Google Scholar 

  51. 51.

    Jimenez-Infante F, Ngugi DK, Vinu M, Blom J, Alam I, Bajic VB, et al. Genomic characterization of two novel SAR11 isolates from the Red Sea, including the first strain of the SAR11 Ib clade. FEMS Microbiol Ecol. 2017;93:1–10.

Download references

Acknowledgements

Data were collected aboard the CCGS Louis S. St-Laurent in collaboration with researchers from Fisheries and Oceans Canada at the Institute of Ocean Sciences and Woods Hole Oceanographic Institution’s Beaufort Gyre Exploration Program and are available at http://www.whoi.edu/beaufortgyre. We would like to thank both the captain and crew of the CCGS Louis S. St-Laurent, the chief scientist, William J. Williams, and the scientific team aboard. The work was conducted in collaboration with the U.S. Department of Energy Joint Genome Institute, a DOE Office of Science User facility, and was supported under Contract No. DE-AC02-05CH11231. Funding Discovery grants (DW and CL). This study is also a contribution to ArcticNet, a Network of Centers of Excellence (Canada). The Canadian Natural Science and Engineering Research Council (NSERC) Discovery (CL and DW) and Northern Supplement (CL), the Fonds de recherche du Québec Nature et Technologies (FRQNT) supporting Québec-Océan (CL, DAW) and the Canada Research Chair Program (DAW) are acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to David A. Walsh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kraemer, S., Ramachandran, A., Colatriano, D. et al. Diversity and biogeography of SAR11 bacteria from the Arctic Ocean. ISME J 14, 79–90 (2020). https://doi.org/10.1038/s41396-019-0499-4

Download citation

Further reading