Article | Published:

Dual nitrogen and oxygen isotope fractionation during anaerobic ammonium oxidation by anammox bacteria


Natural abundance of stable nitrogen (N) and oxygen (O) isotopes are invaluable biogeochemical tracers for assessing the N transformations in the environment. To fully exploit these tracers, the N and O isotope effects (15ε and 18ε) associated with the respective nitrogen transformation processes must be known. However, the N and O isotope effects of anaerobic ammonium oxidation (anammox), one of the major fixed N sinks and NO3 producers, are not well known. Here, we report the dual N and O isotope effects associated with anammox by three different anammox bacteria including “Ca. Scalindua japonica”, a putative marine species, which were measured in continuous enrichment culture experiments. All three anammox species yielded similar N isotope effects of NH4+ oxidation to N2 (15εNH4→N2) ranging from 30.9‰ to 32.7‰ and inverse kinetic isotope effects of NO2 oxidation to NO3 (15εNO2→NO3 = −45.3‰ to −30.1‰). In contrast, 15εNO2→N2 (NO2 reduction to N2) were significantly different among three species, which is probably because individual anammox bacteria species might possess different types of nitrite reductase. We also report the combined O isotope effects for NO2 oxidation (18ENO2→NO3) by anammox bacteria. These obtained dual N and O isotopic effects could provide significant insights into the contribution of anammox bacteria to the fixed N loss and NO2 reoxidation (N recycling) in various natural environments.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Brandes Ja, Devol AH. A global marine-fixed nitrogen isotopic budget: implications for Holocene nitrogen cycling. Glob Biogeochem Cycles. 2002;16:67-1-67-14.

  2. 2.

    Sigman DM, DiFiore PJ, Hain MP, Deutsch C, Wang Y, Karl DM, et al. The dual isotopes of deep nitrate as a constraint on the cycle and budget of oceanic fixed nitrogen. Deep Res Part I. 2009;56:1419–39.

  3. 3.

    Casciotti KL. Nitrite isotopes as tracers of marine N cycle processes. Philos Trans R Soc A. 2016;374:20150295.

  4. 4.

    Casciotti KL, Sigman DM, Ward BB. Linking diversity and stable isotope fractionation in ammonia-oxidizing bacteria. Geomicrobiol J. 2003;20:335–53.

  5. 5.

    Casciotti KL, McIlvin M, Buchwald C. Oxygen isotopic exchange and fractionation during bacterial ammonia oxidation. Limnol Oceanogr. 2010;55:753–62.

  6. 6.

    Santoro AE, Casciotti KL. Enrichment and characterization of ammonia-oxidizing archaea from the open ocean: phylogeny, physiology and stable isotope fractionation. ISME J. 2011;5:1796–808.

  7. 7.

    Buchwald C, Santoro AE, McIlvin MR, Casciotti KL. Oxygen isotopic composition of nitrate and nitrite produced by nitrifying cocultures and natural marine assemblages. Limnol Oceanogr. 2012;57:1361–75.

  8. 8.

    Nishizawa M, Sakai S, Konno U, Nakahara N, Takaki Y, Saito Y, et al. Nitrogen and oxygen isotope effects of ammonia oxidation by thermophilic Thaumarchaeota from a geothermal water stream. Appl Environ Microbiol. 2016;82:4492–504.

  9. 9.

    Casciotti KL. Inverse kinetic isotope fractionation during bacterial nitrite oxidation. Geochim Cosmochim Acta. 2009;73:2061–76.

  10. 10.

    Buchwald C, Casciotti KL. Oxygen isotopic fractionation and exchange during bacterial nitrite oxidation. Limnol Oceanogr. 2010;55:1064–74.

  11. 11.

    Martin TS, Casciotti KL. Nitrogen and oxygen isotopic fractionation during microbial nitrite reduction. Limnol Oceanogr. 2016;61:1134–43.

  12. 12.

    Granger J, Sigman DM. Nitrogen and oxygen isotope fractionation during dissimilatory nitrate reduction by denitrifying bacteria. Limnol Oceanogr. 2008;53:2533–45.

  13. 13.

    Kritee K, Sigman DM, Granger J, Ward BB, Jayakumar A, Deutsch C. Reduced isotope fractionation by denitrification under conditions relevant to the ocean. Geochim Cosmochim Acta. 2012;92:243–59.

  14. 14.

