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Abstract
Bacteria and archaea are locked in a near-constant battle with their viral pathogens. Despite previous mechanistic
characterization of numerous prokaryotic defense strategies, the underlying ecological drivers of different strategies remain
largely unknown and predicting which species will take which strategies remains a challenge. Here, we focus on the CRISPR
immune strategy and develop a phylogenetically-corrected machine learning approach to build a predictive model of
CRISPR incidence using data on over 100 traits across over 2600 species. We discover a strong but hitherto-unknown
negative interaction between CRISPR and aerobicity, which we hypothesize may result from interference between CRISPR-
associated proteins and non-homologous end-joining DNA repair due to oxidative stress. Our predictive model also
quantitatively confirms previous observations of an association between CRISPR and temperature. Finally, we contrast the
environmental associations of different CRISPR system types (I, II, III) and restriction modification systems, all of which act
as intracellular immune systems.

Introduction

In the world of prokaryotes, infection by viruses poses a
constant threat to continued existence (e.g. [1]). In order to
evade viral predation, bacteria and archaea employ a range
of defense mechanisms that interfere with one or more
stages of the viral life-cycle. Modifications to the host’s cell
surface can prevent viral entry in the first place. Alter-
natively, if a virus is able to enter the host cell, then intra-
cellular immune systems, such as the clustered regularly
inter-spaced short palindromic repeat (CRISPR) adaptive
immune system or restriction-modification (RM) innate
immune systems, may degrade viral genetic material and
thus prevent replication [2–7]. Despite our increasingly in-
depth understanding of the mechanisms behind each of
these defenses, we lack a comprehensive understanding of

the factors that cause selection to favor one defense strategy
over another.

Here we focus on the CRISPR adaptive immune system,
which is a particularly interesting case study due to its
uneven distribution across prokaryotic taxa and environ-
ments. Previous analyses have shown that bacterial ther-
mophiles and archaea (both mesophilic and thermophilic)
frequently have CRISPR systems (~90%), whereas less than
half of mesophilic bacteria have CRISPR (~40%; [8–12]).
Environmental samples have revealed that many uncultured
bacterial lineages have few or no representatives with
CRISPR systems, and that the apparent lack of CRISPR in
these lineages may be linked to an obligately symbiotic
lifestyle and/or a highly reduced genome [13]. Nevertheless,
no systematic exploration of the ecological conditions that
favor the evolution and maintenance of CRISPR immunity
has been made. Additionally, though these previous results
appear broadly to be true [14], no explicit accounting has
been made for the potentially confounding effects of phy-
logeny in linking CRISPR incidence to particular traits.

What mechanisms might shape the distribution of
CRISPR systems across microbes? Some researchers have
emphasized the role of the local viral community, sug-
gesting that when viral diversity and abundance is high
CRISPR will fail, and thus be selected against [11, 12, 15].
Others have focused on the tradeoff between constitutively
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expressed defenses like membrane modification and indu-
cible defenses such as CRISPR [15]. Yet others have noted
that hot, and possibly other extreme environments can
constrain membrane evolution, necessitating the evolution
of intracellular defenses like CRISPR or RM systems
[16–18]. Many have observed that since CRISPR prevents
horizontal gene transfer, it may be selected against when
such transfers are beneficial (e.g. [19, 20]). More recently it
has been shown that at least one CRISPR-associated (Cas)
protein can suppress non-homologous end-joining (NHEJ)
DNA repair, which may lead to selection against having
CRISPR in some taxa [21]. In order to determine the rela-
tive importances of these different mechanisms, we must
first identify the habitats and microbial lifestyles associated
with CRISPR immunity.

Here we aim to expand on previous analyses of CRISPR
incidence in three ways: (1) by drastically expanding the
number of environmental and lifestyle traits considered as
predictors using the combination of a large prokaryotic trait
database and machine learning approaches, (2) by incor-
porating appropriate statistical corrections for non-
independence among taxa due to shared evolutionary his-
tory, which has not always been done, and (3) by simulta-
neously looking for patterns in RM systems, which will
help us untangle the difference between environments that
specifically favor CRISPR adaptive immunity versus DNA-
degrading intracellular immune systems in general (RM and
CRISPR).

Methods

Data

For a schematic outlining the entire data compilation pro-
cess Fig. S15. For a list of all visualizations, predictive
models, and statistical tests see Text S7.

Trait data

We downloaded the ProTraits microbial traits database [22],
which describes 424 traits in 3046 microbial species. These
traits include metabolic phenotypes, preferred habitats, and
specific behaviors like motility, among many others. Pro-
Traits was built using a semi-supervised text mining
approach, drawing from several online databases and the
literature. All traits are binary, with categorical traits split up
into dummy variables (e.g. oxygen requirement listed as
“aerobic”, “anaerobic”, and “facultative”). For each trait in
each species, two “confidence scores” in the range [0, 1],
are given, corresponding to the confidence of the text
mining approach that a particular species does (c+) or does
not (c−) have a particular trait.

