Bleaching forces coral’s heterotrophy on diazotrophs and Synechococcus

Abstract

Coral reefs are threatened by global warming, which disrupts the symbiosis between corals and their photosynthetic symbionts (Symbiodiniaceae), leading to mass coral bleaching. Planktonic diazotrophs or dinitrogen (N2)-fixing prokaryotes are abundant in coral lagoon waters and could be an alternative nutrient source for corals. Here we incubated untreated and bleached coral colonies of Stylophora pistillata with a 15N2-pre-labelled natural plankton assemblage containing diazotrophs. 15N2 assimilation rates in Symbiodiniaceae cells and tissues of bleached corals were 5- and 30-fold higher, respectively, than those measured in untreated corals, demonstrating that corals incorporate more nitrogen derived from planktonic diazotrophs under bleaching conditions. Bleached corals also preferentially fed on Synechococcus, nitrogen-rich picophytoplanktonic cells, instead of Prochlorococcus and picoeukaryotes, which have a lower cellular nitrogen content. By providing an alternative source of bioavailable nitrogen, both the incorporation of nitrogen derived from planktonic diazotrophs and the ingestion of Synechococcus may have profound consequences for coral bleaching recovery, especially for the many coral reef ecosystems characterized by high abundance and activity of planktonic diazotrophs.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1
Fig. 2

References

  1. 1.

    LaJeunesse TC, Parkinson JE, Gabrielson PW, Jeong HJ, REimer JD, Voolstra CR, Santos SR (2018) Systematic revision of Symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Curr Biol 28:2570–2580

    CAS  Article  Google Scholar 

  2. 2.

    Hoegh-Guldberg O. Climate change coral bleaching and the future of the world’s coral reefs. Mar Freshw Res. 1999;50:839–66.

    Google Scholar 

  3. 3.

    Muscatine L, D’Elia C. The uptake, retention, and release of ammonium by reef corals. Limnol Oceanogr. 1978;23:725–34.

  4. 4.

    Godinot C, Houlbrèque F, Grover R, Ferrier-Pagès C. Coral uptake of inorganic phosphorus and nitrogen negatively affected by simultaneous changes in temperature and pH. PLoS ONE 2011;6:1–10.

    Article  Google Scholar 

  5. 5.

    Palardy JE, Rodrigues LJ, Grottoli AG. The importance of zooplankton to the daily metabolic carbon requirements of healthy and bleached corals at two depths. J Exp Mar Bio Ecol. 2008;367:180–8.

    CAS  Article  Google Scholar 

  6. 6.

    Grottoli AG, Rodrigues LJ, Palardy JE. Heterotrophic plasticity and resilience in bleached corals. Nature. 2006;440:1186–9.

    CAS  Article  Google Scholar 

  7. 7.

    Goldberg WM. Coral food, feeding, nutrition, and secretion: A Review. In: Kloc M, Kubiak J, editors. Marine Organisms as Model Systems in Biology and Medicine Results and Problems in Cell Differentiation. 65th ed. Cham: Springer; 2018.

  8. 8.

    Houlbrèque, F., and Ferrier-Pagès, C. Heterotrophy in Tropical Scleractinian Corals. Biol.Rev. 2009;84:1–17. https://doi.org/10.1111/j.1469-185X.2008.00058.x

  9. 9.

    Tremblay P, Naumann MS, Sikorski S, Grover R, Ferrier-Pagès C. Experimental assessment of organic carbon fluxes in the scleractinian coral Stylophora pistillata during a thermal and photo stress event. Mar Ecol Prog Ser. 2012;453:63–77.

    CAS  Article  Google Scholar 

  10. 10.

    Turk-Kubo, K. A., Frank, I. E., Hogan, M. E., Desnues, A., Bonnet, S. and Zehr,J. P. Diazotroph community succession during the VAHINE mesocosmexperiment (New Caledonia lagoon). Biogeosciences 2015;12:7435–7452.

  11. 11.

    Messer LF, Brown MV, Furnas MJ, Carney RL, McKinnon AD, Seymour JR. Diversity and activity of diazotrophs in great barrier reef surface waters. Front Microbiol. 2017;8:1–16.

    Article  Google Scholar 

  12. 12.

    Bonnet, S., Berthelot, H., Turk-Kubo, K., Cornet-Barthaux, V., Fawcett, S. E., Berman-Frank, I., Barani, A., Grégori, G., Dekaezemacker, J., Benavides, M. and Capone, GD. Diazotroph derived nitrogen supports diatom growth in the South West Pacific: a quantitative study using nanoSIMS. Limnol. Oceanogr. 2016.

