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Abstract
Microorganisms are strongly influenced by the bottom-up effects of resource supply. While many species respond to
fluctuations in the concentration of resources, microbial diversity may also be affected by the heterogeneity of the resource
pool, which often reflects a mixture of distinct molecules. To test this hypothesis, we examined resource–diversity
relationships for bacterioplankton in a set of north temperate lakes that varied in their concentration and composition of
dissolved organic matter (DOM), which is an important resource for heterotrophic bacteria. Using 16S rRNA transcript
sequencing and ecosystem metabolomics, we documented strong relationships between bacterial alpha-diversity (richness
and evenness) and the bulk concentration and the number of molecules in the DOM pool. Similarly, bacterial community
beta-diversity was related to both DOM concentration and composition. However, in some lakes the relative abundance
of resource generalists, which was inversely related to the DOM concentration, may have reduced the effect of DOM
heterogeneity on community composition. Together, our results demonstrate the potential metabolic interactions between
bacteria and organic matter and suggest that changes in organic matter composition may alter the structure and function of
bacterial communities.

Introduction

Resource supply has strong bottom-up effects on the
diversity of consumer communities. Theory suggests that
resource enrichment can promote diversity and food-web
complexity [1–4]. Studies have shown that, in the absence
of top-down control (i.e., predation), ecosystems with
higher resource concentrations support more diverse and

productive plant, algal, and microbial communities [5–9].
However, the relationship between resources and diversity
often seems idiosyncratic [10–12]. Diversity can increase
linearly with resource concentration [13], but it can also
exhibit more complex, non-linear relationships where
diversity peaks at intermediate concentrations [14]. Such
patterns have been attributed to a range of processes
including variation in competitive ability among consumers
[14], shared limitations across species [13], and trophic
interactions [15, 16].

Another feature that may influence patterns of biodi-
versity is the heterogeneity of the resource pool. Although it
is convenient to model resources as homogenous pools, in
reality, many resources exist as mixtures of multiple forms
[17–19]. Often overlooked, resource heterogeneity has the
potential to promote consumer diversity via niche parti-
tioning [19, 20], including in microbial communities. For
example, some aquatic bacteria are capable of specializing
on different forms of carbon [21–24], and changes in the
available carbon resources can restructure aquatic bacterial
communities [25, 26]. Such differences in substrate pre-
ference contribute to diversity-maintaining mechanisms like
niche partitioning, which influences the stability and func-
tioning of microbial communities [20, 24, 27–29].

Ultimately, the effects of resource heterogeneity on
biodiversity may depend on the degree to which bacterial
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communities are comprised of generalists or specialists. If
communities are dominated by resource generalists, then
the total concentration of a resource should have a stronger
influence on diversity than the heterogeneity within the
resource pool because resources will be essentially sub-
stitutable [13]. These generalist, or multivorous, bacteria
should outperform specialists because they are able to
simultaneously consume and metabolize numerous organic
molecules [30]. In contrast, if communities are made up of
resource specialists, then resource heterogeneity may pro-
mote consumer diversity by providing unique resource
niches for consumers to partition [31, 32]. As such, resource
heterogeneity and resource acquisition strategy (i.e., gen-
eralist versus specialist) may help resolve commonly
observed variation in resource-diversity relationships.

For heterotrophic bacteria, organic matter is an important
resource that is used for growth and physiological main-
tenance. However, organic matter is a heterogeneous col-
lection of molecules that differ in chemical structure, origin,
and age [33–37]. In aquatic ecosystems, dissolved organic
matter (DOM) has traditionally been classified based on
origin (autochthonous vs. allochthonous) and bioavailability
(labile vs. recalcitrant). DOM can also be characterized
based on its optical properties [35, 38] and functional
groups (e.g., humic acids) [39]. However, other chemical
features, including molecular weight, oxidation state, stoi-
chiometry, and chemical structure, can influence the meta-
bolism of organisms that consume DOM [40–43]. Recent
technological advances, including Fourier transform ion
cyclotron resonance mass spectrometry [44–46] and high-
resolution liquid chromatography tandem mass spectro-
metry (MS) [47, 48], have made it possible to more thor-
oughly characterize DOM diversity at the molecular level
and link various chemical properties to the structure of
bacterial communities [37, 46–48]. With such tools in hand,
we are now able to shed new light on the importance of
fine-scale resource heterogeneity for resource–diversity
relationships in bacterial communities.