We derived a single score (p) that captured the con-
fidences both that a species does and does not have a par-
ticular trait. Assuming we want our score to lay in the
interval [0,1], such a score should be zero when we are
completely confident that a species does not have a trait,
one when we are completely confident that a species has a
trait, and 0.5 when we are completely uncertain whether or
not a species has a trait (i.e., equally confident that it does
and does not have the trait). In the following formula, cþ

cþþc�
captures the relative confidence that a species does rather
than does not have a trait, which we then scale by the
overall maximal confidence (so that as overall confidence
decreases the score shrinks toward 0.5)

p ¼ 1
2
þ cþ

cþ þ c�
� 1
2

� �
�maxðcþ; c�Þ: ð1Þ

Many of the scores are missing for particular species-trait
combinations (18%), indicating situations in which the text
mining approach was unable to make a trait prediction. Our
downstream analyses do not tolerate missing data, and so
we imputed missing values using a random forest approach
(R package missForest; [23]). There is a set of summary
traits in the ProTraits dataset that were created de-novo
using a machine learning approach, as well as a number of
traits describing the growth substrates a particular species
can use. We removed both summary and substrate traits
from the dataset for increased interpretability (post-impu-
tation; 174 traits remaining).

We note that the authors of ProTraits also used genomic
data to help them infer trait scores, though we found that the
exclusion of this data does not affect our overall outcome
(Text S6 and Fig. S9).

Genomic data and immune systems

For each species listed in the ProTraits dataset we down-
loaded a single genome from NCBI’s RefSeq database, with
a preference for completely assembled reference or repre-
sentative genomes. See Text S2 and Fig. S21 for a con-
firmation that our results are robust to the resampling of
genomes. A number of species (333) had no genomes
available in RefSeq, or only had genomes that had been
suppressed since submission, and we discarded these spe-
cies from the ProTraits dataset.

CRISPR incidence in each genome was determined
using CRISPRDetect [24]. Additionally, data on the number
of CRISPR arrays found among all available RefSeq gen-
omes from a species were taken from Weissman et al. [25])

We downloaded the REBASE Gold database of experi-
mentally verified RM proteins and performed blastx sear-
ches of our genomes against this database [26, 27]. The
distribution of E-values we observed was bimodal, pro-
viding a natural cutoff (E < 10−19).
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To assess the ability of a microbe to perform non-
homologous end-joining (NHEJ) DNA repair we used
hmmsearch to search the HMM profile of the Ku protein
implicated in NHEJ against all RefSeq genomes (E-value
cutoff of 10−2/# genomes; Pfam PF02735; [28–30]). We
also used the annotated number of 16S rRNA genes in each
downloaded RefSeq genome as a proxy for growth rate and
the annotated cas3, cas9, and cas10 genes as indicators of
system type [31]. Where available as meta-data from NCBI,
we also downloaded the oxygen (1949 records) and tem-
perature requirements (1094 records) for the biosample
record associated with each RefSeq genome. The NCBI trait
data was used exclusively for building Fig. 4 and the ana-
lyses implicating Ku in the CRISPR versus oxygen
association.

Phylogeny

We used PhyloSift to locate and align a large set of marker
genes (738) found broadly across microbes, generally as a
single copy [32, 33]. Of these marker genes, 67 were found
in at least 500 of our genomes, and we limited our analysis
to just this set. Additionally, eight genomes had few (<20)
representatives of any marker genes and were excluded
from further analysis. We concatenated the alignments for
these 67 marker genes and used FastTree (general-time
reversible and CAT options [34]); to build a phylogeny
(Fig. S16). In order to analyze the effect of tree uncertainty
on our phylogenetic regressions, we bootstrapped our
dataset using seqboot and built a new tree from each
replicate.

Visualizing CRISPR/RM incidence

The size of the ProTraits dataset, both in terms of number of
species and number of traits, and the probable complicated
interactions between variables necessitate techniques that
can handle complex, large scale data. To visualize the
structure of microbial trait space and the distribution of
immune strategies within that space we made use of
two unsupervised machine learning techniques, principal
component analysis (PCA, prcomp() function in R) and
t-distributed stochastic neighbor embedding (t-SNE, per-
plexity= 50 and 5000 iterations using Rtsne() function in
Rtsne R package, otherwise default parameters, perplexity
varied in Fig. S17; [35, 36]).

PCA is a well-used technique in ecology that allows us to
reduce the dimensionality of a dataset for effective visua-
lization in two-dimensional space. Essentially, we collapse
our trait dataset into two or three composite traits and
observe whether species with a particular immune strategy
tend to vary systematically in terms of where they fall in this
“trait space”. A newer variant of this approach, t-SNE,

performs a similar process, but unlike PCA allows for non-
linear transformations of trait space. Therefore, local
structure and non-linear interactions between traits in high-
dimensional space are preserved by t-SNE but often not
captured by PCA [35]. On the other hand, t-SNE axes are
less easily interpreted precisely because they represent non-
linear rather than linear combinations of variables.

CRISPR/RM prediction from ProTraits

In order to predict the distribution of CRISPR and RM
systems, we applied a number of supervised machine
learning approaches to our dataset (see Fig. S18 for a flow-
chart describing the logic behind our model choices). In
order to obtain accurate estimates of model performance, we
initially set aside a portion of the data as a test set to be used
exclusively in model assessment after all models were
constructed (no fitting to this set). Because of the underlying
evolutionary relationships in the data, we chose a test set
that is phylogenetically independent of our training set.
Alternatively, if we were to draw a test set at random from
the microbial species we would risk underestimating our
prediction errors due to non-independence of the training
and test sets [37]. We chose the Proteobacteria as a test set
because they are well-represented in the dataset (1139 spe-
cies), ecologically diverse, and highly heterogeneous in
terms of CRISPR incidence (Fig. S19). The remaining
phyla were used to train our models.

