Microdiversity ensures the maintenance of functional microbial communities under changing environmental conditions


Microdiversity can lead to different ecotypes within the same species. These are assumed to provide stability in time and space to those species. However, the role of microdiversity in the stability of whole microbial communities remains underexplored. Understanding the drivers of microbial community stability is necessary to predict community response to future disturbances. Here, we analyzed 16S rRNA gene amplicons from eight different temperate bog lakes at the 97% OTU and amplicon sequence variant (ASV) levels and found ecotypes within the same OTU with different distribution patterns in space and time. We observed that these ecotypes are adapted to different values of environmental factors such as water temperature and oxygen concentration. Our results showed that the existence of several ASVs within a OTU favored its persistence across changing environmental conditions. We propose that microdiversity aids the stability of microbial communities in the face of fluctuations in environmental factors.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Sutherland WJ, Freckleton RP, Godfray HCJ, Beissinger SR, Benton T, Cameron DD, et al. Identification of 100 fundamental ecological questions. J Ecol. 2013;101:58–67.

    Article  Google Scholar 

  2. 2.

    Graham EB, Knelman JE, Schindlbacher A, Siciliano S, Breulmann M, Yannarell A, et al. Microbes as engines of ecosystem function: when does community structure enhance predictions of ecosystem processes? Front Microbiol. 2016;7:214.

    PubMed  PubMed Central  Google Scholar 

  3. 3.

    Shade A, Read JS, Youngblut ND, Fierer N, Knight R, Kratz TK, et al. Lake microbial communities are resilient after a whole-ecosystem disturbance. ISME J. 2012;6:2153–67.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  4. 4.

    Erkus O, De Jager VCL, Spus M, Van Alen-Boerrigter IJ, Van Rijswijck IMH, Hazelwood L, et al. Multifactorial diversity sustains microbial community stability. ISME J. 2013;7:2126–36.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  5. 5.

    On SLW, Miller WG, Houf K, Fox JG, Vandamme P. Minimal standards for describing new species belonging to the families Campylobacteraceae and Helicobacteraceae: Campylobacter, Arcobacter, Helicobacter and Wolinella spp. Int J Syst Evol Microbiol. 2017;67:5296–311.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  6. 6.

    Doolittle WF, Zhaxybayeva O. On the origin of prokaryotic species. Genome Res. 2009;19:744–56.

    CAS  Article  Google Scholar 

  7. 7.

    Rosselló-Mora R, Amann R. Past and future species definitions for bacteria and Archaea. Syst Appl Microbiol. 2015;38:209–16.

    PubMed  Article  Google Scholar 

  8. 8.

    Koeppel A, Perry EB, Sikorski J, Krizanc D, Warner A, Ward DM, et al. Identifying the fundamental units of bacterial diversity: a paradigm shift to incorporate ecology into bacterial systematics. Proc Natl Acad Sci USA 2008;105:2504–9.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  9. 9.

    Shapiro BJ, Polz MF. Ordering microbial diversity into ecologically and genetically cohesive units. Trends Microbiol. 2014;22:235–47.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  10. 10.

    Tikhonov M. Theoretical microbial ecology without species. Phys Rev E. 2017;96:032410.

    PubMed  Article  Google Scholar 

  11. 11.

    Rasko DA, Rosovitz MJ, Myers GSA, Mongodin EF, Fricke WF, Gajer P, et al. The pangenome structure of Escherichia coli: comparative genomic analysis of E. coli commensal and pathogenic isolates. J Bacteriol. 2008;190:6881–93.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  12. 12.

    Kashtan N, Roggensack SE, Rodrigue S, Thompson JW, Biller SJ, Coe A, et al. Single-cell genomics reveals hundreds of coexisting subpopulations in wild Prochlorococcus. Science. 2014;344:416–20.

    CAS  PubMed  Article  Google Scholar 

  13. 13.

    Tettelin H, Masignani V, Cieslewicz MJ, Donati C, Medini D, Ward NL, et al. Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial “pan-genome”. Proc Natl Acad Sci USA. 2005;102:13950–55.