In this study, we tested how resource heterogeneity
contributes to resource–diversity relationships by char-
acterizing aquatic bacterial communities and DOM. We
characterized aquatic bacterial community diversity using
16S rRNA transcript sequencing, and we characterized the
heterogeneity of the DOM pool using ecosystem metabo-
lomics. We used linear models to test for relationships
between bacterial alpha-diversity and DOM, and we used
multivariate models to test for relationships between bac-
terial beta-diversity and DOM. To determine the role of
resource acquisition strategy, we used species-resource (i.e.,
operational taxonomic unit (OTU)–DOM) co-occurrence to
test whether resource–diversity relationships were influ-
enced by the degree to which bacterial communities were
dominated by specialists or generalists.

Methods

Study system and sampling

The Huron Mountains nature preserve is a 5300 ha tract
of private land in the upper peninsula of Michigan, USA
(Fig. 1). The area is part of the Superior Bedrock Uplands
region [49]. The surrounding forests are primarily old-
growth hemlock-northern hardwoods [50], and the inland
water bodies are part of the Pine River Watershed, which
drains into Lake Superior. Using a van Dorn sampler,
we obtained surface water samples (0.5 m) from 10 lakes
in the Huron Mountains during July 2012 (Fig. S1, Table 1).
In addition, we measured dissolved oxygen concentrations,
temperature, pH, and conductivity at the time of sampling
using Quanta Hydrolab water quality sonde, and we mea-
sured chlorophyll a concentration in the lab after cold
ethanol extraction of 0.7 µm-filtered (Whatman GF/F) water
samples using a Turner Biosystems Fluorometer (Table 1).

Resource concentrations

With the water samples, we measured the concentrations
of dissolved organic carbon (DOC), total nitrogen (TN),

Fig. 1 Principal coordinates analysis (PCoA) ordination of dissolved
organic matter (DOM). The distances between symbols represent the
dissimilarity between DOM in each lake. Using three axes, we can
explain 71% of the variation in DOM composition. The third axis (not
shown) captures 14% of the variation. Symbol sizes reflect variation in
the concentration of dissolved organic carbon (DOC). Vectors repre-
sent the correlations between DOM composition and various physical
and chemical attributes of each lake including: pH, elevation (elev),
area, DOC, total nitrogen (TN), total phosphorus (TP), and chlorophyll
a (Chl). Solid arrows represent significant and dotted represent non-
significant correlations. Significance based on 10,000 permutations
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and total phosphorus (TP). We measured DOC concentra-
tions by oxidation and non-dispersive infrared detection
on 0.7 µm-filtered (Whatman, GF/F) samples using a
Shimadzu TOC-V carbon analyzer. We measured TN
on unfiltered samples using a Lachat FIA 8500 auto-
analyzer (Hach, Loveland CO) after ammonium perox-
ydisulfate/sulfuric acid digestion [51]. We measured TP
on unfiltered samples spectrophotometrically using the
ammonium molybdate method and oxidation by persulfate
digestion [52].

Resource heterogeneity

To estimate resource heterogeneity, we characterized the
composition of extractable DOM for each lake using eco-
system metabolomics [53–55]. We extracted DOM from
each sample using solid phase extraction (SPE), which is
able to recover 40–60% of the total DOM based on che-
mical sorption properties [56]. Briefly, we acidified 1 L of
0.7 µm-filtered (Whatman, GF/F) water to pH 3.0 with 4 N
HCl. We then passed the water sample through an SPE
cartridge (Discovery-18, Supelco, Bellefonte PA) at a flow
rate ≤ 5 mLmin−1 using vacuum pressure. Columns were
preconditioned using 6 mL 100% methanol followed by 6
mL pH 3.0 ultra-pure H2O. We filtered the sample until no
sample remained or until the cartridge became clogged
(recording the final volume filtered) and dried the filter with
N2 gas for 5 min. We eluted the DOM from the column
using 100% methanol and evaporated the methanol at 25 °C
using vacuum centrifugation. A consistent amount of pur-
ified DOM was then separated on Waters Acquity ultra-
performance liquid chromatography T3 column (1.8 µM,
1.0 × 100 mm) using water with a 0.1% formic acid-
acetonitrile gradient and analyzed using negative electro-
spray ionization with quadrupole time of flight TOF MS
(Waters G2 Q-TOF) and indiscriminate tandem MS (idMS/

