Article | Published:

Establishment of an induced memory response in Pseudomonas aeruginosa during infection of a eukaryotic host

Abstract

In a given habitat, bacterial cells often experience recurrent exposures to the same environmental stimulus. The ability to memorize the past event and to adjust current behaviors can lead to efficient adaptation to the recurring stimulus. Here we demonstrate that the versatile bacterium Pseudomonas aeruginosa adopts a virulence phenotype after serial passage in the invertebrate model host Galleria mellonella. The virulence phenotype was not linked to the acquisition of genetic variations and was sustained for several generations, despite cultivation of the ex vivo virulence-adapted P. aeruginosa cells under rich medium conditions in vitro. Transcriptional reprogramming seemed to be induced by a host-specific food source, as reprogramming was also observed upon cultivation of P. aeruginosa in rich medium supplemented with polyunsaturated long-chain fatty acids. The establishment of induced memory responses adds a time dimension and seems to fill the gap between long-term evolutionary genotypic adaptation and short-term induced individual responses. Efforts to unravel the fundamental mechanisms that underlie the carry-over effect to induce such memory responses will continue to be of importance as hysteretic behavior can serve survival of bacterial populations in changing and challenging habitats.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Gellatly SL, Hancock REW. Pseudomonas aeruginosa: new insights into pathogenesis and host defenses. Pathog Dis. 2013;67:159–73.

  2. 2.

    Valentini M, Gonzalez D, Mavridou DAI, Filloux A. Lifestyle transitions and adaptive pathogenesis of Pseudomonas aeruginosa. Curr Opin Microbiol. 2018;41:15–20.

  3. 3.

    Klockgether J, Tümmler B. Recent advances in understanding Pseudomonas aeruginosa as a pathogen. F1000Res. 2017;6:1261.

  4. 4.

    Winstanley C, Brien SO, Brockhurst MA. Pseudomonas aeruginosa evolutionary adaptation and diversification in cystic fibrosis chronic lung infections. Trends Microbiol. 2016;24:327–37.

  5. 5.

    Yang L, Jelsbak L, Marvig RL, Damkiaer S, Workman CT, Rau MH, et al. Evolutionary dynamics of bacteria in a human host environment. Proc Natl Acad Sci USA. 2011;108:7481–6.

  6. 6.

    Marvig RL, Sommer LM, Molin S, Johansen HK. Convergent evolution and adaptation of Pseudomonas aeruginosa within patients with cystic fibrosis. Nat Genet. 2015;47:57–64.

  7. 7.

    Feliziani S, Marvig RL, Luján AM, Moyano AJ, Di Rienzo JA, Krogh Johansen H, et al. Coexistence and within-host evolution of diversified lineages of hypermutable Pseudomonas aeruginosa in long-term cystic fibrosis infections. PLoS Genet. 2014;10:e1004651.

  8. 8.

    Fusco G, Minelli A. Phenotypic plasticity in development and evolution: facts and concepts. Philos Trans R Soc. 2010;365:547–56.

  9. 9.

    Kelly SA, Panhuis TM, Stoehr AM. Phenotypic plasticity: molecular mechanisms and adaptive significance. Compr Physiol. 2012;2:1417–39.

  10. 10.

    Price TD, Qvarnstro A, Irwin DE. The role of phenotypic plasticity in driving genetic evolution. Proc Biol Sci2003;270:1433–40.

  11. 11.

    Nicoglou A, Bradshaw A. The evolution of phenotypic plasticity: genealogy of a debate in genetics. Stud Hist Philos Biol Biomed Sci. 2015;50:67–76.

  12. 12.

    Lambert G, Kussell E. Memory and fitness optimization of bacteria under fluctuating environments. PLoS Genet. 2014;10:e1004556.

  13. 13.

    Jablonka E, Oborny B, Molnar I, Kisdi E, Hofbauer J, Czaran T. The adaptive advantage of phenotypic memory in changing environments. Philos Trans R Soc. 1995;350:133–41.

  14. 14.

    Casadesus J, Ari RD. Memory in bacteria and phage. Bioessays. 2002;24:512–8.

  15. 15.

    Wolf DM, Fontaine-bodin L, Bischofs I, Price G, Keasling J, Adam P. Memory in microbes: quantifying history-dependent behavior in a bacterium. PLoS ONE. 2008;3:e1700.

  16. 16.

    Norman TM, Lord ND, Paulsson J, Losick R. Memory and modularity in cell-fate decision making. Nature. 2013;503:481–6.

  17. 17.

    Miyata S, Casey M, Frank DW, Ausubel FM, Drenkard E. Use of the Galleria mellonella caterpillar as a model host to study the role of the type III secretion system in Pseudomonas aeruginosa pathogenesis. Infect Immun. 2003;71:2404–13.

  18. 18.

    Insua JL, Llobet E, Moranta D, Pérez-Gutiérrez C, Tomás A, Garmendia J, et al. Modeling Klebsiella pneumoniae pathogenesis by infection of the wax moth Galleria mellonella. Infect Immun. 2013;81:3552–65.

  19. 19.

