Article | Published:

Temperature and soil moisture control microbial community composition in an arctic–alpine ecosystem along elevational and micro-topographic gradients

The ISME Journal (2019) | Download Citation


Microbial communities in arctic–alpine soils show biogeographic patterns related to elevation, but the effect of fine-scale heterogeneity and possibly related temperature and soil moisture regimes remains unclear. We collected soil samples from different micro-topographic positions and elevational levels in two mountain regions of the Scandes, Central Norway. Microbial community composition was characterized by 16S rRNA gene amplicon sequencing and was dependent on micro-topography and elevation. Underlying environmental drivers were identified by integration of microbial community data with a comprehensive set of site-specific long-term recorded temperature and soil moisture data. Partial least square regression analysis allowed the description of ecological response patterns and the identification of the important environmental drivers for each taxonomic group. This demonstrated for the first time that taxa responding to elevation were indeed most strongly defined by temperature, rather than by other environmental factors. Micro-topography affected taxa were primarily controlled by temperature and soil moisture. In general, 5-year datasets had higher explanatory power than 1-year datasets, indicating that the microbial community composition is dependent on long-term developments of near-ground temperature and soil moisture regimes and possesses a certain resilience, which is in agreement with an often observed delayed response in global warming studies in arctic–alpine regions.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Arctic Monitoring and Assessment Programme. AMAP 2009 update on selected climate issues of concern (observations, short-lived climate forcers, arctic carbon cycle, predictive capability). Oslo: AMAP; 2009.

  2. 2.

    Hein N, Pape R, Finch O-D, Löffler J. Alpine activity patterns of Mitopus morio (Fabricius, 1779) are induced by variations in temperature and humidity at different scales in central Norway. J Mt Sci. 2014;11:644–55.

  3. 3.

    Körner C. Alpine plant life: functional plant ecology of high mountain ecosystems. 2nd ed. Berlin, Heidelberg: Springer; 2003. P.

  4. 4.

    Löffler UCM, Cypionka H, Löffler J. Soil microbial activity along an arctic-alpine altitudinal gradient from a seasonal perspective. Eur J Soil Sci. 2008;59:842–54.

  5. 5.

    Lanzén A, Epelde L, Blanco F, Martín I, Artetxe U, Garbisu C. Multi-targeted metagenetic analysis of the influence of climate and environmental parameters on soil microbial communities along an elevational gradient. Sci Rep. 2016;6:28257.

  6. 6.

    Zhang L-M, Wang M, Prosser JI, Zheng Y-M, He J-Z. Altitude ammonia-oxidizing bacteria and archaea in soils of Mount Everest. FEMS Microbiol Ecol. 2009;70:208–17.

  7. 7.

    Fierer N, McCain CM, Meir P, Zimmermann M, Rapp JM, Silman MR, et al. Microbes do not follow the elevational diversity patterns of plants and animals. Ecology. 2011;92:797–804.

  8. 8.

    Peay KG, von Sperber C, Cardarelli E, Toju H, Francis CA, Chadwick OA, et al. Convergence and contrast in the community structure of Bacteria, Fungi and Archaea along a tropical elevation– climate gradient. FEMS Microbiol Ecol. 2017;93:fix045.

  9. 9.

    Shen C, Ni Y, Liang W, Wang J, Chu H. Distinct soil bacterial communities along a small-scale elevational gradient in alpine tundra. Front Microbiol. 2015;6:582.

  10. 10.

    Wu J, Anderson BJ, Buckley HL, Lewis G, Lear G. Aspect has a greater impact on alpine soil bacterial community structure than elevation. FEMS Microbiol Ecol. 2017;93:1–11.

  11. 11.

    Shen C, Xiong J, Zhang H, Feng Y, Lin X, Li X, et al. Soil pH drives the spatial distribution of bacterial communities along elevation on Changbai Mountain. Soil Biol Biochem. 2013;57:204–11.

  12. 12.

    Fierer N, Jackson RB. The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci USA. 2006;103:626–31.

  13. 13.

    Wang J, Pan F, Soininen J, Heino J, Shen J. Nutrient enrichment modifies temperature-biodiversity relationships in large-scale field experiments. Nat Commun. 2016;7:13960.