MS) at the Colorado State University Proteomics and
Metabolomics Facility. Q-TOF MS provides high resolu-
tion, accurate mass quantification and idMS/MS provides
high collision energy fragmentation without precursor ion
selection acquired concurrently with low-collision energy
MS data. For each sample, raw data files were converted
to cdf format, and a matrix of molecular features as defined
by retention time and ion mass (m/z) was generated for
feature detection and alignment using the XCMS R package
[57]. Raw peak areas were normalized to total ion signal,
and the mean area of the chromatographic peak was cal-
culated from duplicate injections. Features were grouped
using the RAMClust R package, which groups features
into spectra based co-elution and covariance across the full
dataset, whereby spectra are used to determine the identity
of observed compounds in the experiment [58]. Features
were annotated using RAMClust. Briefly, molecular weight
was inferred using by calling the interpretMSSpectrum R
package [59]. Chemical annotations were assigned using the
RAMClust annotate function, and structural annotations
were imported using MSFinder [60]. Synonyms were
retrieved using the RAMClust get.synonyms function, and
when needed structures were retrieved using the RAMClust
getSmilesInchi function. Last, compounds were assigned to
chemical ontogeny using ClassyFire [61]. Further annota-
tion details and parameters can be found in the Supple-
mental. We used field-prepared ultrapure water as controls
and subtracted control peaks from sample peak heights. We
multiplied control peaks by 1.1 to provide conservative
blank subtraction. We define “DOM components” as the
chemical features identified in DOM samples by ecosystem
metabolomics. We used principal coordinates analysis
(PCoA) to compare the composition of DOM in each lake
and we used the envfit function in the vegan R package to
determine which physical and chemical properties dis-
tinguished lakes based on their DOM composition [62]. The

Table 1 Lake properties and chemistry—latitude, longitude, elevation (meters above sea level), surface area (hectares), pH, temperature (Temp.),
dissolved oxygen concentration (DO), chlorophyll a concentration (Chl a), TN total nitrogen, TP total phosphorus, DOC dissolved organic carbon,
TN total nitrogen, TP total phosphorus, DOC dissolved organic carbon

Lake Latitude Longitude Elevation
(m a.s.l.)

Area
(ha)

pH Temp
(°C)

DO
(mg L−1)

Chl a
(µg L−1)

DOC
(mg C L−1)

TP
(µg P L−1)

TN
(mg N L−1)

Ann 46.872 87.922 275 25 7.86 27.44 7.22 1.25 5.97 7.27 0.43

Canyon 46.833 87.922 270 1.1 7.02 23.90 7.24 1.63 7.23 2.64 0.38

Howe 46.892 87.947 214 69 7.78 26.40 7.22 1.85 7.04 5.21 0.57

Ives 46.844 87.848 235 191 8.10 25.40 7.62 1.39 6.91 9.15 0.38

Lily 46.848 87.830 211 1.6 5.51 26.20 5.70 3.55 14.35 11.55 0.93

Mountain 46.869 87.906 258 338 8.31 26.50 7.93 2.14 5.27 5.87 0.34

Pony 46.887 87.918 256 0.5 5.39 25.30 7.04 16.35 28.99 17.04 1.86

Rush 46.888 87.907 195 127 8.14 25.70 7.74 1.23 4.22 3.84 0.41

Second Pine 46.868 87.857 188 69 8.09 26.20 7.17 3.76 6.26 12.92 0.44

Upper Pine 46.862 87.850 190 16 7.79 26.60 7.12 8.55 7.84 11.21 0.57

Resource heterogeneity structures aquatic bacterial communities 2185



envfit function tests for correlations between the environ-
mental variables and the PCoA axes, and it uses a permu-
tation test to determine significance.

Composition of the active bacterial community

We used an RNA based approach to characterize the
composition of the active bacterial community by sequen-
cing the 16 S rRNA gene transcript. We extracted total
nucleic acids using the MoBio Power Water RNA extrac-
tion kit (Carlsbad, CA). Nucleic acid extracts were cleaned
via ethanol precipitation and RNA extracts were treated
with DNase I (Invitrogen) to degrade residual DNA. We
synthesized cDNA via the SuperScript III First Strand
Synthesis Kit using random hexamer primers (Invitrogen).
Once cDNA samples were cleaned and quantified, we
amplified the 16S rRNA gene transcript (cDNA) using
barcoded primers (515F and 806R) designed to work with
the Illumina MiSeq platform [63]. We purified the sequence
libraries using the AMPure XP purification kit, quantified
using the QuantIt PicoGreen kit (Invitrogen), and pooled
libraries at equal molar ratios (final concentration: 20 ng
per). After pooling, we sequenced the libraries on the
Illumina MiSeq platform using 250 × 250 bp paired end
reads (Illumina Reagent Kit v2) at the Indiana University
Center for Genomics and Bioinformatics Sequencing
Facility. Paired-end raw 16S rRNA sequence reads
were assembled into contigs and filtered based on
quality score, length, and ambiguous base calls. After fil-
tering, we aligned our sequences to the Silva Database
(version 123). Chimeric sequences were detected and
removed using the VSEARCH algorithm [64]. We then
created OTUs by first splitting the sequences based on
taxonomic class (using the RDP taxonomy) and then bin-
ning sequences in OTUs based on 97% sequence similarity
using the OptiClust algorithm [65]. All initial sequence
processing was completed using the software package
mothur (version 1.40.5 [66]).