  13. 13.

    Benavides, M., Houlbrèque, F., Camps, M., Lorrain,A., Grosso, O., and Bonnet, S. Diazotrophs: a non-negligible source of nitrogen for the tropical coral Stylophora pistillata. J Exp Biol. 2016;1–5. https://doi.org/10.1242/jeb.139451.

  14. 14.

    Bonnet S, Berthelot H, Turk-Kubo K, Fawcett S, Rahav E, L’Helguen S, and Berman-Frank I. Dynamics of N2 fixation and fate of diazotroph-derived nitrogen in a low-nutrient, low-chlorophyll ecosystem: results from the VAHINE mesocosm experiment (New Caledonia). Biogeosciences. 2016;13:2653–2673.

  15. 15.

    Bednarz VN, Grover R, Maguer J-FF, Fine M, Ferrier-Pagès C. The assimilation of diazotroph-derived nitrogen by scleractinian corals depends on their metabolic status. MBio. 2017;8:1–14.

    Article  Google Scholar 

  16. 16.

    Bednarz VN, A. J. M van de Water Jeroen, Rabouille S, Maguer J-F, Grover R and Ferrier-Pagès C. Community and associated dinitrogen fixation within the temperate coral Oculina patagonica. Environ Microbiol. 2019;21:480–95.

    CAS  Article  Google Scholar 

  17. 17.

    Montoya JP, Voss M, Kahler P, Capone DG. A simple, high-precision, high-sensitivity tracer assay for N2 fixation. Appl Environ Microbiol. 1996;62:986–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Benavides M, Bednarz VN, Ferrier-Pagès C. Diazotrophs: overlooked key players within the coral symbiosis and tropical reef ecosystems? Front Mar Sci. 2017;4:10.

  19. 19.

    Messer LF, Mahaffey C, Robinson CM, Jeffries TC, Baker KG, Isaksson JB, et al. High levels of heterogeneity in diazotroph diversity and activity within a putative hotspot for marine nitrogen fixation. ISME J. 2016;10:1499–513.

    CAS  Article  Google Scholar 

  20. 20.

    Bonnet S, Caffin M, Berthelot H, Moutin T. Hot spot of N2 fixation in the western tropical South Pacific pleads for a spatial decoupling between N2 fixation and denitrification. Proc Natl Acad Sci USA. 2017;114:E2800–1.

    CAS  Article  Google Scholar 

  21. 21.

    Luo Y-W, Doney SC, Anderson LA, Benavides M, Berman-Frank I, Bode A, et al. Database of diazotrophs in global ocean: abundance, biomass and nitrogen fixation rates. Earth Syst Sci Data. 2012;4:47–73.

    Article  Google Scholar 

  22. 22.

    Capone, D. G., Burns, J. A., Montoya, J. P., Subramaniam, A., Mahaffey, C., Gunderson, T., Michaels, A. F., and Carpenter, E. J.: Nitrogen fixation by Trichodesmium spp.: An important source of new nitrogen to the tropical and subtropical North Atlantic Ocean, Global Biogeochem. Cy., 19, 1–17, https://doi.org/10.1029/2004GB002331, 2005. 

    CAS  Article  Google Scholar 

  23. 23.

    Foster RA, Paytan A, Zehr JP. Seasonality of N2 fixation and nifHgene diversity in the Gulf of Aqaba (Red Sea). Limnol Oceanogr. 2009;54:219–33.

    Article  Google Scholar 

  24. 24.

    Pernice M, Meibom A, Van Den Heuvel A, Kopp C, Domart-Coulon I, Hoegh-Guldberg O. et al. A single-cell view of ammonium assimilation in coral-dinoflagellate symbiosis. ISME J. 2012;6:1314–24.

    CAS  Article  Google Scholar 

  25. 25.

    Krueger T, Bodin J, Horwitz N, Loussert-Fonta C, Sakr A, Escrig S, et al. Temperature and feeding induce tissue level changes in autotrophic and heterotrophic nutrient allocation in the coral symbiosis—a NanoSIMS study. Sci Rep. 2018;8:12710.

    Article  Google Scholar 

  26. 26.

    Cardini U, van Hoytema N, Bednarz VN, Rix L, Foster RA, Al-Rshaidat MMDD and Wild C. Microbial dinitrogen fixation in coral holobionts exposed to thermal stress and bleaching. Environ Microbiol. 2016;18:2620–33.