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    Cohan FM. Bacterial species and speciation. Syst Biol. 2001;50:513–24.

    CAS  PubMed  Article  Google Scholar 

  15. 15.

    Coleman ML, Chisholm SW. Code and context: Prochlorococcus as a model for cross-scale biology. Trends Microbiol. 2007;15:398–407.

    CAS  PubMed  Article  Google Scholar 

  16. 16.

    Koeppel AF, Wertheim JO, Barone L, Gentile N, Krizanc D, Cohan FM. Speedy speciation in a bacterial microcosm: new species can arise as frequently as adaptations within a species. ISME J. 2013;7:1080–91.

    PubMed  PubMed Central  Article  Google Scholar 

  17. 17.

    Yarza P, Yilmaz P, Pruesse E, Glöckner FO, Ludwig W, Schleifer KH, et al. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol. 2014;12:635–45.

    CAS  Article  Google Scholar 

  18. 18.

    Koeppel AF, Wu M. Surprisingly extensive mixed phylogenetic and ecological signals among bacterial operational taxonomic units. Nucleic Acids Res. 2013;41:5175–88.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  19. 19.

    Eren AM, Maignien L, Sul WJ, Murphy LG, Grim SL, Morrison HG, et al. Oligotyping: differentiating between closely related microbial taxa using 16S rRNA gene data. Methods Ecol Evol. 2013;4:1111–9.

    PubMed Central  Article  PubMed  Google Scholar 

  20. 20.

    Tikhonov M, Leach RW, Wingreen NS. Interpreting 16S metagenomic data without clustering to achieve sub-OTU resolution. ISME J. 2014;9:68–80.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  21. 21.

    Eren AM, Morrison HG, Lescault PJ, Reveillaud J, Vineis JH, Sogin ML. Minimum entropy decomposition: unsupervised oligotyping for sensitive partitioning of high- throughput marker gene sequences. ISME J. 2015;9:968–79.

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    Callahan BJ, Mcmurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. 23.

    Edgar RC. UNOISE2: improved error-correction for Illumina 16S and ITS amplicon sequencing. bioRxiv 2016;81257.

  24. 24.

    Amir A, McDonald D, Navas-Molina JA, Kopylova E, Morton JT, Zech Xu Z, et al. Deblur rapidly resolves single-nucleotide community sequence patterns. mSystems. 2017;2:e00191–16.

    PubMed  PubMed Central  Google Scholar 

  25. 25.

    Kleindienst S, Grim S, Sogin M, Bracco A, Crespo-Medina M, Joye SB. Diverse, rare microbial taxa responded to the Deepwater Horizon deep-sea hydrocarbon plume. ISME J. 2016;10:400–15.

    PubMed  Article  Google Scholar 

  26. 26.

    Terrisse F, Cravo-Laureau C, Noël C, Cagnon C, Dumbrell AJ, McGenity TJ, et al. Variation of oxygenation conditions on a hydrocarbonoclastic microbial community reveals Alcanivorax and Cycloclasticus Ecotypes. Front Microbiol. 2017;8:1549.

    PubMed  PubMed Central  Article  Google Scholar 

  27. 27.

    Chafee M, Fernàndez-Guerra A, Buttigieg PL, Gerdts G, Eren AM, Teeling H, et al. Recurrent patterns of microdiversity in a temperate coastal marine environment. ISME J. 2018;12:237–52.

    PubMed  Article  Google Scholar 

  28. 28.

    Konopka A, Lindemann S, Fredrickson J. Dynamics in microbial communities: unraveling mechanisms to identify principles. ISME J. 2015;9:1488–95.

    PubMed  Article  Google Scholar 

  29. 29.

    Schloter M, Lebuhn M, Heulin T, Hartmann A. Ecology and evolution of bacterial microdiversity. FEMS Microbiol Rev. 2000;24:647–60.

    CAS  PubMed  Article  Google Scholar 

  30. 30.

    Kashtan N, Roggensack SE, Berta-Thompson JW, Grinberg M, Stepanauskas R, Chisholm SW. Fundamental differences in diversity and genomic population structure between Atlantic and Pacific Prochlorococcus. ISME J. 2017;11:1997–2011.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. 31.