First we built a series of linear models to classify species
by immune strategy (CRISPR present or absent) using
logistic regression. We had a large number of predictor
variables (100+), which necessitated a model-selection
approach in order to build a reasonably (and optimally)
sized model. We used a forward selection algorithm to
select the optimal set of predictors for each model size, with
mean squared error under cross validation (CV) as our
optimality criterion. We then selected model size by com-
paring BIC among these optimal models (i.e., selecting the
model with the lowest score).

Similar to choosing a test set, care must be taken when
performing CV on phylogenetically-structured data. CV
assumes that when the data is partitioned into folds, each of
these folds is independent of the others. If we draw species
at random from a phylogeny, this assumption is violated,
since the same hierarchical tree-structure will underlay each
fold. Therefore, it is better to perform “blocked” CV than
random CV [37], wherein folds are chosen based on
divergent groups on the tree (e.g. phyla). If each group has
diverged far enough in the past from the others, we can
consider these folds to be essentially evolutionarily inde-
pendent in terms of trait evolution (Fig. S20 for a con-
ceptual example). Therefore blocked CV is essentially a
non-parametric method (i.e., no explicit evolutionary
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model) to account for the non-independence arising from
the shared evolutionary history between species. We use
both random and blocked CV to build models. We clustered
the data into blocked folds using the pairwise distances
between tips on our tree (partitioning around mediods,
pam() function in R package cluster, five folds so that k= 5;
[38, 39]). A key assumption we make here is that our folds
can be taken as independent from one another (i.e. no effect
of shared evolutionary history). Since these clusters corre-
spond roughly to Phylum-level splits, and since CRISPR
and other prokaryotic immune systems are rapidly gained
and lost over evolutionary time [40], we are comfortable
making this assumption. We also repeated this analysis
using phylogenetic logistic regression to more formally
correct for phylogeny (R package phylolm; [41, 42]).
Phylogenetic logistic regression is a more powerful method
since it fits an explicit model of trait evolution, although it
relies on the assumption that traits evolve according to the
chosen model and can give misleading results otherwise.

Stepwise methods for variable selection, such as those
used above (i.e., forward subset selection), are simple,
computationally feasible, and easy to implement and inter-
pret, but perform poorly when variables in the dataset
covary with one another (i.e. multicollinearity; [43, 44]). As
it so happens, the trait data used here exhibit strong multi-
collinearity (R package mctest; [45, 46]). Therefore, we
sought out methods that deal well with this type of data,
specifically partial least squares regression (PLS; [43]).
Briefly, PLS combines features of PCA and linear regres-
sion to find the linear combination of predictors that max-
imizes the variance of the data in the space of outcome
variables. We use a variant of PLS, sparse partial least
squares discriminant analysis (sPLS-DA), where the
“sparse” refers to a built-in variable selection process in the
model-fitting algorithm and “discriminant analysis” refers to
the fact that we are focused on a classification problem (i.e.,
presence vs. absence of a particular immune strategy; we
used tune.splsda() perform five-fold cross validation, repe-
ated 50 times, to select the optimal number of components n
to include and splsda() to perform variable selection and
model selection simultaneously given n as an input; func-
tions in R package mixOmics; [47, 48]).

We also attempt to ameliorate the effects of shared
evolutionary history on our PLS model by using a philo-
sophically similar approach to our blocked CV method
above. Multivariate integrative (MINT) sPLS-DA is a var-
iant of PLS that can account for systematic variation
between groups of data when those groupings are known
(e.g., our phylogenetically blocked folds from above). It
was originally developed for use in situations where mul-
tiple experiments testing the same hypothesis could show
systematic biases from one another. In our case, the history
of prokaryotic evolution is our experiment, and deep

branching lineages are our replicates. We apply MINT
sPLS-DA to the data, using the same blocked folds we used
for CV (we used tune.mint.splsda() to perform five-fold
blocked cross validation to select the optimal number of
components n to include and mint.splsda() to perform
variable selection and model selection simultaneously given
n as an input; functions in R package mixOmics [48, 49]).

While regression provides easily interpretable trait
weights and is computational efficient, in order to capture
higher-order relationships between microbial traits we
needed more powerful methods. Random forests (RF) are
an attractive choice for our aims since they produce a
readily-interpretable output and can incorporate nonlinear
relationships between predictor variables [50]. We built an
RF classifier on our training data from 5000 trees (otherwise
default settings in R package randomForest so that the
number of variables tried at each split is the square root of
the total number of predictors [51]). To prevent fitting to
phylogeny, we took an ensemble approach which was
similar in philosophy to our blocked CV and MINT sPLS-
DA approaches above. Using the phylogenetically blocked
folds defined above we fit five individual forests, each
leaving out one of the five folds. We then weighted these
forests by their relative predictive ability on the respective
fold excluded during the fitting process (measured as
Cohen’s κ, [52]). We predicted using our ensemble of for-
ests by choosing the predicted outcome with the greatest
total weight.