    CAS  Article  Google Scholar 

  27. 27.

    Henke BA, Turk-Kubo KA, Bonnet S, Zehr JP. Distributions and abundances of sublineages of the N2-fixing cyanobacterium Candidatus Atelocyanobacterium thalassa (UCYN-A) in the New Caledonian coral lagoon. Front Microbiol. 2018;9:1–14.

    Article  Google Scholar 

  28. 28.

    Thompson AW, Foster RA, Krupke A, Carter BJ, Musat N, Vaulot D, et al. Unicellular cyanobacterium symbiotic with a single-celled eukaryotic alga. Science (80-). 2012;337:1546–50.

    CAS  Article  Google Scholar 

  29. 29.

    Houlbrèque Fanny, Tambutté Eric, Allemand D, Ferrier-Pagès P. Interactions between zooplankton feeding, photosynthesis and skeletal growth in the scleractinian coral Stylophora pistillata. J Exp Biol. 2004;207:1461–9.

    Article  Google Scholar 

  30. 30.

    Bertilsson S, Berglund O, Karl DM, Chisholm SW. Elemental composition of marine Prochlorococcus and Synechococcus: implications for the ecological stoichiometry of the sea. Limnol Oceanogr. 2003;48:1721–31.

    CAS  Article  Google Scholar 

  31. 31.

    Jacquet S, Delesalle B, Torréton JP, Blanchot J. Response of phytoplankton communities to increased anthropogenic influences (southwestern lagoon, New Caledonia). Mar Ecol Prog Ser. 2006;320:65–78.

    CAS  Article  Google Scholar 

  32. 32.

    Berthelot H, Bonnet S, Grosso O, Cornet V, Barani A. Transfer of diazotroph-derived nitrogen towards non-diazotrophic planktonic communities: a comparative study between Trichodesmium erythraeum Crocosphaera watsoniiand Cyanothece sp. Biogeosciences. 2016;13:4005–21.

    CAS  Article  Google Scholar 

  33. 33.

    McNally SP, Parsons RJ, Santoro AE, Apprill A. Multifaceted impacts of the stony coral Porites astreoides on picoplankton abundance and community composition. Limnol Oceanogr. 2017;62:217–34.

    CAS  Article  Google Scholar 

  34. 34.

    Lenhoff, H.M., and W. Heagy. 1977. Aquatic invertebrates: model systems for the study of receptor activation and evolution of receptor proteins. Annu. Rev. Pharmacol. Toxicol. 17:243–258.

  35. 35.

    Grover R, Maguer JF, Reynaud-Vaganay S, Ferrier-Pagès C. Uptake of ammonium by the scleractinian coral Stylophora pistillata: effect of feeding, light, and ammonium concentrations. Limnol Oceanogr. 2002;47:782–90.

    Article  Google Scholar 

  36. 36.

    Grover R, Maguer JF, Allemand D, Ferrier-Pagès C. Nitrate uptake in the scleractinian coral Stylophora pistillata. Limnol Oceanogr. 2003;48:2266–74.

    CAS  Article  Google Scholar 

  37. 37.

    Hoegh-Guldberg O, Williamson J. Availability of two forms of dissolved nitrogen to the coral Pocillopora damicornisand its symbiotic zooxanthellae. Mar Biol. 1999;133:561–70.

    CAS  Article  Google Scholar 

  38. 38.

    Boyd PW, Doney SC. Modelling regional responses by marine pelagic ecosystems to global climate change. Geophys Res Lett. 2002;29:53–53(1–4).

    Google Scholar 

  39. 39.

    Breitbarth E, Oschlies A, Laroche J. Physiological constraints on the global distribution of Trichodesmium—effect of temperature on diazotrophy. Biogeosciences, 2007;4:53–61

Download references

Acknowledgements

VM was the beneficiary of a PhD grant from LabEx-Corail (MACADAM project). This work was also funded by the LabEx-Corail FLAMENCO project and the EC2CO/BIOHEFECT program (TOUCAN project). We wish to thank the technical staff of the Aquarium des Lagons (Nouméa, New Caledonia) for their welcome and assistance in tank maintenance. We are especially grateful to three anonymous reviewers for critical reading and valuable comments on this manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Valentine Meunier.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Meunier, V., Bonnet, S., Pernice, M. et al. Bleaching forces coral’s heterotrophy on diazotrophs and Synechococcus. ISME J 13, 2882–2886 (2019). https://doi.org/10.1038/s41396-019-0456-2

Download citation

Further reading