Resource heterogeneity and community diversity

First, we tested the hypothesis that resource heterogeneity
affects bacterial community alpha-diversity. We used linear
models to determine if DOM concentration or the number
of DOM components would affect the richness and even-
ness of bacterial communities. We removed singleton OTUs
(i.e., those found only once across all samples), and we
subsampled using rarefaction to correct for differences in
sample size due to sequencing depth [67, 68]. We calculated
richness as the number of OTUs observed and evenness
using Simpson’s evenness [69]. We transformed
(Box–Cox), centered, and scaled (i.e., divided by standard
deviation) DOC concentration and OTU richness to meet

model assumptions regarding the distribution of residuals
(see Supplemental [70]). We used the Box–Cox-trans-
formed DOC concentration as the measure of DOM con-
centration, and we calculated the number of DOM
components as the number of distinct DOM peaks observed
in each sample.

Next, we tested the hypothesis that DOM heterogeneity
affects community beta-diversity by comparing DOM
concentrations and composition to bacterial community
composition. We used distance-based redundancy analysis
(dbRDA [71]) to test for relationships between: (1) resource
concentration and community composition and (2) resource
composition and community composition. dbRDA is a
multivariate linear model technique that uses quantitative
factors explaining differences in multivariate community
composition data. We used the Box–Cox-transformed DOC
concentration as the measure of DOM concentration.
To use DOM composition as a predictor in our dbRDA
model, we used PCoA, based on relative abundances and
Bray–Curtis dissimilarity, to decompose DOM composition
into orthogonal linear components [72]. To represent the
DOM composition, we used the DOM PCoA axis scores
for each sample. As the response in the dbRDA model,
we relativized OTU abundances and used Bray–Curtis
distances to compare community composition across sam-
ples. Significance tests of our dbRDA model were con-
ducted based on 10,000 permutations. All calculations were
done in the R statistical environment [73] using the vegan
package [62].

Consumer–resource specialization

We tested the hypothesis that the response to DOM het-
erogeneity depends on whether bacterial communities were
dominated by generalists or specialists by using
consumer–resource (i.e., OTU–DOM) co-occurrence to
define generalists and specialists. We defined resource
generalists and specialists based on co-occurrence analysis,
which was performed using Spearman’s rank correlations
between DOM components and bacterial OTUs. We used
the relative abundances of DOM components and the rela-
tive transcript abundances of bacterial OTUs. We inferred
interactions based on correlations with coefficients >|0.7|
[74], and we tested for significance using a permutation test
based on randomizations with the independent-swap algo-
rithm [75]. We defined resource generalists as those taxa
with four or more significant negative resource correlations.
While this cannot be used to directly attribute consumption
or production of DOM components, we are using these
correlations to infer potential metabolic associations. To
understand the spatial extent of individual taxa, we defined
cosmopolitan taxa as those found in ≥90% of the sampled
lakes and we determined how many resource generalists

2186 M. E. Muscarella et al.



were also cosmopolitan taxa. All calculations were done in
the R statistical environment.

Results

Resource composition and heterogeneity

The lakes sampled in our survey captured a range of
resource conditions that could affect patterns of bacterial
diversity (Table 1). For example, the concentrations of DOC
ranged from 4.22 to 28.99 mg C L−1 and were highly cor-
related with TN (rho= 0.97, p < 0.001, Fig. S2). Using
ecosystem metabolomics, we characterized the DOM pool
and detected 712 DOM components across the surveyed
lakes. Based on the relative concentrations of DOM com-
ponents, sites were on average 37% dissimilar in DOM
composition. Using PCoA, the model explained 71% of the
variation in DOM composition across sites using three
dimensions (Fig. 1). The variation in DOM composition,
based on the PCoA, was significantly related to DOC (r2=
0.68, p= 0.01), TN (r2= 0.70, p= 0.01), Chl a (r2= 0.69,
p= 0.02), and pH (r2= 0.58, p= 0.03), but there were no
significant relationships with TP (r2= 0.27, p= 0.34), alti-
tude (r2= 0.31, p= 0.74), or surface area (r2= 0.30, p=
0.26) (Fig. 1). In addition, we found an inverse relationship
between the number of DOM components and the con-
centration of DOC (p < 0.01). We used DOC to represent
resource concentration and the DOM PCoA scores to
represent DOM composition in further analyses. We iden-
tified influential DOM components as those correlated (rho
> |0.70|) with variation in the DOM PCoA axes (Fig. S3).
These 172 influential components represent a broad range in
molecular weight, stoichiometric ratio, and oxidation state
(see Table 2 for a summary and Table S1 for a complete
description).

