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Abstract
Treatment with antibiotics is one of the most extreme perturbations to the human microbiome. Even standard courses of
antibiotics dramatically reduce the microbiome’s diversity and can cause transitions to dysbiotic states. Conceptually, this is
often described as a ‘stability landscape’: the microbiome sits in a landscape with multiple stable equilibria, and sufficiently
strong perturbations can shift the microbiome from its normal equilibrium to another state. However, this picture is only
qualitative and has not been incorporated in previous mathematical models of the effects of antibiotics. Here, we outline a
simple quantitative model based on the stability landscape concept and demonstrate its success on real data. Our analytical
impulse-response model has minimal assumptions with three parameters. We fit this model in a Bayesian framework to data
from a previous study of the year-long effects of short courses of four common antibiotics on the gut and oral microbiomes,
allowing us to compare parameters between antibiotics and microbiomes, and further validate our model using data from
another study looking at the impact of a combination of last-resort antibiotics on the gut microbiome. Using Bayesian model
selection we find support for a long-term transition to an alternative microbiome state after courses of certain antibiotics in
both the gut and oral microbiomes. Quantitative stability landscape frameworks are an exciting avenue for future
microbiome modelling.

Introduction

Stability and perturbation in the microbiome

The human microbiome is a complex ecosystem. While
stability is the norm in the gut microbiome, disturbances
and their consequences are important when considering its
impact on health [1]. A course of antibiotics is a major
perturbation, typically leading to a marked reduction in

species diversity before subsequent recovery [2]. Aside
from concerns about the development of antibiotic resis-
tance, even a brief course can result in long-term effects on
community composition [3]. However, modelling the
recovery of the microbiome is challenging, due to the dif-
ficulty of quantifying the in vivo effects of antibiotics on the
hundreds of co-occurring species that make up microbial
communities within the human body.

Artificial perturbation experiments are widely used to
explore the underlying dynamics of macro-ecological sys-
tems [4]. In the context of the gut microbiome, the effects of
antibiotics have previously been investigated [5–7],
but despite interest in the application of ecological theory to
the gut microbiome [8] the nature of this recovery remains
unclear. While responses can appear highly individualized
[7] this does not preclude the possibility of generalized
models applicable at the population level.

Applying mathematical models to other ecological sys-
tems subject to perturbation can give useful insight [9–11].
Crucially, it allows the comparison of different hypotheses
about the system using model selection. Developing a
consistent mathematical framework for quantifying the
long-term effects of antibiotic use would also facilitate
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comparisons between different antibiotics and different
regimens, with the potential to inform approaches to anti-
biotic stewardship [12].

Previous modelling approaches

A great deal of modelling work has focused on the gut
microbiome’s response to antibiotic perturbation. We
mention a few important examples here. Bucci et al. [13]
used a two-compartment density model with species cate-
gorized as either antibiotic-tolerant or antibiotic-sensitive,
and fitted their model to data from Dethlefsen and Relman
[7]. In a later review, Bucci and Xavier argued that models
of wastewater treatment bioreactors could be adapted for
the gut microbiome, with a focus on individual-based
models [14]. The most commonly-used individual-based
model is the multispecies Generalized Lotka–Volterra
(GLV) model, which describes pairwise interactions
between bacterial species (or other groupings). In a pio-
neering work, Stein et al. [15] extended a GLV model to
include external perturbations, and fitted their model to a
study where mice received clindamycin and developed
Clostridium difficile infection (CDI) [16]. The same
approach was also subsequently applied to human subjects,
identifying a probiotic candidate for treating CDI [17].
Bucci et al. [18] have combined and extended their pre-
vious work into an integrated suite of algorithms
(MDSINE) to infer dynamical systems models from time-
series microbiome data.

While all of these models have provided useful insights
into microbiome dynamics, to make meaningful inference
they require dense temporal sampling and restriction to a
small number of species. For example, the examples of
application of MDSINE had “26–56 time points” for
accurate inference of dynamics, measurements of relative
concentrations of bacteria, and frequent shifts of treatment
—for these reasons the in vivo experiments were conducted
in gnotobiotic mice [18]. Similarly, Stein et al. restricted
their analysis of CDI to the ten most abundant bacterial
genera [15]. Such restrictions reduce the suitability of these
methods for opportunistic analysis of existing 16S rRNA
gene datasets from the human microbiome, which currently
comprise the majority of clinically relevant datasets. GLV
models can undoubtedly be extremely useful for simple
synthetic consortia, as shown by Venturelli et al. who
inferred the dynamics of a 12-species community [19].
However, it has been shown that even for very small
numbers of species, pairwise microbial interaction models
do not always accurately predict future dynamics, suggest-
ing that pairwise modelling has its own limitations [20].