    Granger J, Sigman DM, Rohde MM, Maldonado MT, Tortell PD. N and O isotope effects during nitrate assimilation by unicellular prokaryotic and eukaryotic plankton cultures. Geochim Cosmochim Acta. 2010;74:1030–40.

  15. 15.

    Karsh KL, Granger J, Kritee K, Sigman DM. Eukaryotic assimilatory nitrate reductase fractionates N and O isotopes with a ratio near unity. Environ Sci Technol. 2012;46:5727–35.

  16. 16.

    Sigman DM, Granger J, DiFiore PJ, Lehmann MM, Ho R, Cane G, et al. Coupled nitrogen and oxygen isotope measurements of nitrate along the eastern north pacific margin. Global Biogeochem Cycles. 2005;19:GB4022.

  17. 17.

    Casciotti KL, McIlvin MR. Isotopic analyses of nitrate and nitrite from reference mixtures and application to Eastern Tropical North Pacific waters. Mar Chem. 2007;107:184–201.

  18. 18.

    Buchwald C, Santoro AE, Stanley RHR, Casciotti KL. Nitrogen cycling in the secondary nitrite maximum of the eastern tropical North Pacific off Costa Rica. Global Biogeochem Cycles. 2015;29:2061–81.

  19. 19.

    Nunoura T, Takaki Y, Hirai M, Shimamura S, Makabe A, Koide O, et al. Hadal biosphere: Insight into the microbial ecosystem in the deepest ocean on earth. Proc Natl Acad Sci USA. 2015;112:E1230–6.

  20. 20.

    Casciotti KL, Buchwald C, McIlvin M. Implications of nitrate and nitrite isotopic measurements for the mechanisms of nitrogen cycling in the Peru oxygen deficient zone. Deep Res Part I. 2013;80:78–93.

  21. 21.

    Bourbonnais A, Altabet MA, Charoenpong CN, Larkum J, Hu H, Bange HW, et al. N-loss isotope effects in the Peru oxygen minimum zone studied using a mesoscale eddy as a natural tracer experiment. Glob Biogeochem Cycles. 2015;29:793–811.

  22. 22.

    Hu H, Bourbonnais A, Larkum J, Bange HW, Altabet MA. Nitrogen cycling in shallow low-oxygen coastal waters off Peru from nitrite and nitrate nitrogen and oxygen isotopes. Biogeosciences. 2016;13:1453–68.

  23. 23.

    Codispoti LA. An oceanic fixed nitrogen sink exceeding 400 Tg N a-1 vs the concept of homeostasis in the fixed-nitrogen inventory. Biogeosciences. 2007;4:233–53.

  24. 24.

    Gruber N, Galloway JN. An earth-system perspective of the global nitrogen cycle. Nature. 2008;451:293–6.

  25. 25.

    Kartal B, De Almeida NM, Maalcke WJ, Op den Camp HJM, Jetten MSM, Keltjens JT. How to make a living from anaerobic ammonium oxidation. FEMS Microbiol Rev. 2013;37:428–61.

  26. 26.

    Granger J, Wankel SD. Isotopic overprinting of nitrification on denitrification as a ubiquitous and unifying feature of environmental nitrogen cycling. Proc Natl Acad Sci USA. 2016;113:E6391–E6400.

  27. 27.

    Babbin AR, Peters BD, Mordy CW, Widner B, Casciotti KL, Ward BB. Multiple metabolisms constrain the anaerobic nitrite budget in the Eastern Tropical South Pacific. Glob Biogeochem Cycles. 2017;31:258–71.

  28. 28.

    Kalvelage T, Lavik G, Lam P, Contreras S, Arteaga L, Löscher CR, et al. Nitrogen cycling driven by organic matter export in the South Pacific oxygen minimum zone. Nat Geosci. 2013;6:228–34.

  29. 29.

    Kuypers MMM, Sliekers AO, Lavik G, Schmid M, Jorgensen BB, Kuenen JG, et al. Anaerobic ammonium oxidation by anammox bacteria in the Black Sea. Nature. 2003;422:608–11.

  30. 30.

    Kuypers MMM, Lavik G, Woebken D, Schmid M, Fuchs BM, Amann R, et al. Massive nitrogen loss from the Benguela upwelling system through anaerobic ammonium oxidation. Proc Natl Acad Sci USA. 2005;102:6478–83.

  31. 31.

    Thamdrup B, Jensen MM, Ulloa O, Farı L, Escribano R. Anaerobic ammonium oxidation in the oxygen-deficient waters off northern Chile. Limnol Ocean. 2006;51:2145–56.