Community composition and resource–diversity
relationships

Across the sampled lakes, we identified 5085 bacterial
OTUs based on 16S rRNA transcript sequencing (see
Supplement for sequence counts). When rarified
(60,000 sequences), lakes varied in OTU richness and
evenness (Fig. 2). Using Bray–Curtis distances and relative
transcript abundances, lakes were on average 62% dissim-
ilar based on bacterial community composition.

First, we tested for relationships between DOM chem-
istry and bacterial alpha-diversity. We used linear regres-
sion to test for resource–diversity relationships between
bacterial community diversity (richness and evenness) and
both DOM concentration and the number of DOM com-
ponents in a sample. As predicted, bacterial alpha-diversity

was affected by resource concentration (Fig. 2). OTU
richness was positively related to DOM concentration (r2=
0.66, p= 0.008), but inversely related to the number
of DOM components (r2= 0.50, p= 0.023). In contrast,
OTU evenness was positively related to the number of
DOM components (r2= 0.67, p= 0.003) but inversely
related to DOM concentration (r2= 0.49, p= 0.022).
We found a similar relationship when we characterized
bacterial communities using 16S rRNA gene sequences
(see Supplemental).

Next, we tested for relationships between DOM (con-
centration and composition) and bacterial beta-diversity
using dbRDA. Based on the dbRDA models, DOM con-
centration explained 28% of the variation in bacterial
community composition (p= 0.002), and DOM composi-
tion explained 45% of the variation in bacterial community
composition (p= 0.03, Fig. 3). We found a similar
relationship when we characterized bacterial communities
using 16S rRNA gene sequences (see Supplemental).
However, when we partitioned variation among the
DOM PCoA axes, only DOM Axis 2 was significant (r2=
0.70, p= 0.017). In addition, this DOM PCoA Axis
2 (DOM 2) was correlated to variation along OTU
PCoA Axis 1 (rho= 0.83, p= 0.002; Fig. 3). Last, we
tested for relationships between DOM concentration
and DOM composition. We found a significant correlation
between DOM concentration and DOM Axis 2 (rho= 0.69,
p= 0.03).

Consumer–resource specialization

Based on consumer–resource co-occurrence analysis
and spatial occurrence, we classified generalist bacteria. We
found that 1.3% of taxa (68 OTUs) were resource
generalists. In addition, using spatial occurrence we
determined that 4.6% of the taxa (233 OTUs) were cos-
mopolitan. Of the resource generalists, 73.5% (50 OTUs)
were also found to be cosmopolitan taxa (Table 3). Pro-
portionally, resource generalists and cosmopolitan taxa
were relatively abundant across all lakes (Fig. 4). For
both groups, there was a significant inverse relationship
between relative abundance and resource concentration
(Fig. 4). In addition, the relative abundance of resource
generalists was related to DOM composition based
on DOM Axis 2 (rho= 0.81, p= 0.004), but not DOM
Axis 1 (rho= 0.08, p= 0.82). Taxonomically, both
resource generalists and cosmopolitan taxa were diverse.
For the resource generalists, the majority belonged to
the classes Alphaproteobacteria (14) and Planctomycetacia
(11), but Verrucomicrobiae (8) and Actinobacteria
(7) were also common. At the family level, the
resource generalists represented groups, including Acet-
obacteraceae, Caulobacteraceae, Planctomycetaceae,

Resource heterogeneity structures aquatic bacterial communities 2187
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Sphinomonadaceae, and Verrucomicrobiaceae. For the
cosmopolitan taxa, the majority belonged to the classes
Alphaproteobacteria (58) and Betaproteobacteria (50),

but Gammaproteobacteria (14), Actinobacteria (21), Planc-
tomycetacia (17), and Sphingobacteria (12) were
also common. At the family level, the cosmopolitan
taxa represent groups including Acetobacteraceaea,
Alcaligenaceae, Bulkholderiaceae, Caulobacteraceae,
Chitinophagaceae, Comomonadaceae, Flavobacteriaceae,
Planctomycetaceae, Rhodobacteraceae, Spartobacteria,
Sphinomonadaceae, and Verrucomicrobiaceae. For a
complete list of generalists including taxonomy, see
Tables S2 and S3.