Starting from broader ecological principles allows
quantitative investigation of high-level statements and
hypotheses about microbiome dynamics. For example,

Coyte et al. built network models based on principles
from community ecology to show that competitive inter-
actions in the gut microbiome are associated with stable
states of high diversity [21]. More recently, Goyal et al.
took inspiration from the ‘stable marriage problem’ in
economics and showed that multiple stable states in
microbial communities can be explained by nutrient pre-
ferences and competitive abilities [22]. There is therefore
great value in exploring alternative modelling approaches
to GLV models as well as continuing to refine and extend
them.

A stability landscape approach

In a popular schematic picture taken from classical ecology,
the state of the gut microbiome is represented by a ball
sitting in a stability landscape [1, 23–25]. Perturbations can
be thought of as forces acting on the ball to displace it from
its equilibrium position [25] or as alterations of the stability
landscape [26]. While this image is usually provided only as
a conceptual model to aid thinking about the behaviour of
the ecosystem, here we use it to derive a mathematical
model.

We model the effect of a brief course of antibiotics on
the microbial community’s phylogenetic diversity as the
impulse response of an overdamped harmonic oscillator
(Fig. 1; see Methods), and compare parameters for four
widely-used antibiotics by fitting to empirical data pre-
viously published by Zaura et al. [3]. This model is sig-
nificantly less complicated than previous models
developed for similar purposes, but still captures some of
the essential emergent features of such a system while
avoiding the computational difficulties of fitting hundreds
of parameters to a sparse dataset. After demonstrating the
effectiveness of this modelling approach for the gut and
oral microbiome, we also show that the framework can
easily be used to test hypotheses about microbiome states.
We compare a model variant, which allows a transition to
a new equilibrium, and find that this model is better sup-
ported for clindamycin and ciprofloxacin, allowing us to
conclude that these antibiotics can produce state transi-
tions across different microbiomes. We also find a transi-
tion to a new equilibrium when reanalyzing a separate
dataset from Palleja et al. [27], using a different diversity
metric that had already been calculated by the authors
(richness) based on applying a different sequencing
approach (shotgun metagenomics) to an different anti-
biotic regimen (meropenem, gentamicin, and vancomy-
cin). This modelling approach can therefore be easily
applied to sparse datasets from different human micro-
biomes, antibiotics, and sequencing approaches, providing
a simple but consistent foundational framework for
quantifying the in vivo impacts of antibiotics.
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Results

Ecological theory motivates a simplified
representation of the microbiome

Taking inspiration from classical ecological theory, the
microbiome can be considered as an ecosystem existing in a
stability landscape: it typically rests at some equilibrium,
but can be displaced (Fig. 1a). The shape of this landscape
is determined by the extrinsic environmental factors; a
change in these could produce a (reversible) change in the
shape of the landscape e.g. shifts in the human gut micro-
biome when an individual temporarily relocates from the
USA to Southeast Asia, which are reversed on return [28].
Here we assume that these environmental factors remain
approximately constant at the timescales considered

(<1 year), based on previous observations e.g. that the oral
microbiome can exhibit stability over periods of at least
3 months [29], and the gut microbiome for up to 5 years
[30]. Any quantitative model of the microbiome based on
this concept then requires a definition of equilibrium and
displacement. While earlier studies sought to identify a
equilibrium core set of ‘healthy’ microbes, disturbances of
which would quantify displacement, it has become apparent
that this is not a practical definition due to high inter-
individual variability in taxonomic composition [25]. More
recent concepts of a healthy ‘functional core’ appear more
promising, but characterization is challenging, particularly
as many gut microbiome studies use 16S rRNA gene
sequencing rather than shotgun metagenomic sequencing.