  32. 32.

    Brunner B, Contreras S, Lehmann MF, Matantseva O, Rollog M, Kalvelage T, et al. Nitrogen isotope effects induced by anammox bacteria. Proc Natl Acad Sci USA. 2013;110:18994–9.

  33. 33.

    Strous M, Fuerst Ja, Kramer EH, Logemann S, Muyzer G, van de Pas-Schoonen KT, et al. Missing lithotroph identified as new planctomycete. Nature. 1999;400:446–9.

  34. 34.

    Schmid M, Twachtmann U, Klein M, Strous M, Juretschko S, Jetten M, et al. Molecular evidence for genus level diversity of bacteria capable of catalyzing anaerobic ammonium oxidation. Syst Appl Microbiol. 2000;23:93–106.

  35. 35.

    Schmid M, Walsh K, Webb R, Rijpstra WI, van de Pas-Schoonen K, Verbruggen MJ, et al. CandidatusScalindua brodae”, sp. nov., CandidatusScalindua wagneri”, sp. nov., Two new species of anaerobic ammonium oxidizing bacteria. Syst Appl Microbiol. 2003;26:529–38.

  36. 36.

    Kartal B, Rattray J, van Niftrik LA, van de Vossenberg J, Schmid MC, Webb RI, et al. CandidatusAnammoxoglobus propionicus’ a new propionate oxidizing species of anaerobic ammonium oxidizing bacteria. Syst Appl Microbiol. 2007;30:39–49.

  37. 37.

    Quan ZX, Rhee SK, Zuo JE, Yang Y, Bae JW, Park JR, et al. Diversity of ammonium-oxidizing bacteria in a granular sludge anaerobic ammonium-oxidizing (anammox) reactor. Environ Microbiol. 2008;10:3130–9.

  38. 38.

    Awata T, Oshiki M, Kindaichi T, Ozaki N, Ohashi A, Okabe S. Physiological characterization of an anaerobic ammonium-oxidizing bacterium belonging to the ‘Candidatus scalindua’ group. Appl Environ Microbiol. 2013;79:4145–8.

  39. 39.

    Oshiki M, Satoh H, Okabe S. Ecology and physiology of anaerobic ammonium oxidizing (anammox) bacteria. Environ Microbiol. 2016;18:2784–96.

  40. 40.

    Ali M, Oshiki M, Awata T, Isobe K, Kimura Z, Yoshikawa H, et al. Physiological characterization of anaerobic ammonium oxidizing bacterium ‘Candidatus Jettenia caeni’. Environ Microbiol. 2015;17:2172–89.

  41. 41.

    Oshiki M, Awata T, Kindaichi T, Satoh H, Okabe S. Cultivation of planktonic anaerobic ammonium oxidation (anammox) bacteria using membrane bioreactor. Microbes Environ. 2013;28:436–43.

  42. 42.

    (APHA) APHA, (AWWA) AWWA, (WEF) WEF. Standard methods for the examination of water and wastewater. 2012.

  43. 43.

    Sigman DM, Altabet Ma, Michener R, McCorkle DC, Fry B, Holmes RM. Natural abundance-level measurements of the nitrogen isotopic composition of oceanic nitrate: an adaption of the ammonia diffusion method. Mar Chem. 1997;57:227–42.

  44. 44.

    Holmes RM, McClelland JW, Sigman DM, Fry B, Peterson BJ. Measuring 15N-NH4 in marine, estuarine, and freshwaters: an adaptation of the ammonia diffusion method for samples with low ammonium concentrations. MarChem. 1998;60:235–43.

  45. 45.

    McIlvin MR, Altabet MA. Chemical conversion of nitrate and nitrite to nitrous oxide for nitrogen and oxygen isotopic analysis in freshwater and seawater. Anal Chem. 2005;77:5589–95.

  46. 46.

    Casciotti KL, Bohlke JK, McIlvin MR, Mroczkowski SJ, Hannon JE. Oxygen isotopes in nitrite: analysis, calibration, and equilibration. Anal Chem. 2007;79:2427–36.

  47. 47.

    Casciotti KL, Sigman DM, Hastings MG, Bohlke JK, Hilkert A. Measurement of the oxygen isotopic composition of nitrate seawater and freshwater using the dentirifier method. Anal Chem. 2002;74:4905–12.

  48. 48.