    Pimm SL. The complexity and stability of ecosystems. Nature. 1984;307:321–26.

    Article  Google Scholar 

  32. 32.

    McCann KS. The diversity-stability. Nature. 2000;405:228–33.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. 33.

    Wohl DL, Arora S, Gladstone JR. Functional redundancy supports biodiversity and ecosystem function in a closed and constant environment. Ecology. 2004;85:1534–40.

    Article  Google Scholar 

  34. 34.

    Loreau M, Naeem S, Inchausti P, Bengtsson J, Grime JP, Hector A, et al. Biodiversity and ecosystem functioning: current knowledge and future challenges. Science. 2001;294:804–8.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. 35.

    Shade A, Peter H, Allison SD, Baho DL, Berga M, Bürgmann H, et al. Fundamentals of microbial community resistance and resilience. Front Life Sci. 2012;3:417.

    Google Scholar 

  36. 36.

    Shade A, Jones SE, McMahon KD. The influence of habitat heterogeneity on freshwater bacterial community composition and dynamics. Environ Microbiol. 2008;10:1057–67.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  37. 37.

    Linz AM, Crary BC, Shade A, Owens S, Gilbert JA, Knight R, et al. Bacterial community composition and dynamics spanning five years in freshwater bog lakes. mSphere. 2017;2:e00169–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Pace ML, McManus GB, Findlay SEG. Planktonic community structure determines the fate of bacterial production in a temperate lake. Limnol Oceano. 1990;35:795–808.

    Article  Google Scholar 

  39. 39.

    Zwart G, Crump BC, Kamst-van Agterveld MP, Hagen F, Han SK. Typical freshwater bacteria: an analysis of available 16S rRNA gene sequences from plankton of lakes and rivers. Aquat Micro Ecol. 2002;28:141–155.

    Article  Google Scholar 

  40. 40.

    Jaspers E, Overmann J. Ecological significance of microdiversity: identical 16S rRNA gene sequences can be found in bacteria with highly divergent genomes and ecophysiologies. Appl Environ Microbiol. 2004;70:4831–39.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  41. 41.

    Newton RJ, Jones SE, Eiler A, McMahon KD, Bertilsson S. A guide to the natural history of freshwater lake bacteria. Microbiol Mol Biol Rev. 2011;75:14–49.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. 42.

    Pernthaler J. Competition and niche separation of pelagic bacteria in freshwater habitats. Environ Microbiol. 2017;19:2133–50.

    CAS  PubMed  Article  Google Scholar 

  43. 43.

    Williamson CE, Dodds W, Kratz TK, Palmer MA. Lakes and streams as sentinels of environmental change in terrestrial and atmospheric processes. Front Ecol Environ. 2008;6:247–54.

    Article  Google Scholar 

  44. 44.

    Shade A, Read JS, Welkie DG, Kratz TK, Wu CH, McMahon KD. Resistance, resilience and recovery: aquatic bacterial dynamics after water column disturbance. Environ Microbiol. 2011;13:2752–67.

    CAS  PubMed  Article  Google Scholar 

  45. 45.

    Puente-Sánchez F, Aguirre J, Parro V. A novel conceptual approach to read-filtering in high-throughput amplicon sequencing studies. Nucl Acids Res. 2016;44:e40.

    PubMed  Article  Google Scholar 

  46. 46.

    Yilmaz P, Parfrey LW, Yarza P, Gerken J, Pruesse E, Quast C, et al. The SILVA and ‘All-species Living Tree Project (LTP)’ taxonomic frameworks. Nucl Acids Res. 2014;42:D643–8.

    CAS  PubMed  Article  Google Scholar 

  47. 47.

    Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol. 2009;75:7537–41.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  48. 48.

    Westcott SL, Schloss PD. OptiClust, an improved method for assigning amplicon-based sequence data to operational taxonomic units. mSphere. 2017;2:e00073–17.

    PubMed  PubMed Central  Article  Google Scholar 

  49. 49.

    Legendre P, Gallagher ED. Ecologically meaningful transformations for ordination of species data. Oecologia. 2001;129:271–80.