    Ramarao N, Nielsen-Leroux C, Lereclus D. The insect Galleria mellonella as a powerful infection model to investigate bacterial pathogenesis. J Vis Exp. 2012;70:e4392.

  20. 20.

    Fuchs BB, O’Brien E, Khoury JBEl, Mylonakis E. Methods for using Galleria mellonella as a model host to study fungal pathogenesis. Virulence. 2010;1:475–82.

  21. 21.

    Harding CR, Schroeder GN, Collins JW, Frankel G. Use of Galleria mellonella as a model organism to study Legionella pneumophila infection. J Vis Exp. 2013;81:1–10.

  22. 22.

    Jander G, Rahme LG, Ausubel FM. Positive correlation between virulence of Pseudomonas aeruginosa mutants in mice and insects. J Bacteriol. 2000;182:3843–5.

  23. 23.

    Mak P, Zdybicka-barabas A. A different repertoire of Galleria mellonella antimicrobial peptides in larvae challenged with bacteria and fungi. Dev Comp Immunol. 2010;34:1129–36.

  24. 24.

    Grizanova EV, Komarov DA, Dubovskiy IM, Semenova AD, Slepneva IA, Chertkova EA. Maintenance of redox balance by antioxidants in hemolymph of the greater wax moth Galleria mellonella larvae during encapsulation response. Arch Insect Biochem Physiol. 2018;98:1–13.

  25. 25.

    Andrés L, Blanco A, Crispim JS, Fernandes KM, Oliveira LLDe, Pereira MF. Differential cellular immune response of Galleria mellonella to Actinobacillus pleuropneumoniae. Cell Tissue Res. 2017;370:153–68.

  26. 26.

    Browne N, Heelan M, Kavanagh K. An analysis of the structural and functional similarities of insect hemocytes and mammalian phagocytes. Virulence. 2013;4:597–603.

  27. 27.

    Rumpold BA, Schlüter OK. Nutritional composition and safety aspects of edible insects. Mol Nutr Food Res. 2013;57:802–23.

  28. 28.

    Hornischer K, Khaledi A, Pohl S, Schniederjans M, Pezoldt L, Casilag F, et al. BACTOME – a reference database to explore the sequence- and gene expression-variation landscape of Pseudomonas aeruginosa clinical isolates. Nucleic Acids Res. 2019;47:D716–20.

  29. 29.

    Lunter G, Goodson M. Stampy: a statistical algorithm for sensitive and fast mapping of Illumina sequence reads. Genome Res. 2011;21:936–9.

  30. 30.

    Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:1–21.

  31. 31.

    Hulsen T, Vlieg JDe, Alkema W. BioVenn – a web application for the comparison and visualization of biological lists using area-proportional Venn diagrams. BMC Genomics. 2008;9:1–6.

  32. 32.

    Robinson MD, Mccarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–40.

  33. 33.

    Toole GAO. Microtiter dish biofilm formation assay. J Vis Exp. 2011;47:1–2.

  34. 34.

    Spangler C, Böhm A, Jenal U, Seifert R, Kaever V. A liquid chromatography-coupled tandem mass spectrometry method for quantitation of cyclic di-guanosine monophosphate. J Microbiol Methods. 2010;81:226–31.

  35. 35.

    Blanka A, Düvel J, Dötsch A, Klinkert B, Abraham W-R, Kaever V, et al. Constitutive production of c-di-GMP is associated with mutations in a variant of Pseudomonas aeruginosa with altered membrane composition. Sci Signal. 2015;8:ra36.

  36. 36.

    Overhage J, Bains M, Brazas MD, Hancock REW. Swarming of Pseudomonas aeruginosa is a complex adaptation leading to increased production of virulence factors and antibiotic resistance. J Bacteriol. 2008;190:2671–9.

  37. 37.

    Abraham W-R, Hesse C. Isotope fractionations in the biosynthesis of cell components by different fungi: a basis for environmental carbon flux studies. FEMS Microbiol Ecol. 2003;46:121–8.

  38. 38.

    Pustelny C, Brouwer S, Müsken M, Bielecka A, Dötsch A, Nimtz M, et al. The peptide chain release factor methyltransferase PrmC is essential for pathogenicity and environmental adaptation of Pseudomonas aeruginosa PA14. Environ Microbiol. 2013;15:597–609.

  39. 39.

    Jenal U, Malone J. Mechanisms of cyclic-di-GMP signaling in bacteria. Annu Rev Genet. 2006;40:385–407.

  40. 40.

    Fukumura K, Konuma T, Tsukamoto Y, Nagata S. Adipokinetic hormone signaling determines dietary fatty acid preference through maintenance of hemolymph fatty acid composition in the cricket Gryllus bimaculatus. Sci Rep. 2018;8:4737.

  41. 41.

    Zheng H, Yang X, Xi Y. Fat body remodeling and homeostasis control in Drosophila. Life Sci. 2016;167:22–31.

  42. 42.

    Zhang Y, Xi Y. Fat body development and its function in energy storage and nutrient sensing in Drosophila melanogaster. J Tissue Sci Eng. 2014;6:1–8.