For these reasons, we choose a metric that offers a proxy
for the general functional potential of the gut microbiome:

Fig. 1 A stability landscape framework for antibiotic perturbation to
the microbiome. We represent the gut microbiome as a unit mass on a
stability landscape, where height corresponds to phylogenetic diver-
sity. a The healthy human microbiome can be conceptualized as
resting in the equilibrium of a stability landscape of all possible states
of the microbiome. Perturbations can displace it from this equilibrium
value into alternative states (adapted from Lloyd-Price et al. [25]).
b Choosing to parameterise this stability landscape using diversity, we

assume that there are just two states: the healthy baseline state and an
alternative stable state. c Perturbation to the microbiome (e.g. by
antibiotics) is then modelled as an impulse, which assumes the dura-
tion of the perturbation is short relative to the overall timescale of the
experiment. We consider the form of the diversity time-response under
two scenarios: a return to the baseline diversity; and a transition to a
different value of a diversity (i.e. an alternative stable state)
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phylogenetic diversity [25]. Diversity is commonly used as
a summary statistic in microbiome analyses and higher
diversity in the gut microbiome has previously been gen-
erally associated with health [31] and temporal stability
[32]. Of course, describing the microbiome using only a
single number loses a great deal of information. Further-
more, there is no general relationship between ‘diversity’
and ‘stability’: the relationship depends on the specific
definitions of both quantities. We are interested in the sce-
nario of fixed-length perturbations, where ‘stability’ can be
quantified in terms of the rate of return to equilibrium after
perturbation—this stability has been empirically observed
to increase with greater species diversity [33]. If we are
seeking to build a general model of microbiome recovery
after perturbation, it seems appropriate to consider a simple
metric first to see how such a model performs before
developing more complicated definitions of equilibrium,
which may generalize poorly across different niches and
individuals. Other scenarios might require different defini-
tions and correspondingly different assumptions.

We assume the equilibrium position to have higher
diversity than the points immediately surrounding it i.e.
creating a potential well (Fig. 1b). However, there may be
alternative stable states (Fig. 1b) that perturbations may
move the microbiome into (Fig. 1c). These states may be
either higher or lower in diversity; for our purposes, all we
assume is that they are separated from the initial equilibrium
by a potential barrier of diversity, i.e. a decrease of diversity
is required to access them, which helps to keep the micro-
biome at equilibrium under normal conditions. Our strong
assumption here is obviously influenced by the specific
perturbation scenario: we know a priori that antibiotics
decrease diversity in the short-term, so we are not
attempting to model other types of transition. However,
considering the empirical evidence and the consensus view
among ecologists that a diversity of species with a range of
sensitivities to different environmental conditions should
lead to greater stability [33, 34], we feel this rule may hold
in a range of other scenarios: ecosystems may often exist at
or near a (local) maximum value of diversity. An equili-
brium does not have to be believed in as a true and eternal
state; we attempt here to use insights from theoretical
communities with well-defined mathematical equilibria to
move to modelling empirical communities where they are
approximate concepts, valid over some given time period.

The model

Mathematically, small displacements of a mass from an
equilibrium point can be approximated as a simple harmo-
nic oscillator [35] for any potential function (continuous and
differentiable). This approximation comes naturally from
the first terms in the Taylor expansion of a function [36],

and can be extremely accurate for small perturbations. By
assuming the local stability landscape of the microbiome
can be reasonably approximated as a harmonic potential, we
are assuming a ‘restoring’ force proportional to the dis-
placement x from the equilibrium position (−kx) and also a
‘frictional’ force acting against the direction of motion
(�b_x). The system is a damped harmonic oscillator with the
following equation of motion:

d2x

dt2
þ b

dx

dt
þ kx ¼ 0 ð1Þ

Additional forces acting on the system—perturbations—
appear on the right-hand side of this equation. Consider a
course of antibiotics of duration τ. If we are interested in
timescales of T � τ (e.g. the long-term recovery of the
microbiome a year after a week-long course of antibiotics)
we can assume that this perturbation is of negligible dura-
tion. This assumption allows us to model it as an impulse of
magnitude D acting at time t= 0:

d2x

dt2
þ b

dx

dt
þ kx ¼ Dδ tð Þ ð2Þ

This second-order differential equation can be solved
analytically and reparameterized (see Methods) to give a
model with three parameters, with a general qualitative
shape of sudden change followed by slower recovery
(Model 1, Fig. 1c):

x1 tð Þ ¼ Deϕ1eϕ2

eϕ2 � eϕ1
� e�eϕ1 t � e�eϕ2 t
� �

ð3Þ

Fitting the model to empirical data

We fit the model to published data from a paper from Zaura
et al. [3] where individuals received a 10-day course of either
a placebo or one of four commonly-used antibiotics (Table 1).
Faecal and saliva samples were taken at baseline (i.e. before
treatment), directly after treatment, and then 1 month,
2 months, 4 months, and 1 year after treatment. Zaura et al.