    PubMed  PubMed Central  Article  Google Scholar 

  50. 50.

    Buttigieg PL, Ramette A. A guide to statistical analysis in microbial ecology: a community-focused, living review of multivariate data analyses. FEMS Microbiol Ecol. 2014;90:543–50.

    CAS  PubMed  Article  Google Scholar 

  51. 51.

    Hill MO, Gauch HG. Detrended correspondence analysis: an improved ordination technique. Vegetatio. 1980;42:47–58.

    Article  Google Scholar 

  52. 52.

    Peres-Neto PR, Jackson DA. How well do multivariate data sets match? The advantages of a Procrustean superimposition approach over the Mantel test. Oecologia. 2001;129:169–178.

    PubMed  Article  Google Scholar 

  53. 53.

    Oksanen J. Multivariate analysis of ecological communities in R: vegan tutorial. University of Oulu, Oulu, 2007.

  54. 54.

    Lundin D, Severin I, Logue JB, Östman Ö, Andersson AF, Lindström ES. Which sequencing depth is sufficient to describe patterns in bacterial α- and β-diversity? Environ Microbiol Rep. 2012;4:367–72.

    CAS  PubMed  Article  Google Scholar 

  55. 55.

    Jost L. Entropy and diversity. Oikos. 2006;113:363–75.

    Article  Google Scholar 

  56. 56.

    Elith J, Leathwick JR, Hastie T. A working guide to boosted regression trees. J Anim Ecol. 2008;77:802–13.

    CAS  PubMed  Article  Google Scholar 

  57. 57.

    Garcia SL, Buck M, McMahon KD, Grossart HP, Eiler A, Warnecke F. Auxotrophy and intrapopulation complementary in the ‘interactome’ of a cultivated freshwater model community. Mol Ecol. 2015;24:4449–59.

    CAS  PubMed  Article  Google Scholar 

  58. 58.

    Garcia SL, Buck M, Hamilton JJ, Wurzbacher C, Grossart HP, McMahon KD, et al. Model communities hint at promiscuous metabolic linkages between ubiquitous free-living freshwater bacteria. mSphere. 2018;3:e00202–18.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  59. 59.

    Johnson ZI, Zinser ER, Coe A, Mcnulty NP, Malcolm E, Woodward S, et al. Niche partitioning among Prochlorococcus ecotypes along ocean-scale environmental gradients. Science. 2006;311:1737–40.

    CAS  PubMed  Article  Google Scholar 

  60. 60.

    Newton RJ, Jones SE, Helmus MR, McMahon KD. Phylogenetic ecology of the freshwater Actinobacteria acI lineage. Appl Environ Microbiol. 2007;73:7169–76.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  61. 61.

    Jezbera J, Jezberová J, Brandt U, Hahn MW. Ubiquity of Polynucleobacter necessarius subspecies asymbioticus results from ecological diversification. Environ Microbiol. 2011;13:922–31.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  62. 62.

    Biller SJ, Berube PM, Lindell D, Chisholm SW. Prochlorococcus: the structure and function of collective diversity. Nat Rev Microbiol. 2015;13:13–27.

    CAS  PubMed  Article  Google Scholar 

  63. 63.

    Hall MW, Rohwer RR, Perrie J, McMahon KD, Beiko RG. Ananke: temporal clustering reveals ecological dynamics of microbial communities. Peer J. 2017;5:e3812.

    PubMed  Article  Google Scholar 

  64. 64.

    Neuenschwander SM, Ghai R, Pernthaler J, Salcher MM. Microdiversification in genome-streamlined ubiquitous freshwater Actinobacteria. ISME J. 2018;12:185–98.

    CAS  PubMed  Article  Google Scholar 

  65. 65.

    Hahn MW, Jezberová J, Koll U, Saueressig-Beck T, Schmidt J. Complete ecological isolation and cryptic diversity in Polynucleobacter bacteria not resolved by 16S rRNA gene sequences. ISME J. 2016;10:1642–55.

    PubMed  PubMed Central  Article  Google Scholar 

  66. 66.