Results

Below, we associate specific microbial immune strategies
with a diverse list of microbial traits. The traits span a range
of scales including aspects of habitat (e.g. “aquatic”),
morphology (e.g., “coccus”), and physiology (e.g., “het-
erotroph”) [22]. While this variety of scales poses a mod-
eling challenge to traditional approaches including linear
regression, machine learning algorithms provide an elegant
means of integrating such multi-scale traits in a statistically
rigorous predictive framework. In particular, we apply
algorithms that excel at identifying both linear and non-
linear combinations of traits with high predictive ability. For
a systematic comparison of the output of our predictive
models, discussed individually below, please see Fig. S1.

Visualizing CRISPR incidence in trait space

We visualized CRISPR incidence in microbial trait space
using two unsupervised algorithms to collapse high-
dimensional data (174 binary traits assessed in 2679 spe-
cies; see Methods) into fewer dimensions. Both methods
revealed clear differences between the placement of
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Table 1 Top 10 variable loadings on the first three principal components of the PCA performed on the microbial traits dataset, shown in Fig. 1 and
S2

PC1 Weight PC2 Weight PC3 Weight

ecosystemcategory_human −0.16 temperaturerange_mesophilic 0.19 growth_in_groups −0.24

specificecosystem_sediment 0.16 temperaturerange_thermophilic −0.19 gram_stain_positive −0.24

ecosystem_environmental 0.16 oxygenreq_strictanaero −0.19 cellarrangement_singles 0.21

knownhabitats_host −0.15 temperaturerange_hyperthermophilic −0.18 cellarrangement_filaments −0.20

ecosystemsubtype_intertidalzone 0.15 knownhabitats_hotspring −0.17 sporulation −0.20

ecosystem_hostassociated −0.15 exosystemtype_rhizoplane 0.17 energysource_chemoorganotroph −0.19

habitat_hostassociated −0.15 habitat_specialized −0.16 cellarrangement_clusters −0.18

habitat_freeliving 0.15 metabolism_methanogen −0.16 shape_tailed −0.18

ecosystemtype_digestivesystem −0.14 ecosystemcategory_plants 0.15 habitat_terrestrial −0.18

specificecosystem_fecal 0.14 ecosystemtype_thermalsprings −0.15 motility 0.17

These three components explain 17%, 10%, and 7% of the total variance, respectively
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CRISPR-encoding and CRISPR-lacking organisms in trait
space, despite the fact that no explicit information about
CRISPR was included.

First, principal components analysis (PCA) of the trait
data reveals several previously recognized patterns of
microbial lifestyle choice and CRISPR incidence. The first
principal component (17% variance explained) corresponds
broadly to an axis running from host-associated to free-
living microbes (Table 1), as observed by others [53, 54].
CRISPR-encoding and CRISPR-lacking microbes are not
differentiated along this axis (Fig. S2). We see CRISPR-
encoding and CRISPR-lacking organisms beginning to
separate along the second (10% variance explained) and
third (7% variance explained) principal components
(Fig. 1). The second component roughly represents a split
between extremophilic species typically living in low-
productivity environments and mesophilic, plant-associated
species (Table 1). Optimal growth temperature appears to be
an important predictor of CRISPR incidence, as previously
noted by others [11, 12]. The third component is not as easy
to interpret, but appears to indicate a spectrum from group-
living microbes (e.g. biofilms) to microbes that tend to live
as lone, motile cells (Table 1). That CRISPR is possibly
favored in group-living microbes is not entirely surprising,
considering the increased risk of viral outbreak at high
population density, and that some species up-regulate
CRISPR during biofilm formation [55].

Second, we visualized the trait data using t-distributed
stochastic neighbor embedding (t-SNE), which is a non-
linear method that can often detect more subtle relationships
in a dataset (Fig. 2[35]). This method reveals a clustering of

CRISPR-encoding microbes in trait space, further empha-
sizing that microbial immune strategy is influenced by
ecological conditions. Because the axes of t-SNE plots are
not easily interpretable, we mapped the top weighted traits
from the PCA above (Table 1) onto the t-SNE reduced data
(Fig. S3). Surprisingly, the most clearly aligned trait with
CRISPR-incidence is having an obligately anaerobic
metabolism.

Predicting CRISPR incidence

The above unsupervised approaches (i.e. uninformed about
the outcome variable, CRISPR) revealed that CRISPR
incidence appears to be impacted by other microbial traits.
In order to more formally characterize these patterns, and
exploit them for their predictive ability, we applied several
supervised prediction methods (i.e. trained with information
about CRISPR incidence) methods to the complete trait
dataset.

Unlike traditional statistical techniques focused on
assigning p-values to particular input variables, with our
machine learning approach we assessed model performance
in terms of predictive ability. For unbiased error estimates,
we chose an independent “test” set to withhold during the
model fitting process and to be used only during model
assessment. We consider effective prediction of CRISPR
incidence in this independent dataset as support that our
model encodes real information about how different
microbial traits influence the ecological advantages of the
CRISPR system. We then examined the structure of these
models, and which variables play an outsize role in their

Table 2 Predictive ability of
models of CRISPR incidence on
the Proteobacteria test set

Phylogenetic correction Performance

Model type Non-
parametric

Parametric Model size Accuracy (%) κ TPR

Log. Reg. No No 18 66.1 0.152 0.233

Log. Reg. Yes No 9 67.5 0.168 0.209

Log. Reg. No Yes 10 67.7 0.188 0.246

Log. Reg. Yes Yes 6 67.4 0.160 0.294

sPLS-DA No No [7, 159, 4, 169, 50]
(5 comp.)