Table 1 Number of individuals in each treatment group

Antibiotic treatment
group

n (gut microbiome) n (oral microbiome)

Placebo 22 21

Ciprofloxacin 9 9

Clindamycin 9 9

Minocycline 10 10

Amoxicillin 12 12

Only individuals with a complete set of 6 samples with >1,000 reads in
each were retained for model fitting. For demographic characteristics
of the complete treatment groups see Table 1 of Zaura et al. [3]
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conducted pairwise comparisons between timepoints and
comprehensively reported statistical associations, but did not
attempt any explicit modelling of the time-response over the
year. This dataset provides an ideal test case for our model.
Not only does it allow us to simultaneously model the
recovery of both the gut and oral microbiomes after different
antibiotics, but it also demonstrates how our modelling fra-
mework permits further conclusions beyond the scope of the
initial study. We additionally fit our model to a shotgun
metagenomics dataset from a recent antibiotic perturbation
experiment from Palleja et al. [27].

A stability landscape framework successfully
describes initial microbiome dynamics

Although individual microbiome responses were persona-
lized (Supplementary Figure 1), normalized diversity tra-
jectories followed the same general pattern for each
antibiotic (Supplementary Figure 2). We used a Bayesian
approach to fit the model to each treatment group and
microbiome separately, successfully capturing the main
features of the initial response to antibiotics (Fig. 2).
Diversity decreased (i.e. positive displacement from equi-
librium increased) before a slow return to equilibrium.
Despite large variability between samples from the same
treatment group, reassuringly the placebo group clearly did
not warrant an impulse response model, whereas data from
individuals receiving antibiotics were qualitatively in
agreement with the model. Even without the model, it is
apparent that clindamycin and ciprofloxacin represent
greater disturbances to the microbiome than minocycline

and amoxicillin, but a consistent model allows comparison
of the values of various parameters (see ‘Comparison of
parameters between antibiotics’ below).

In their original analysis, Zaura et al. noted significantly
(p < 0.05) reduced Shannon diversity in individuals
receiving ciprofloxacin comparing samples after a year to
baseline. This reduced diversity could in principle merely
be due to slow reconstitution and return to the original
equilibrium. However, by taking into account each indi-
vidual’s temporal response with a model rather than pair-
wise comparisons it appears that slow reconstitution cannot
be the whole story. Instead, the skewed distribution of
residuals after a year, when the response has flattened off,
indicates that the longer-term dynamics of the system do
not obey the same impulse response as the short-term
dynamics. A scenario involving a long-term transition to an
alternative stable state is consistent with this observation
(Fig. 1). We therefore developed a variant of the model to
take into account alternative equilibria, aiming to test the
hypothesis that the microbiome had transitioned to an
alternative stable state.

Support for the existence of antibiotic-induced state
transitions

In our approach, a transition to an alternative stable state
means that the value of diversity displacement from the
original equilibrium asymptotically tends to a non-zero
value. There are many options for representing this math-
ematically; for reasons of simplicity, we add a single
parameter A and a term that asymptotically grows over time

Fig. 2 The model captures the dynamics of recovery for the gut and
oral microbiomes after antibiotics. Bayesian fits for participants taking
either a placebo (blue; n= 21/22 for gut/oral), ciprofloxacin (green;
n= 9), clindamycin (red; n= 9), minocycline (purple; n= 10), and
amoxicillin (orange; n= 12). The mean phylogenetic diversity from
100 bootstraps for each sample (black points) and median and 95%

credible interval from the posterior distribution (bold and dashed
coloured lines, respectively). The grey line indicates the equilibrium
diversity value, defined on a per-individual basis relative to the mean
baseline diversity. The biased skew of residuals after a year in certain
treatment groups suggests the possibility of a transition to an alter-
native stable state with a different value of diversity
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(Model 2, Fig. 1c):