    Sigman DM, Casciotti KL, Andreani M, Barford C, Galanter M, Bhlke JK, et al. A bacterial method for the nitrogen isotopic analysis of nitrate in seawater and freshwater. Anal Chem. 2001;73:4145–53.

  49. 49.

    Lotti T, Kleerebezem R, Lubello C, van Loosdrecht MCM. Physiological and kinetic characterization of a suspended cell anammox culture. Water Res. 2014;60:1–14.

  50. 50.

    Fry B. Stable isotope ecology. New York, NY 10013, USA: Springer Science+Business Media, LLC; 2006.

  51. 51.

    Oshiki M, Ali M, Shinyako-Hata K, Satoh H, Okabe S. Hydroxylamine-dependent anaerobic ammonium oxidation (anammox) by ‘Candidatus Brocadia sinica’. Environ Microbiol. 2016;18:3133–43.

  52. 52.

    Oshiki M, Mizuto K, Kimura ZI, Kindaichi T, Satoh H, Okabe S. Genetic diversity of marine anaerobic ammonium-oxidizing bacteria as revealed by genomic and proteomic analyses of ‘Candidatus Scalindua japonica’. Environ Microbiol Rep. 2017;9:550–61.

  53. 53.

    Strous M, Pelletier E, Mangenot S, Rattei T, Lehner A, Taylor MW, et al. Deciphering the evolution and metabolism of an anammox bacterium from a community genome. Nature. 2006;440:790–94.

  54. 54.

    Kartal B, Keltjens JT. Anammox biochemistry: a tale of heme c proteins. Trends Biochem Sci. 2016;41:998–1011.

  55. 55.

    Maalcke WJ, Reimann J, De Vries S, Butt JN, Dietl A, Kip N, et al. Characterization of anammox hydrazine dehydrogenase, a key-producing enzyme in the global nitrogen cycle. J Biol Chem. 2016;291:17077–92.

  56. 56.

    Ganesh S, Bertagnolli AD, Bristow LA, Padilla CC, Blackwood N, Aldunate M, et al. Single cell genomic and transcriptomic evidence for the use of alternative nitrogen substrates by anammox bacteria. ISME J 2018;12:2706–22.

  57. 57.

    Buchwald C, Casciotti KL. Isotopic ratios of nitrite as tracers of the sources and age of oceanic nitrite. Nat Geosci. 2013;6:308–13.

  58. 58.

    Kartal B, Kuypers MMM, Lavik G, Schalk J, Op Den Camp HJM, Jetten MSM, et al. Anammox bacteria disguised as denitrifiers: nitrate reduction to dinitrogen gas via nitrite and ammonium. Environ Microbiol. 2007;9:635–42.

  59. 59.

    Oshiki M, Ishii S, Yoshida K, Fujii N, Ishiguro M, Satoh H, et al. Nitrate-dependent ferrous iron oxidation by anaerobic ammonium oxidation (anammox) bacteria. Appl Environ Microbiol. 2013;79:4087–93.

  60. 60.

    Holler T, Wegener G, Niemann H, Ferdelman TG, Boetius A, Kristiansen TZ, et al. Correction for Holler et al., Carbon and sulfur back flux during anaerobic microbial oxidation of methane and coupled sulfate reduction. Proc Natl Acad Sci USA. 2012;109:21170–3.

  61. 61.

    Kumar S, Nicholas DJD, Williams EH. Definitive 15N NMR evidence that water serves as a source of ‘O’ during nitrite oxidation by Nitrobacter agilis. FEBS Lett. 1983;152:71–4.

  62. 62.

    Kendall C, Elliott EM, Wankel SD. Tracing anthropogenic inputs of nitrogen to ecosystems. In: Michener R, Lajtha K, editors Stable isotopes in ecology and environmental science. 2nd ed. Blackwell Publishing Ltd: Malden; 2007. p. 375–449.

Download references


This research was financially supported by Nagase Science and Technology Foundation and Institute for Fermentation, Osaka (IFO), which were granted to Satoshi Okabe, as well as JSPS KAKENHI (Grant number 18J20742), which was granted to Kanae Kobayashi. The present study was conducted using Joint Usage/Research Grant of Center for Ecological Research (2016jurc-cer24), Kyoto University.

Author information

Conflict of interest

The authors declare that they have no conflict of interest.

Correspondence to Satoshi Okabe.

Supplementary information

  1. Supplemental Material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark
Fig. 1
Fig. 2
Fig. 3
Fig. 4