68.4 0.190 0.219

MINT sPLS-DA Yes No 32 (1 comp.) 60.5 0.173 0.538

RF No No – 68.8 0.241 0.327

RF Ensemble Yes No – 68.6 0.240 0.332

Model size refers to number of variables chosen overall, or per-component in the case of the partial least
squares models. Accuracy is measured as the total number of correct predictions over the total attempted and
κ is Cohen’s κ, which corrects for uneven class counts that can inflate accuracy even if discriminative ability
is low. Roughly, κ expresses how much better the model predicts the data than one that simply knows the
frequency of different classes (κ= 0 being no better, κ > 0 indicating improved predictive ability). The true
positive rate (TPR) is the number of correctly identified genomes having CRISPR divided by the total
number of genomes having CRISPR in the test set. The non-parametric correction for phylogeny refers to
our phylogenetically blocked folds, whereas the parametric correction refers to our use of phylogenetic
logistic regression [41]. Observe that the RF model appears to perform best at prediction in general
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performance, in order to select candidate traits associated
with CRISPR incidence. Importantly, we chose the Pro-
teobacteria as our test set because they represent a phylo-
genetically independent group from our training set (see
Methods).

All models we implemented showed improved predictive
ability over a null model only accounting for the relative
frequency of CRISPR among species (Cohen’s κ > 0;
Table 2), indicating that there is some ecological signal in
CRISPR incidence, though overall predictive performance
was not overwhelming. Of these models the random forest
(RF) model ranked highest, and did reasonably well (κ=
0.241). The percent incidences of CRISPR in the training
(56%) and test sets (36%) are considerably different, which
may have been difficult for these models to overcome. It is
also possible that the Proteobacteria vary systematically
from other phyla in terms of ecology and immune strategy,
making them a particularly difficult (and thus conservative)
test set. Nevertheless, the trait data clearly held some
information about CRISPR incidence. We will primarily
focus here on the RF model since it performed best, but see
Text S1 for further discussion of the performance of our
other models.

While each of our models revealed a distinct set of top
predictors of CRISPR incidence, there was broad agreement
overall (Table S1, Fig. 3, S4 and S5). Keywords indicating
a thermophilic lifestyle (e.g. thermophilic, hot springs,
hyperthermophilic, thermal springs) appeared across all
models as either the most important or second most
important predictor of CRISPR incidence. Keywords

relating to oxygen requirement (e.g. anaerobic, aerobic) also
appeared across nearly all models as top predictors,
excluding only the two worst performing models
(Table S1). In the case of the RF and sPLS-DA models,
oxygen requirement was always one of the top three pre-
dictors, and often the top predictor of CRISPR incidence
(Fig. 3, S4, S5 and S6). Other predictors that frequently
appeared across model types included termite hosts (hos-
t_insectstermites), the degradation of polycyclic aromatic
hydrocarbons (PAH; metabolism_pahdegrading), fresh-
water habitat (knownhabitats_freshwater), and growth as
filaments (shape_filamentous). In general, the sPLS-DA,
MINT sPLS-DA, RF, and RF ensemble models agreed with
each other rather closely. Finally, we built an RF model
using only traits related to temperature range, oxygen
requirement, and thermophilic lifestyle (hot springs, thermal
springs, hydrothermal vents). This temperature- and
oxygen-only RF model outperformed all non-RF models (κ
= 0.191). These traits alone appear to hold the majority of
information about CRISPR incidence in the dataset.

As an additional check that these candidate traits versus
CRISPR associations are real and not due to some irregu-
larity in our dataset, we downloaded meta-data available
from NCBI. We were able to reproduce the result that
thermophiles strongly prefer CRISPR (92% with CRISPR
as opposed to 49% in mesophiles, Fig. 4a [11, 12]). Though
we have too few genomes categorized as psychrotolerant
(35) or psychrophilic (14) to make any strong claims, these
genomes seem to lack CRISPR most of the time, suggesting
that CRISPR incidence decreases continuously as
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temperaturerange_mesophilic
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Fig. 3 Importance of top ten predictors in the RF model of CRISPR
incidence using the ProTraits predictors. The mean decrease in accu-
racy measures the reduction in model accuracy when a variable is
randomly permuted in the dataset. The Gini impurity index is a
common score used to measure the performance of decision-tree based
models (e.g. RF models). Briefly, when a decision tree is built the Gini
impurity index measures how well separated the different classes of
outcome variable are at the terminal nodes of the tree (i.e., how “pure”
each of the nodes is). The mean decrease in Gini impurity measures the

estimated reduction in impurity (increase in purity) when a given
variable is added to the model. These importance scores are useful to
rank variables as candidates for further study, but in themselves should
not be taken as statistical support or effect sizes similar to those seen in
linear regression. RF models may include non-linear combinations of
variables, and therefore the contribution of any one variable is not as
easily interpreted as with a linear model, a drawback of this approach.
See Fig. S7 for all predictor importances
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environmental temperatures decrease [10]. We were also
able to confirm that, in agreement with our visualizations
and predictive modeling, aerobes disfavor CRISPR immu-
nity (34% with CRISPR) while anaerobes favor CRISPR
immunity (67% with CRISPR, Fig. 4b). This is true inde-
pendent of growth temperature, with mesophiles showing a
similarly strong oxygen-CRISPR link (Fig. S8). Overall,
both oxygen (χ2= 254.04, p < 2.2 × 10−16, categories with
<10 observations excluded) and temperature (χ2= 98.86, p
< 2.2 × 10−16, categories with <10 observations excluded)
had significant effects on incidence (for breakdown see
Fig. 4).