x2 tð Þ ¼ Deϕ1eϕ2

eϕ2 � eϕ1
� e�eϕ1 t � e�eϕ2 t
� �

þ A � 1� e�eϕ1 t
� �

ð4Þ

Qualitatively, this slightly more complex model gave a
similar fit (Fig. 3) but some treatment groups had a clear
non-zero final displacement from equilibrium, correspond-
ing to an alternative stable state. We compared models with
the Bayes factor BF, where BF > 1 indicates support for a
state transition (Table 2). A state transition was supported in
the ciprofloxacin and clindamycin treatment groups for both
the gut (BFcipro= 3.06, BFclinda= 10.94) and oral (BFcipro=
16.87, BFclinda= 7.47) microbiomes. The posterior

estimates for the asymptote parameter in the gut micro-
biome were positively skewed (Fig. 4), providing evidence
of a transition to a state with lower phylogenetic diversity.
Contrastingly, in the oral microbiome the asymptote para-
meter was negatively skewed, suggesting a transition to a
state with greater phylogenetic diversity. Strikingly, these
are the respective states associated with poorer health in
both microbiomes.

Comparison of parameters between antibiotics

Comparing the posterior distribution of parameters for
model 2 fits allows quantification of the ecological impact
of different antibiotics (Table 3, Fig. 4). Unsurprisingly,
greater perturbation is correlated with the transition to an
alternative stable state. We can also consider the ecological
implications of the parameters we observe. The damping
ratio ζ ¼ b= 2

ffiffiffi
k

p� �
summarizes how perturbations decay

over time, and is considered as an inherent property within
the model. Therefore, if our modelling framework and
ecological assumptions were valid we would expect to find
a consistent damping ratio across both the clindamycin and
ciprofloxacin groups in the gut microbiome. This is indeed
what we observed with median (95% credible interval)
damping ratios of ζclinda = 1.07 (1.00–1.65) and ζcipro =
1.07 (1.00–1.66), substantially different from the prior
distribution, supporting the view that the gut microbiome
dynamics can be approximated by a damped harmonic
oscillator.

Fig. 3 A model with a possible state transition is better supported for
clindamycin and ciprofloxacin. Bayesian fits for participants taking
either ciprofloxacin (green; n= 9), clindamycin (red; n= 9), mino-
cycline (purple; n= 10), and amoxicillin (orange; n= 12). The mean
phylogenetic diversity from 100 bootstraps for each sample (black
points) and median and 95% credible interval from the posterior

distribution (bold and dashed coloured lines, respectively). The grey
line indicates the equilibrium diversity value, defined on a per-
individual basis relative to the mean baseline diversity. The non-zero-
centred asymptotes indicates support for a state transition in both the
gut and oral microbiomes after ciprofloxacin and clindamycin. See
Table 2 for Bayes Factors comparing model 2 to model 1

Table 2 Bayes factors for model comparisons for each antibiotic group

Antibiotic treatment group Gut microbiome Oral microbiome

Ciprofloxacin 3.06 16.87

Clindamycin 10.94 7.47

Minocycline 2.11 2.42

Amoxicillin 1.51 1.31

The Bayes factor (BF) allows model selection, here for model 2 (with a
state transition) against model 1 (no state transition). Following Kass
and Raffery, we interpret BF > 3 (values shown in bold) as positive
evidence in favour of model 2 [51]
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Application to other sequencing approaches and
diversity metrics

In a recent paper, Palleja et al. [27] used deep shotgun
metagenomic sequencing to characterize the gut

microbiomes of twelve healthy men for 180 days after a 4-
day course of meropenem, gentamicin, and vancomycin.
They observed that while there were no significant differ-
ences in the Shannon diversity between baseline and day
180, there was a significant difference in species richness.