Discussion

We found evidence that DOM concentration and hetero-
geneity affect aquatic bacterial resource-diversity relation-
ships. We documented significant relationships between
DOM and bacterial community alpha- and beta-diversity.
Together, our results suggest that, in addition to bulk
concentration, the heterogeneity of DOM resources
influences aquatic bacterial diversity within and among
communities. Our study supports the view that organic
matter composition plays an important role in structuring
aquatic bacterial communities, and that changes in

Fig. 2 Bacterial community
diversity relationships with
resource concentration and the
number of DOM components.
Resource (DOM) concentration
and OTU richness have been
Box–Cox transformed to meet
model assumptions. There are
significant positive relationships
between OTU richness and
resource concentration and
between OTU evenness and the
number of DOM components.
There are significant negative
relationships between OTU
evenness and resource
concentration and between OTU
richness and the number of
DOM components. Dashed line
represents linear regression fit
along with 95% confidence
intervals. An untransformed
version of this figure can be
found in the supplemental
(Fig. S4)

Fig. 3 Principal coordinates analysis (PCoA) ordination of bacterial
communities. Vectors represent the correlation between the dissolved
organic matter (DOM) heterogeneity and the bacterial community
composition. The two vectors are based on correlations between
community composition and the site scores from the DOM PCoA axes
one and two. We used distance-based redundancy analysis to test the
relationship between DOM site scores and bacterial community
composition

Resource heterogeneity structures aquatic bacterial communities 2189



organic matter composition owing to land-use
modifications and changing terrestrial inputs may alter
the structure and function of aquatic bacterial communities.

Resource heterogeneity affects bacterial diversity

This study revealed that DOM resources were hetero-
geneous across lakes—on average lakes were 37% dissim-
ilar in their DOM composition; and therefore, resource
heterogeneity may help explain the variation in
resource–diversity relationships along resource concentra-
tion gradients. We found that while DOM concentration
explained 28% of the variation, DOM composition
explained 45% of the variation in bacterial community
composition across lakes. These findings suggest that
different types of bacteria use and potentially specialize
on different types of DOM [26, 27, 46]. For example, it
has been shown that some bacteria primarily use algal-
derived resources [76, 77] while others primarily use
terrestrial-derived resources [78, 79]. Therefore, lakes
receiving different resource inputs may be expected to

contain different bacterial communities. Thus, DOM
resource heterogeneity is a potential mechanism to
explain the diversity of bacteria within and among lake
communities.

One of the strongest relationships we observed was the
positive correlation between OTU evenness and the number
of DOM components (Fig. 2). The number of DOM com-
ponents is likely to influence the evenness of the bacterial
community because evenness, a measure of equitability
among taxa, may reflect changes in community assembly by
modifying the relationship between resource availability,
species interactions, and species traits [80, 81]. If DOM
resources represented niches to be partitioned, the number
of DOM components should promote species diversity
since DOM components provide unique niches for species
to partition [19, 31, 82]. Because greater resource hetero-
geneity was associated with increased evenness but not
richness, our findings suggest that the increased evenness of
the bacterial community represents changes in abundances
but not the addition of new taxa. Together, our results
support the hypothesis that DOM resource heterogeneity

Table 3 Example OTUs that were identified as both resource generalists and cosmopolitan taxa. Each OTU is classified based on the RDP
taxonomy down to genus. OTUs are listed in order of total abundance across all sites

OTU Domain Phylum Class Order Family Genus

Otu00004 Bacteria Actinobacteria Actinobacteria Actinomycetales Geodermatophilaceae Blastococcus

Otu00006 Bacteria Actinobacteria Actinobacteria Actinomycetales Unclassified
Actinomycetales

Unclassified
Actinomycetales

Otu00010 Bacteria Actinobacteria Actinobacteria Actinomycetales Intrasporangiaceae Unclassified
Intrasporangiaceae

Otu00012 Bacteria Verrucomicrobia Spartobacteria Spartobacteria_unclassified Unclassified
Spartobacteria

Unclassified
Spartobacteria

Otu00013 Bacteria Verrucomicrobia Subdivision3 Limisphaera Unclassified Limisphaera Unclassified
Limisphaera

Otu00014 Bacteria Proteobacteria Alphaproteobacteria Rhodospirillales Acetobacteraceae Rhodovarius

Otu00015 Bacteria Proteobacteria Betaproteobacteria Burkholderiales Comamonadaceae Rhodoferax

Otu00016 Bacteria Proteobacteria Betaproteobacteria Rhodocyclales Rhodocyclaceae Unclassified
Rhodocyclaceae