Following previous suggestions that CRISPR incidence
might be negatively associated with host population density
and growth rate [11, 12, 15], and that this could be driving
the link between CRISPR incidence and optimal tempera-
ture range, we sought to determine if growth rate was a

major determinant of CRISPR incidence. The number of
16S rRNA genes in a genome is an oft used, if imperfect,
proxy for microbial growth rates and an indicator of
copiotrophic lifestyle in general [56–58]. While CRISPR-
encoding genomes had slightly more 16S genes than
CRISPR-lacking ones (3.1 and 2.9 on average, respec-
tively), the 16S rRNA gene count in a genome was not a
significant predictor of CRISPR incidence (logistic regres-
sion, p= 0.05248), although when correcting for phylogeny
16S gene count does seem to be significantly positively
associated with CRISPR incidence (phylogenetic logistic
regression, m= 0.06277, p = 6.651 × 10−5), the opposite of
what we would expect if growth rate were driving the
CRISPR-temperature relationship (though the effect was
not consistent across bootstrapped trees; Table S2).

As a secondary confirmation of the link between oxygen
and CRISPR, we examined metagenomic data from the

2391114 35 9213
0

25

50

75

100

psychrophile psychrotolerant mesophile thermotolerant thermophile hyperthermophile
Temperature Range

Pe
rc

en
ta

ge
 W

ith
 C

R
IS

P
R

(a)

1015 463232 20 3232 150
0

25

50

75

obligate aerobe
aerobe

facultative

facultative
 anaerobe

microaerophilic

anaerobe

obligate anaerobe

Oxygen Requirement

Pe
rc

en
ta

ge
 W

ith
 C

R
IS

P
R

(b)

495520 43033
0

25

50

75

100

aerobe anaerobe
Oxygen Requirement

Pe
rc

en
ta

ge
 W

ith
 C

R
IS

P
R

Ku

Ku

No Ku

(c)

Fig. 4 Temperature range and oxygen requirement are strong pre-
dictors of CRISPR incidence. Trait data taken from NCBI. a Ther-
mophiles strongly favor CRISPR immunity, while mesophiles appear
ambivalent. b Anaerobes favor CRISPR immunity, while aerobes tend
to lack CRISPR and facultative species fall somewhere in between. c
CRISPR and the Ku protein are negatively associated in aerobes but

not anaerobes. Error bars are 99% binomial confidence intervals (non-
overlapping intervals can be taken as evidence for a statistically sig-
nificant difference at the p < 0.01 level). Total number of genomes in
each trait category shown at the bottom of each bar. Categories
represented by fewer than 10 genomes were omitted
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Tara Oceans Project [59], and found that across a large set
of ocean metagenome samples CRISPR prevalence was
inversely related to environmental oxygen concentration
(Text S3 and Fig. S22).

We also attempted to predict the number of CRISPR
arrays in a genome given that that genome had at least one
array, though this attempt was entirely unsuccessful
(Text S4).

Predicting CRISPR type

Each CRISPR system type is associated with a signature cas
targeting gene unique to that type (cas3, cas9, and cas10 for
type I, II, and III systems, respectively). There are many
species in the dataset with cas3 (605), but relatively few
with cas9 (160) and cas10 (222), suggesting that the traits
correlated with CRISPR incidence probably correspond
primarily to type I systems (the dominance of type I systems
has been noted previously [60]). We mapped the incidence

of each of these genes onto the PCA we constructed earlier
(see Fig. S2 and Table 1), and found that cas9 separates
from cas3 and cas10 along the first component (Fig. 5a).
Broadly, this indicates that type II systems are more com-
monly found in host-associated than free-living microbes,
the opposite of the other two system types.

We built an RF model of cas9 incidence, with the Pro-
teobacteria as the test set. Because our training set had so
few cases of cas9 incidence (10% of set), we performed
stratified sampling during the RF construction process to
ensure representative samples of organisms with and with-
out cas9. Surprisingly, despite the extremely small number
of organisms with cas9 in the training and test sets (160 and
58, respectively), this model was accurately able to predict
type II CRISPR incidence and had some discriminative
ability (Accuracy= 93.0%, κ= 0.164), though it missed
many of the positive cases (TPR= 0.172). This model also
suggested that a host-associated lifestyle seems to be a
major factor influencing the incidence of type II systems,
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Fig. 5 Type II CRISPR systems
appear to be more prevalent in
host-associated microbes. a The
cas targeting genes associated
with type I, type II, and type III
systems (cas3, cas9, and cas10,
respectively) mapped onto the
PCA in Fig. S2. Organisms
without any targeting genes
were omitted from the plot for
readability. Recall from Table 1
that PC1 roughly corresponds to
a spectrum running from host-
associated to free-living
microbes. b A variable
importance plot from an RF
model of cas9 incidence.
Observe that keywords related to
a host-associated lifestyle appear
many times
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with many of the top-ranking variables in terms of impor-
tance corresponding to keywords having to do with the split
between host-associated and free-living organisms
(Fig. 5b).