    Hoetzinger M, Schmidt J, Pitt A, Koll U, Lang E, Hahn MW. Polynucleobacter paneuropaeus sp. nov., characterized by six strains isolated from freshwater lakes located along a 3000 km north-south cross-section across Europe. Int J Syst Evol Microbiol. 2019;69:203–13.

    CAS  PubMed  Article  Google Scholar 

  67. 67.

    Glassman SI, Martiny JBH. Broadscale ecological patterns are robust to use of exact sequence variants versus operational taxonomic units. mSphere. 2018;3:e00148–18.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  68. 68.

    Ellegaard KM, Engel P. Beyond 16S rRNA community profiling: intra-species diversity in the gut microbiota. Front Microbiol. 2016;7:1475.

    PubMed  PubMed Central  Article  Google Scholar 

  69. 69.

    Leventhal GE, Boix C, Kuechler U, Enke TN, Sliwerska E, Holliger C, et al. Strain-level diversity drives alternative community types in millimetre-scale granular biofilms. Nat Microbiol. 2018;3:1295–303.

    CAS  PubMed  Article  Google Scholar 

  70. 70.

    Farrant GK, Doré H, Cornejo-Castillo FM, Partensky F, Ratin M, Ostrowski M, et al. Delineating ecologically significant taxonomic units from global patterns of marine picocyanobacteria. Proc Natl Acad Sci USA 2016;113:E3365–74.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  71. 71.

    Needham DM, Sachdeva R, Fuhrman JA. Ecological dynamics and co-occurrence among marine phytoplankton, bacteria and myoviruses shows microdiversity matters. ISME J. 2017;11:1614–29.

    PubMed  PubMed Central  Article  Google Scholar 

  72. 72.

    Kent AG, Baer SE, Mouginot C, Huang JS, Larkin AA, Lomas MW, et al. Parallel phylogeography of Prochlorococcus and Synechococcus. ISME J. 2019;13:430–41.

    PubMed  Article  PubMed Central  Google Scholar 

  73. 73.

    Wu QL, Hahn MW. High predictability of the seasonal dynamics of a species-like Polynucleobacter population in a freshwater lake. Environ Microbiol. 2006;8:1660–66.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  74. 74.

    Sangwan N, Zarraonaindia I, Hampton-Marcell JT, Ssegane H, Eshoo TW, Rijal G, et al. Differential functional constraints cause strain-level endemism in Polynucleobacter populations. mSystems. 2016;1:e00003–16.

    PubMed  PubMed Central  Article  Google Scholar 

  75. 75.

    Hoetzinger M, Schmidt J, Jezberová J, Koll U, Hahn MW. Microdiversification of a pelagic Polynucleobacter species is mainly driven by acquisition of genomic islands from a partially interspecific gene pool. Appl Environ Microbiol. 2017;83:e02266–16.

    PubMed  PubMed Central  Article  Google Scholar 

  76. 76.

    Doak DF, Bigger D, Harding EK, Marvier MA, O’Malley RE, Thomson D. The statistical inevitability of stability-diversity relationships in community ecology. Am Nat. 1998;151:264–76.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  77. 77.

    Yachi S, Loreau M. Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. Proc Natl Acad Sci USA 1999;96:1463–8.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  78. 78.

    Tamames J, Abellán JJ, Pignatelli M, Camacho A, Moya A. Environmental distribution of prokaryotic taxa. BMC Microbiol. 2010;10:85.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  79. 79.

    Sunagawa S, Coelho LP, Chaffron S, Kultima JR, Labadie K, Salazar G, et al. Structure and function of the global ocean microbiome. Science. 2015;348:1261359.

    Article  CAS  Google Scholar 

  80. 80.

    Tamames J, Sánchez PD, Nikel PI, Pedrós-Alió C. Quantifying the relative importance of phylogeny and environmental preferences as drivers of gene content in prokaryotic microorganisms. Front Microbiol. 2016;7:433.

    PubMed  PubMed Central  Article  Google Scholar 

  81. 81.