  14. 14.

    Körner C, Hiltbrunner E. The 90 ways to describe plant temperature. Perspect Plant Ecol Evol Syst. 2018;30:16–21.

  15. 15.

    Pape R, Wundram D, Löffler J. Modelling near-surface temperature conditions in high mountain environments: an appraisal. Clim Res. 2009;39:99–109.

  16. 16.

    Scherrer D, Körner C. Topographically controlled thermal-habitat differentiation buffers alpine plant diversity against climate warming. J Biogeogr. 2011;38:406–16.

  17. 17.

    Graae BJ, Vandvik V, Armbruster WS, Eiserhardt WL, Svenning J-C, Hylander K, et al. Stay or go – how topographic complexity influences alpine plant population and community responses to climate change. Perspect Plant Ecol Evol Syst. 2018;30:41–50.

  18. 18.

    Wang JY. A critique of the heat unit approach to plant response studies. Ecology. 1960;41:785–90.

  19. 19.

    Thuiller W, Lavorel S, Araújo MB, Sykes MT, Prentice IC. Climate change threats to plant diversity in Europe. Proc Natl Acad Sci. 2005;102:8245–50.

  20. 20.

    Löffler J. Micro-climatic determination of vegetation patterns along topographical, altitudinal, and oceanic-continental gradients in the high mountains of Norway. Erdkunde. 2003;57:232–49.

  21. 21.

    Beckers N, Hein N, Vanselow KA, Löffler J. Effects of microclimatic thresholds on the activity-abundance and distribution patterns of alpine Carabidae species. Ann Zool Fenn. 2018;55:25–44.

  22. 22.

    Löffler J, Pape R, Wundram D. The climatologic significance of topography, altitude and region in high mountains—a survey of oceanic-continental differentiations of the scandes. Erdkunde. 2006;60:15–24.

  23. 23.

    Stewart KJ, Coxson D, Siciliano SD. Small-scale spatial patterns in N2-fixation and nutrient availability in an arctic hummock-hollow ecosystem. Soil Biol Biochem. 2011;43:133–40.

  24. 24.

    Shi Y, Grogan P, Sun H, Xiong J, Yang Y, Zhou J, et al. Multi-scale variability analysis reveals the importance of spatial distance in shaping Arctic soil microbial functional communities. Soil Biol Biochem. 2015;86:126–34.

  25. 25.

    Shi Y, Xiang X, Shen C, Chu H, Neufeld JD, Walker VK, et al. Vegetation-associated impacts on arctic tundra bacterial and microeukaryotic communities. Appl Environ Microbiol. 2015;81:492–501.

  26. 26.

    Walker JKM, Egger KN, Henry GHR. Long-term experimental warming alters nitrogen-cycling communities but site factors remain the primary drivers of community structure in high arctic tundra soils. ISME J. 2008;2:982–95.

  27. 27.

    Chu H, Neufeld JD, Walker VK, Grogan P. The influence of vegetation type on the dominant soil bacteria, archaea, and fungi in a low Arctic tundra landscape. Soil Sci Soc Am J. 2011;75:1756–65.

  28. 28.

    Frey B, Rime T, Phillips M, Stierli B, Hajdas I, Widmer F, et al. Microbial diversity in European alpine permafrost and active layers. FEMS Microbiol Ecol. 2016;92:fiw018.

  29. 29.

    Löffler J. Snow cover dynamics, soil moisture variability and vegetation ecology in high mountain catchments of central Norway. Hydrol Process. 2005;19:2385–405.

  30. 30.

    Dahl E. Zonation in arctic and alpine tundra and fellfield ecobiomes. Ecosystem theory application. London, Chichester: Wiley; 1986.

  31. 31.

    Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 2012;6:1621–4.

  32. 32.

    Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335–6.

  33. 33.

    Vázquez-Baeza Y, Pirrung M, Gonzalez A, Knight R. EMPeror: a tool for visualizing high-throughput microbial community data. Gigascience. 2013;2:16.

  34. 34.

    Lozupone C, Knight R. UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol. 2005;71:8228–35.

  35. 35.

    R Core Team. R: a language and environment for statistical computing [Computer software]. Vienna: R Foundation for Statistical Computing. 2016

  36. 36.

    Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, et al. Vegan: Community Ecology Package. R package version 2.0-10. 2013.

  37. 37.

    Parks DH, Tyson GW, Hugenholtz P, Beiko RG. STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics. 2014;30:btu494-.

  38. 38.

    Carrascal LM, Galván I, Gordo O. Partial least squares regression as an alternative to current regression methods used in ecology. Oikos. 2009;118:681–90.

  39. 39.

    Geladi P, Kowalski BR. Partial least-squares regression: a tutorial. Anal Chim Acta. 1986;185:1–17.

  40. 40.

    Frank IE, Friedman JH. A statistical view of some chemometrics regression tools. Technometrics. 1993;35:109–35.

  41. 41.

    Wold S, Sjöström M, Eriksson L. PLS-regression: a basic tool of chemometrics. Chemom Intell Lab Syst. 2001;58:109–30.

  42. 42.

    Abdi H. Partial least square regression (PLS regression). In: Salkind NJ, editor. Encyclopedia of measurement and statistics. Thousand Oaks, CA: Sage; 2007.

  43. 43.

    Mehmood T, Liland KH, Snipen L, Sæbø S. A review of variable selection methods in partial least squares regression. Chemom Intell Lab Syst. 2012;118:62–69.

  44. 44.

    Wold S, Johansson E, Cocchi M. PLS—partial least squares projections to latent structures. In: Kubinyi H, editor. 3D QSAR in Drug Design. KLUWER ESCOM Science Publisher; Leiden 1993.

  45. 45.

    Rajalahti T, Arneberg R, Kroksveen AC, Berle M, Myhr K-M, Kvalheim OM. Discriminating variable test and selectivity ratio plot: quantitative tools for interpretation and variable (biomarker) selection in complex spectral or chromatographic profiles. Anal Chem. 2009;81:2581–90.

  46. 46.

    Farrés M, Platikanov S, Tsakovski S, Tauler R. Comparison of the variable importance in projection (VIP) and of the selectivity ratio (SR) methods for variable selection and interpretation. J Chemom. 2015;29:528–36.

  47. 47.

    Tran TN, Afanador NL, Buydens LMC, Blanchet L. Interpretation of variable importance in partial least squares with significance multivariate correlation (sMC). Chemom Intell Lab Syst. 2014;138:153–60.

  48. 48.

    Gloor GB, Macklaim JM, Pawlowsky-Glahn V, Egozcue JJ. Microbiome datasets are compositional: and this is not optional. Front Microbiol. 2017;8:2224.

  49. 49.

    De Jong S. SIMPLS: an alternative approach to partial least squares regression. Chemom Intell Lab Syst. 1993;18:251–63.

  50. 50.

    Kucheryavskiy S. Mdatools: multivariate data analysis for chemometrics. R package version 0.7.0. 2015.

  51. 51.

    Wold S. Cross-validatory estimation of the number of components in factor and principal components models. Technometrics. 1978;20:397–405.

  52. 52.

    Ferrari BC, Bissett A, Snape I, van Dorst J, Palmer AS, Ji M, et al. Geological connectivity drives microbial community structure and connectivity in polar, terrestrial ecosystems. Environ Microbiol. 2016;18:1834–49.

  53. 53.

    Lazzaro A, Hilfiker D, Zeyer J. Structures of microbial communities in alpine soils: seasonal and elevational effects. Front Microbiol. 2015;6:1–13.

  54. 54.

    Weber KA, Urrutia MM, Churchill PF, Kukkadapu RK, Roden EE. Anaerobic redox cycling of iron by freshwater sediment microorganisms. Environ Microbiol. 2006;8:100–13.

  55. 55.

    Frindte K, Allgaier M, Grossart H-P, Eckert W. Redox stability regulates community structure of active microbes at the sediment-water interface. Environ Microbiol Rep. 2016;8:798–804.

  56. 56.

    Randle-Boggis RJ, Ashton PD, Helgason T. Increasing flooding frequency alters soil microbial communities and functions under laboratory conditions. Microbiologyopen. 2017;7:e00548.

  57. 57.