NHEJ, CRISPR, and oxygen

Recently, Bernheim et al. [21] demonstrated that the type II-
A CRISPR system interferes with the NHEJ DNA repair
pathway, leading to an inverse relationship between the
presence of type II-A systems and the NHEJ pathway in
microbial genomes. We hypothesized that this negative
relationship between CRISPR and NHEJ might be more
widespread across system types. We also hypothesized that
this could explain the negative relationship between
CRISPR and aerobicity we observe, since reactive oxygen
species produced during aerobic respiration can induce
double-strand breaks, thus selecting for the presence of
NHEJ repair in aerobic organisms [61, 62]. We use the
presence of Ku protein as a proxy for the NHEJ pathway,
since this protein is central to the pathway.

There was a clear interaction between the presence of Ku
and aerobicity on the incidence of CRISPR (Fig. 4c, using
aerobicity meta-data from NCBI for this and below ana-
lyses). Using our full set of RefSeq genomes, we found a
weak negative association between CRISPR and Ku inci-
dence overall (Pearson’s correlation, ρ=−0.012; χ2=
15.015, p= 1.067 × 10−4), but restricting only to aerobes
the negative association between Ku and CRISPR was
much stronger (Pearson’s correlation, ρ=−0.250, p=
9.109 × 10−16), whereas in anaerobes it was nonexistent (ρ
=−0.023, p= 0.704). This pattern was consistent when
correcting for phylogeny (Text S5 and Table S4), and was
true for both type I and III systems individually, though was
not significant for type II systems of which there were fewer
in the dataset Fig. S12.

Similar to our CRISPR analysis, we used PCA and an RF
model to find if and where Ku-possessing organisms clus-
tered in trait space. We found that the NHEJ pathway
clusters strongly in trait space (Fig. S10), and is favored in
soil-dwelling, spore-forming, aerobic microbes, consistent
with expectations of where NHEJ will be most important
[61, 62] (Fig. S11).

Predicting RM incidence

So far, our analyses have not distinguished if temperature
and oxygen predict whether a microbe has an intracellular
immune system that degrades DNA in general, or whether
these traits are specific to CRISPR adaptive immunity. We
tested these two possibilities by building an RF model of
restriction enzyme incidence using the same stratified
sampling approach that we used for CRISPR system type.

This model showed decent predictive ability (κ= 0.317).
However, the correlation between variable importance
scores for the CRISPR and restriction enzyme RF models
was low (Fig. 3 vs Fig. S14; Pearson’s correlation, ρ=
0.169 for mean decrease in Gini Impurity Index, ρ=
−0.0487 for mean decrease in accuracy; also Fig. S1). This
result implies that RM systems have different traits deter-
mining their incidence than do CRISPR systems (also note
PCA plot, Fig. S13). When we directly tested for an asso-
ciation with temperature and oxygen we also found that the
number of restriction enzymes was, unlike CRISPR inci-
dence, negatively associated with an anaerobic lifestyle
(m=−4.53877, p= 2 × 10−16, phylogenetic linear regres-
sion), and only marginally significantly associated with a
thermophilic lifestyle (m= 1.51063, p= 0.03779, phylo-
genetic linear regression). These results were consistent
across bootstrapped trees (Table S3).

Discussion

We detected a clear association between microbial traits and
the incidence of the CRISPR immune system across spe-
cies. We found that two predictors were especially impor-
tant for predicting CRISPR incidence, thermophilicity and
aerobicity. The links between these two traits and CRISPR
were confirmed with annotations from NCBI, and in the
case of aerobicity with metagenomic data from the Tara
Oceans Project (Text S3 [59]). The relationship between
temperature and CRISPR is well known [8–10], but we lend
further support here by formally correcting for shared
evolutionary history in our statistical analyses using both
parametric and non-parametric approaches.

Previous theoretical models predict that CRISPR will be
selected against in environments with dense and diverse
viral communities [11, 12], since hosts are less likely to
repeatedly encounter the same virus in such environments.
These models in turn predict that in high-density host
communities CRISPR will not be adaptive, since high host
density leads to high viral diversity [11, 12], and that this
might explain why potentially slow-growing thermophiles
favor CRISPR immunity (as opposed to copiotrophic
mesophiles). Our results show a marginal positive associa-
tion between growth rate and CRISPR incidence, and that
group-living microbes seem to favor CRISPR immunity,
calling these prior viral diversity and density based expla-
nations into question. Additionally, our analysis suggests
that psychrophilic and psychrotolerant species disfavor
CRISPR more strongly than mesophiles, which is not
clearly explained or predicted by hypotheses based on host
density.

We suspect that another factor could be affecting the
degree of viral diversity that a host encounters, so that viral
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diversity is high in colder environments and low in hotter
ones. Differences in dispersal limitation among viruses
could lead to lower immigration rates in hot environments,
as viral decay rates may be low at lower temperatures and
high at higher temperatures [63], though this is highly
speculative. We note that host dispersal rates are unlikely to
affect the viral diversity seen by a host on average unless
most of the host population is dispersing, an unrealistic
expectation.