    Lindström ES, Agterveld MPK, Zwart G. Distribution of typical freshwater bacterial groups is associated with pH, temperature, and lake water retention time. Appl Environ Microbiol. 2005;71:8201–06.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  82. 82.

    Biderre-Petit C, Jézéquel D, Dugat-Bony E, Lopes F, Kuever J, Borrel G, et al. Identification of microbial communities involved in the methane cycle of a freshwater meromictic lake. FEMS Microbiol Ecol. 2011;77:533–45.

    CAS  PubMed  Article  Google Scholar 

  83. 83.

    Cobo-Simón M, Tamames J. Relating genomic characteristics to environmental preferences and ubiquity in different microbial taxa. BMC Genom. 2017;18:499.

    Article  CAS  Google Scholar 

  84. 84.

    Allison SD, Martiny JBH. Resistance, resilience, and redundancy in microbial communities. Proc Natl Acad Sci USA 2008;105:11512–19.

    CAS  PubMed  Article  Google Scholar 

  85. 85.

    Bastviken D, Cole J, Pace M, Tranvik L. Methane emissions from lakes: dependence of lake characteristics, two regional assessments, and a global estimate. Glob Biogeochem Cycles. 2004;18:GB4009.

    Article  CAS  Google Scholar 

  86. 86.

    Harrison JA, Maranger RJ, Alexander RB, Giblin AE, Pierre-Andre J, Mayorga E, et al. The regional and global significance of nitrogen removal in lakes and reservoirs. Biogeochemistry. 2009;93:143–57.

    CAS  Article  Google Scholar 

  87. 87.

    Frings PJ, Clymans W, Jeppesen E, Lauridsen TL, Struyf E, Conley DJ. Lack of steady-state in the global biogeochemical Si cycle: emerging evidence from lake Si sequestration. Biogeochemistry. 2014;117:255–77.

    CAS  Article  Google Scholar 

  88. 88.

    Shade A, Chiu CY, McMahon KD. Seasonal and episodic lake mixing stimulate differential planktonic bacterial dynamics. Micro Ecol. 2010;59:546–54.

    Article  Google Scholar 

  89. 89.

    Graham JM, Kent AD, Lauster GH, Yannarell AC, Graham LE, Triplett EW. Seasonal dynamics of phytoplankton and planktonic protozoan communities in a northern temperate humic lake: diversity in a dinoflagellate dominated system. Micro Ecol. 2004;48:528–40.

    CAS  Article  Google Scholar 

  90. 90.

    Allgaier M, Grossart HP. Diversity and seasonal dynamics of Actinobacteria populations in four lakes in northeastern Germany. Appl Environ Microbiol. 2006;72:3489–97.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  91. 91.

    Eiler A, Heinrich F, Bertilsson S. Coherent dynamics and association networks among lake bacterioplankton taxa. ISME J. 2012;6:330–42.

    CAS  PubMed  Article  Google Scholar 

  92. 92.

    Rusak JA, Tanentzap AJ, Klug JL, Rose KC, Hendricks SP, Jennings E, et al. Wind and trophic status explain within and among-lake variability of algal biomass. Limnol Oceano Lett. 2018;3:409–18.

    Article  Google Scholar 

Download references


We thank the North Temperate Lakes Microbial Observatory and Katherine McMahon’s research group for the collection of the original data. We also thank Guillermo Martín Serrano for his contribution during early stages of data analysis. This work was funded by grant CTM2016-80095-C2-1-R from the Spanish Ministerio de Economía, Industria y Competitividad. NG-G was funded by a student scholarship from the Severo Ochoa Program at CNB (SEV-2013-0347-17-2).

Author information




FP-S, JT, and CP-A designed research. NG-G and FP-S performed research and analyzed the data. NG-G, FP-S, and CP-A wrote the manuscript. All authors discussed the results and revised the manuscript.

Corresponding author

Correspondence to Fernando Puente-Sánchez.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

García-García, N., Tamames, J., Linz, A.M. et al. Microdiversity ensures the maintenance of functional microbial communities under changing environmental conditions. ISME J 13, 2969–2983 (2019). https://doi.org/10.1038/s41396-019-0487-8

Download citation

Further reading