    Lauber CL, Hamady M, Knight R, Fierer N. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl Environ Microbiol. 2009;75:5111–20.

  58. 58.

    Pape R, Löffler J. Determinants of arctic-alpine pasture resources: the need for a spatially and functionally fine-scaled perspective. Geogr Ann Ser A, Phys Geogr. 2017;99:353–70.

  59. 59.

    Tsilimigras MCB, Fodor AA. Compositional data analysis of the microbiome: fundamentals, tools, and challenges. Ann Epidemiol. 2016;26:330–5.

  60. 60.

    McMahon SK, Wallenstein MD, Schimel JP. A cross-seasonal comparison of active and total bacterial community composition in Arctic tundra soil using bromodeoxyuridine labeling. Soil Biol Biochem. 2011;43:287–95.

  61. 61.

    Buckeridge KM, Banerjee S, Siciliano SD, Grogan P. The seasonal pattern of soil microbial community structure in mesic low arctic tundra. Soil Biol Biochem. 2013;65:338–47.

  62. 62.

    Allison SD, Martiny JBH. Resistance, resilience, and redundancy in microbial communities. Proc Natl Acad Sci USA 2008;105:11512–9.

  63. 63.

    Lamb EG, Han S, Lanoil BD, Henry GHR, Brummell ME, Banerjee S. et al. A High Arctic soil ecosystem resists long-term environmental manipulationsGlob Chang Biol. 2011;17:3187–94.

  64. 64.

    Frey SD, Drijber R, Smith H, Melillo J. Microbial biomass, functional capacity, and community structure after 12 years of soil warming. Soil Biol Biochem. 2008;40:2904–7.

  65. 65.

    Kuffner M, Hai B, Rattei T, Melodelima C, Schloter M, Zechmeister-Boltenstern S, et al. Effects of season and experimental warming on the bacterial community in a temperate mountain forest soil assessed by 16S rRNA gene pyrosequencing. FEMS Microbiol Ecol. 2012;82:551–62.

  66. 66.

    Deslippe JR, Hartmann M, Simard SW, Mohn WW. Long-term warming alters the composition of Arctic soil microbial communities. FEMS Microbiol Ecol. 2012;82:303–15.

  67. 67.

    Sistla SA, Moore JC, Simpson RT, Gough L, Shaver GR, Schimel JP. Long-term warming restructures Arctic tundra without changing net soil carbon storage. Nature. 2013;497:615–8.

  68. 68.

    Martiny JBH, Jones SE, Lennon JT, Martiny AC. Microbiomes in light of traits: a phylogenetic perspective. Science. 2015;350:80–.

  69. 69.

    Mu C, Zhang T, Zhang X, Cao B, Peng X. Sensitivity of soil organic matter decomposition to temperature at different depths in permafrost regions on the northern Qinghai-Tibet Plateau. Eur J Soil Sci. 2016;67:773–81.

  70. 70.

    Brune A, Frenzel P, Cypionka H. Life at the oxic-anoxic interface: microbial activities and adaptations. FEMS Microbiol Rev. 2000;24:691–710.

  71. 71.

    Dahl E. Rondane mountain vegetation in south Norway and its relation to the environment. Det Nor Vid Akad Skr Mat Naturv Klasse. 3 (Skrifter utgitt av Det Norske Videnskaps-Akademi i OsloI, Aschehoug, Oslo) 1956.

Download references


We like to thank Merle Noschinski-Reetz for excellent technical assistance.

Author information


  1. Institute of Crop Science and Resource Conservation (INRES), Molecular Biology of the Rhizosphere, Nussallee 13, 53115, Bonn, Germany

    • K. Frindte
    • , K. Werner
    •  & C. Knief
  2. Department of Geography, University of Bonn, Meckenheimer Allee 166, 53115, Bonn, Germany

    • R. Pape
    •  & J. Löffler
  3. Beuth Hochschule für Technik, Seestraße 64, 13347, Berlin, Germany

    • K. Werner


  1. Search for K. Frindte in:

  2. Search for R. Pape in:

  3. Search for K. Werner in:

  4. Search for J. Löffler in:

  5. Search for C. Knief in:

Corresponding author

Correspondence to K. Frindte.

Supplementary information

About this article

Publication history