Surprisingly, we find that oxygen requirement appears to
be just as important of a predictor of CRISPR incidence as
temperature, and that this pattern is independent of any
effect of temperature. Possibly, this association can be
explained by inhibitory effects of CRISPR on NHEJ DNA
repair. Type II-A CRISPR systems have been shown to
directly interfere with the action of the NHEJ DNA repair
pathway in prokaryotes [21]. Reactive oxygen species are
produced during aerobic metabolism and can cause DNA
damage [61], making NHEJ potentially particularly impor-
tant in aerobes. Thus, if CRISPR interferes with the NHEJ
repair pathway, and this pathway is important in aerobes,
we would expect CRISPR incidence to be inversely related
to the presence of oxygen. Our data showed a clear inter-
action between aerobicity and the NHEJ machinery in
determining CRISPR incidence that suggests that the link
between CRISPR and aerobicity may be mediated by the
presence of the NHEJ pathway (Fig. 4c). The Cas proteins
share many structural similarities with proteins implicated
in DNA repair, and in some cases prefer to associate with
DSBs, and it is perhaps unsurprising that they appear to
broadly inhibit the NHEJ pathway whose proteins may be
competing for substrate [64]. Nevertheless, the evidence
supporting this hypothesis is only preliminary. The negative
interaction between CRISPR and Ku should be experi-
mentally confirmed in type I and type III systems. Addi-
tionally, our repair versus immunity tradeoff hypothesis
could be tested using an experimental evolution setup in
which organisms with CRISPR are exposed to DNA
damage.

The link that we propose between aerobic metabolism
and NHEJ repair is somewhat tenuous. Reactive oxygen
species are thought to directly produce single strand breaks
which are most often converted to double-strand breaks
during cell growth, the precise time when repair may be
possible via homologous recombination due to the presence
of multiple genome copies. That being said, reactive oxygen
species can lead to double-strand breaks during stationary
phase when damage is spatially clustered on the genome
[65, 66], when cells experience specific types of starvation
that lead to vulnerable single-stranded DNA gaps [67, 68],
or when ROS occurs in conjunction with other damaging
agents including cyanide [69] and irradiation [70–72].
Furthermore, while NHEJ certainly will be important during

stationary phase, its relevance during growth is unknown.
The pathway itself does appear to be more prevalent in
environments with oxygen (Figs. S10 and S11). Never-
theless, we have no ability to assess causality presently, and
the strong interaction between Ku and aerobicity on
CRISPR incidence we observed could be the result of some
other, as yet unrevealed driver. For example, NHEJ is
thought to be important for desiccation resistance [73, 74],
and many organisms facing this specific threat are likely to
be aerobic.

As an alternative to our NHEJ hypothesis, could patterns
in viral diversity explain the relationship between aerobicity
and CRISPR incidence? The viral-decay hypothesis we
proposed to explain the enrichment of thermophiles with
CRISPR does not make sense in this context, since we
might expect viruses to decay more readily in the presence
of oxygen rather than under anoxic conditions. It is unclear
to us why the viruses of anaerobes would be more dispersal
limited. Nevertheless, if the viral communities infecting
anaerobes were shown to be less diverse than those
infecting aerobes this could also explain the increased
incidence of CRISPR among these organisms.

We found no strong link between the incidence or
number of RM systems on a genome and a thermophilic or
anaerobic lifestyle, suggesting that the major drivers of
CRISPR incidence are indeed CRISPR specific, consistent
with our viral diversity and NHEJ-inhibition hypotheses.

We were also able to show that CRISPR types vary in in
terms of the environments they are found in, with type II
systems appearing primarily in host-associated microbes.
This phenomenon could be due in part to phylogenetic
biases in the dataset, but our use of a phylogenetically
independent test set lends credence to the overall trend. We
have no clear mechanistic understanding of why cas9
containing microbes tend to favor a host-associated life-
style. Nevertheless this result may have practical implica-
tions for CRISPR genome editing, since it has recently been
found that humans frequently have a preexisting adaptive
immune response to variants of the Cas9 protein [75]. We
note that type I and III systems do not appear to have a
strong link to host-associated lifestyles.

While our dataset spanned a broad phylogenetic range
(with some notable exceptions such as the Candidate Phyla
Radiation [76]), we had a limited number of microbial traits,
which may have obscured some important CRISPR-trait
associations. With the number of microbial genomes in
public databases constantly expanding, so too should efforts
to provide metadata about each of the organisms repre-
sented by those genomes. At least part of the problem lies in
the lack of a universally accepted controlled vocabulary for
microbial traits (similar to that provided by the Gene
Ontology Consortium [77]), although some admirable
attempts have been made [78, 79]. This would both
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facilitate the construction of more expansive trait databases,
and would help deal with the issue of comparing traits that
span many different scales.

The ecological drivers of microbial immune strategy are
likely as diverse as the ever-increasing number of known
prokaryotic defense systems [80, 81]. The exploratory,
database-centered approach we take here can be com-
plemented by targeted studies examining shifts in immune
strategy across environmental gradients (e.g., Text S3) to
provide a more fine-grained understanding of how micro-
bial populations adapt to their local pathogenic and abiotic
environments. Ultimately, experimental manipulations will
provide the power to fully validate proposed mechanisms
behind ecological patterns in immune strategy.
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