  43. 43.

    Rossi E, Paroni M, Landini P. Biofilm and motility in response to environmental and host-related signals in Gram negative opportunistic pathogens. J Appl Microbiol. 2018; https://doi.org/10.1111/jam.14089.

  44. 44.

    Haddad A, Jensen V, Becker T, Häussler S. The Pho regulon influences biofilm formation and type three secretion in Pseudomonas aeruginosa. Environ Microbiol Rep. 2009;1:488–94.

  45. 45.

    Harrison F, Paul J, Massey RC, Buckling A. Interspecific competition and siderophore-mediated cooperation in Pseudomonas aeruginosa. ISME J. 2008;2:49–55.

  46. 46.

    Williams BRJ, Dehnbostel JO, Blackwell TIS. Pseudomonas aeruginosa: host defence in lung diseases. Respirology. 2010;15:1037–56.

  47. 47.

    Lopez MS, Tan IS, Yan D, Kang J, Mccreary M, Modrusan Z, et al. Host-derived fatty acids activate type VII secretion in Staphylococcus aureus. PNAS. 2017;114:11223–8.

  48. 48.

    Golubeva YA, Ellermeier JR, Cott Chubiz JE, Slauch JM. Intestinal long-chain fatty acids act as a direct signal to modulate expression of the Salmonella pathogenicity island 1 type III secretion system. mBio. 2016;7:e02170–15.

  49. 49.

    Norbash LV, Shults DJ, Symes SJK, Giles K. crossm Exogenous polyunsaturated fatty acids impact membrane remodeling and affect virulence phenotypes among pathogenic vibrio species. Appl Environ Microbiol. 2017;83:1–16.

  50. 50.

    Liaw S, Lai H, Wang W. Modulation of swarming and virulence by fatty acids through the RsbA protein in Proteus mirabilis. Infect Immun. 2004;72:6836–45.

  51. 51.

    Lai H, Soo P, Wei J, Yi W, Liaw S, Horng Y, et al. The RssAB two-component signal transduction system in Serratia marcescens regulates swarming motility and cell envelope architecture in response to exogenous saturated fatty acids. J Bacteriol. 2005;187:3407–14.

  52. 52.

    Hobby CR, Herndon JL, Morrow CA, Peters RE, Symes SJK, Giles DK. Exogenous fatty acids alter phospholipid composition, membrane permeability, capacity for biofilm formation, and antimicrobial peptide susceptibility in Klebsiella pneumoniae. Microbiol Open. 2018;e635:1–11.

  53. 53.

    Yao J, Rock CO. Exogenous fatty acid metabolism in bacteria. Biochimie. 2017;141:30–9.

  54. 54.

    Kumar M, Joydeep G, Roy PK. How memory regulates drug resistant pathogenic bacteria? A mathematical study. Int J Appl Comput Math. 2017;3:747–73.

  55. 55.

    Tian T. Chemical memory reactions induced bursting dynamics in gene expression. PLoS ONE. 2013;8:e52029.

  56. 56.

    Mathis R, Ackermann M. Asymmetric cellular memory in bacteria exposed to antibiotics. BMC Evol Biol. 2017;17:1–14.

  57. 57.

    Grunert T, Monahan A, Lassnig C, Vogl C, Mu M. Deciphering host genotype-specific impacts on the metabolic fingerprint of Listeria monocytogenes by FTIR spectroscopy. PLoS ONE. 2014;9:1–12.

  58. 58.

    Kondrashov FA. Gene duplication as a mechanism of genomic adaptation to a changing environment. Proc Biol Sci. 2012;279:5048–57.

  59. 59.

    Pedraza JM, Paulsson J. Effects of molecular memory and bursting on fluctuations in gene expression. Science. 2008;319:339–44.

  60. 60.

    Coggan Ka, Wolfgang MC. Global regulatory pathways and cross-talk control Pseudomonas aeruginosa environmental lifestyle and virulence phenotype. Curr Issues Mol Biol. 2012;14:47–70.

  61. 61.

    Lee CK, Anda JDe, Baker AE, Bennett RR, Luo Y, Lee EY. Multigenerational memory and adaptive adhesion in early bacterial biofilm communities. PNAS. 2018;115:4471–6.

  62. 62.

    Starkey M, Lepine F, Maura D, Bandyopadhaya A, Lesic B, He J, et al. Identification of anti-virulence compounds that disrupt quorum-sensing regulated acute and persistent pathogenicity. PLoS Pathog. 2014;10:e1004321.

Download references

Acknowledgements

SH received funding by the EU (Consolidator Grant of the European Research council [724290]), by VW Vorab (Biofabrication for NIFE/VWZN3228), and the HGF (iMed, individualized Medicine). Many thanks to Agnes Nielsen, Anna-Lena Hagemann, Annette Garbe, and Esther Surges for help with sample preparation and for technical support.

Author information

Conflict of interest

The authors declare no competing interests.

Correspondence to Susanne Häussler.

Supplementary information

  1. Supplementary information

  2. Dataset 1

  3. Dataset 2

  4. Dataset 3

  5. Dataset 4

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6