Otu00023 Bacteria Planctomycetes Planctomycetia Planctomycetales Planctomycetaceae Thermogutta

Otu00024 Bacteria Bacteroidetes Sphingobacteriia Sphingobacteriales Saprospiraceae Haliscomenobacter

Otu00032 Bacteria Verrucomicrobia Spartobacteria Terrimicrobium Unclassified
Terrimicrobium

Unclassified
Terrimicrobium

Otu00034 Bacteria Planctomycetes Phycisphaerae Tepidisphaerales Tepidisphaeraceae Tepidisphaera

Otu00036 Bacteria Proteobacteria Alphaproteobacteria Rhodospirillales Acetobacteraceae Roseomonas

Otu00037 Bacteria Actinobacteria Actinobacteria Actinomycetales Microbacteriaceae Unclassified
Microbacteriaceae

Otu00038 Bacteria Planctomycetes Planctomycetia Planctomycetales Planctomycetaceae Pirellula

Otu00041 Bacteria Actinobacteria Actinobacteria Actinomycetales Intrasporangiaceae Terracoccus

Otu00042 Bacteria Planctomycetes Planctomycetia Planctomycetales Planctomycetaceae Thermogutta

Otu00043 Bacteria Planctomycetes Phycisphaerae Tepidisphaerales Tepidisphaeraceae Tepidisphaera

Otu00049 Bacteria Verrucomicrobia Verrucomicrobiae Verrucomicrobiales Verrucomicrobiaceae Haloferula

Otu00058 Bacteria Verrucomicrobia Verrucomicrobiae Verrucomicrobiales Verrucomicrobiaceae Brevifollis
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contributes to observed resource–diversity relationships,
and we propose that DOM resource heterogeneity may
promote more diverse heterotrophic bacterial communities
by increasing species equitability.

Resource substitutability

The substitutability of resources could influence strength
and direction of resource–diversity relationships. One pos-
sible explanation for why resource heterogeneity may only
have weak effects in some habitats is that many resources
are substitutable. Two resources are substitutable when
either can each be used for growth and reproduction while

the other is absent [83]. For example, some phototrophs are
able to use ammonium, nitrate, or organic nitrogen as a
source of nitrogen [84–86], while crustacean zooplankton
such as Daphnia can use algae, cyanobacteria, or bacteria as
different food sources [87]. Likewise, aquatic ecosystems
contain numerous phosphorus resources but some have
similar effects on the structure and function of aquatic
bacterial communities [29].

We found numerous DOM components that appear to
have similar consumer–resource co-occurrence patterns
(Fig. S5). One explanation for this pattern is that many
DOM components represent substitutable resources. At a
chemical level, resources with the same core structure may
be enzymatically substitutable. For example, vanillate and
ferulate share an internal benzene structure and are used by
the same metabolic pathway (beta-ketoadipate pathway:
[88]). In addition, extracellular enzymes often degrade ali-
phatic polymers of different lengths into identical mono-
mers [89]. Alternatively, multivorous bacteria with
numerous metabolic pathways may use different molecules
in similar ways if they contain the similar molecular
components, are easily transported, and yield the same
amount of energy [30]. As such, our data indicated that
many DOM components are likely substitutable. While
we were able to provide chemical annotations for most
of the DOM components in our study, it is still unclear
how to determine which components may be substitutable.
This does not mean relationships between DOM and
bacterial composition are indescribable, but methods
need to be developed to classify and group DOM compo-
nents into meaningful categories based on functional and
metabolic forms.

Generalist communities

Our results suggest that resource generalists can be common
in aquatic bacterial communities [90–92] and may explain,
in part, why the effect of resource heterogeneity on com-
munity composition is stronger is some lakes than others.
Across the sampled lakes, we documented an inverse rela-
tionship between the abundance of generalists and the
concentrations of resources. This relationship was corre-
lated with variation along the second axis of the DOM
PCoA, but not the first DOM PCoA axis which explains the
majority of the DOM variation. One possibility is that
consumers have multiple metabolic pathways for resource
acquisition. For example, evidence from comparative
genomics suggests that aquatic bacteria capable of using
complex organic matter also have the potential to use
numerous different resources, and may thus be generalists
[93–95].

It is often assumed that most bacteria are specialists. For
example, multiple studies have identified taxa that

Fig. 4 The proportion of generalists and cosmopolitan taxa in aquatic
bacterial communities. We defined operational taxonomic units
(OTUs) as generalists using consumer–resource co-occurrence (top)
and as cosmopolitan based on spatial occurrence (top). We used OTU
relative abundances to calculate the proportion in each community. For
both, we used a linear model to determine if there was a relationship
between the proportion of generalists and the concentration of dis-
solved organic carbon (DOC). For both, we found a significant
negative relationship. Dashed line represents linear regression fit along
with 95% confidence intervals. The light gray dotted line represents
50% of the community and is used as a reference
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specialize on particular resources [26, 76, 96–98]. The
ability to use multiple resources requires the production of
extra enzymes and transporters; therefore, it is costly to use
numerous resources [99]. As such, specialists may be
energetically favored in some environments. Likewise,
numerous studies have indicated that habitat specialists
(e.g., sediment and aquatic) dominate microbial commu-
nities [100–103]. However, this study suggests that gen-
eralists were relatively common in the lakes surveyed
(Fig. 4). These findings are supported by another study
which found that resource generalists dominated coastal
bacterial communities [92]. Likewise, it has been proposed
that generalist, multivorous bacteria may actually have a
fitness advantages if resources are essentially substitutable
[30]. It should be noted though, that we found both resource
generalists and specialists (Fig. S5) and resource specialists
would contribute to resource-diversity relationships. How-
ever, generalists may limit the ability of resource hetero-
geneity to promote diversity when generalists are more
dominant than specialists.

While advances in technology have allowed for in-
depth characterization of organic matter chemistry and
bacterial communities, there are still limitations. First, the
DOM extraction and detection may be biased toward
some groups of molecules [56]. While we may have
missed some important components of the DOM pool
(e.g., hydrophilic compounds), we likely captured the
complex terrestrial-derived organic matter that often
dominates inland aquatic ecosystems such as small ponds
and lakes [104]. This DOM has been shown to be
important for bacterial community structure and function
[42, 105, 106]. However, our methods may have missed
less complex labile molecules (e.g., sugars and free amino
acids) that have also been shown to affect bacterial
communities [77]. Many labile molecules are consumed
rapidly and may therefore escape detection. Second, our
consumer-resource interaction results are based on a sin-
gle time point and therefore only suggest possible
bacteria-DOM metabolic interactions. We use these cor-
relations to make inferences about the degree to which
taxa are generalists. To make stronger inferences, we
would need to conduct time-course experiments capturing
periods of resource fluctuations often associated with
hydrologic events, and we would need to perform
experimental manipulations of DOM concentration and
composition. In addition, we are using 16S rRNA
sequencing to characterize community composition, but
this method may not be able to capture cryptic diversity
and strain specialization [107, 108]. For example, our
results identified members of the class Actinobacteria as
generalist, but most Actinobacteria have been identified as
specialists [103, 109] and this discrepancy may be due to
our phylogenetic resolution [110]. Last, we assume that

bacterial communities are under local selection due to
resource availability, but other local (e.g., predation and
the physical environment) and regional (e.g., dispersal)
factors can affect community composition [111–116]. For
example, high-dispersal rates can overwhelm local selec-
tion due to mass effects [117], which is especially
important in aquatic bacterial communities that receive
organisms from the neighboring terrestrial landscape
[113, 118]. Furthermore, small waterbodies, such as Lily
and Pony, have higher terrestrial influence due to a high
shoreline-area ratio. Terrestrial influence increases the
input of bacteria to these small waterbodies and this can
inflate bacterial diversity and therefore constrain the
resource–diversity relationship. Regardless, our results,
and other genomic studies, suggest that resource gen-
eralist are common in some aquatic bacterial commu-
nities, and this should be investigated further.

Conclusions

This study revealed that resource heterogeneity influenced
resource–diversity relationships and the contribution of
DOM heterogeneity to these relationships was greater
than the contribution of DOM concentration. In addition,
we found that generalist taxa were relatively common in
many of the lakes that we sampled, but generalists were
predicted to reduce effect of resource heterogeneity on the
resource–diversity relationship. However, the presence of
generalists does not limit the role of resource heterogeneity.
First, because resource generalists do not use all resources
and can still show preferences [119], resource variation can
still have an effect on community composition. Second, in
addition to generalists we also found evidence of resource
specialists and others have found strong evidence for
resource and habitat specialists in inland aquatic ecosystems
[98, 100, 106]. Because the presence of generalist taxa
may limit the affect resource heterogeneity has on local
communities, we propose that consumer properties (i.e.,
generalist) and resource properties (i.e., availability) deter-
mine how strong communities respond to resource hetero-
geneity. Therefore, to better understand how bacterial
communities will respond to environmental changes, such
as temporal and spatial variation in organic matter inputs
due to changes in plant community distributions or global
climate change, we need to consider which resources are
substitutable and which groups of resources will change in
similar and predictive ways.
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