Fig. 4 Posterior parameter estimates for model with a possible tran-
sition to an alternative stable state. The posterior distributions from
Bayesian fits of model 2 (Eq. 7) to empirical data from the gut (solid)
and oral microbiomes (dashed) of individuals who received cipro-
floxacin (green), clindamycin (red), minocycline (purple), and amox-
icillin (orange). The posterior probability distribution is a way of

visualizing the uncertainty in parameter values after model fitting
(a tighter peak indicates more certainty about the parameter value), and
can be subsequently used to derive e.g. interval estimates. Because the
sum under the distribution is defined as being equal to one, the scale of
the y-axis depends on the range of the x-axis i.e. it has no absolute
meaning

Table 3 Median and 95% credible intervals for all model parameters for each treatment group

D A Phi1 Phi2

Microbiome Antibiotic Median 95% CI Median 95% CI Median 95% CI Median 95% CI

Gut Ciprofloxacin 7.9 (5.47 to 9.75) 0.8 (0.28 to 1.34) −0.2 (−0.69 to 0.16) 0.41 (0.05 to 0.92)

Clindamycin 8.45 (6.23 to 9.84) 0.84 (0.29 to 1.42) 0 (−0.46 to 0.34) 0.56 (0.23 to 1.11)

Amoxicillin 1.34 (0.13 to 6.56) −0.03 (−0.66 to 0.56) −1.53 (−1.96 to 0.31) 0.09 (−1.58 to 1.83)

Minocycline 2.74 (1.54 to 7.82) −0.23 (−1.09 to 0.23) 0.33 (−1.44 to 1.29) 1.65 (1.01 to 1.97)

Oral Ciprofloxacin 2.99 (1.86 to 5.23) −0.63 (−1.21 to 0.19) 0.19 (−0.85 to 0.96) 1.56 (0.84 to –1.96)

Clindamycin 3.56 (2.33 to 5.77) −0.73 (−1.44 to 0.14) 0.66 (−0.33 to 1.37) 1.61 (1.02 to 1.96)

Amoxicillin 4.24 (0.41 to 9.26) −0.13 (−1.01 to 0.71) −1.58 (−1.96 to 0.46) −0.33 (−1.45 to 1.69)

Minocycline 3.38 (0.70 to 8.85) 0.53 (−0.50 to 1.55) −0.73 (−1.87 to 1.19) 1.27 (−0.63 to 1.94)

Results from Bayesian fitting of the full model (model 2, Eq. 4) to each of the eight possible treatment groups (four antibiotics × two microbiomes)

Modelling microbiome recovery after antibiotics using a stability landscape framework 1851



Furthermore, they noted that compositional changes
between day 42 and day 180 were not significantly different
when compared to paired samples in Human Microbiome
Project controls. Both these two pieces of information
suggest a state transition, although Palleja et al. do not use
this terminology and instead refer to a return to “stable
composition”. Reanalyzing this species richness data with
our model shows that the gut microbiomes of these indi-
viduals had transitioned to a new alternative state (Sup-
plementary Figure 3; Table 4), strengthening Palleja et al.’s
conclusion that some bacteria may have been permanently
lost [27]. Other future metagenomic datasets could also be
analyzed using our model in this way.

Connection to generalized Lotka–Volterra models

We sought to establish a link between our framework and
the conventional ‘bottom-up’ approach of GLV models. We
investigated the behaviour of a 3-species Lotka–Volterra
system to establish if perturbation to an alternative state was
possible in this simple case (see Methods: ‘Lotka–Volterra
simulations’). We found that only 0.079% of 3-species
Lotka–Volterra systems exhibit the behaviour required by
our two-state model—because we assume that diversity is
continuous, this model is unrealistic for small species
numbers. However, for larger numbers, theoretical ecology
gives strong justification for our assumptions. As the
number of species n increases, the number of fixed points
that are stable increases [37], and the proportion of simu-
lations from random parameters that have multiple fixed
points also increases e.g. with n= 400, this proportion is
>97% [38]. This suggests that the overwhelming majority of
mathematically possible systems at relevant numbers of
species exhibit multiple fixed points; the fraction of biolo-
gically possible systems exhibiting this behaviour is likely
even higher. Furthermore, when the realistic assumption of
resource competition is incorporated, all these fixed points
become stable or marginally stable [38]. Goyal et al.
recently showed that multiple resilient stable states can exist
in microbial communities if microbes utilize nutrients one at
a time [22]. We can therefore state confidently that: the gut
microbiome can be treated as having multiple stable equi-
libria; its community composition is history-dependent; and
perturbations lead to transitions between the multiple

possible stable states. These assumptions are the basis of the
simplistic coarse-grained model we describe here, which
effectively takes these high-level emergent properties of
multispecies Lotka–Volterra models to build a substantially
simpler model based on a single, commonly-used metric:
diversity.

Discussion

Starting from a conceptual picture of the microbiome rest-
ing in a stability landscape, we have developed a mathe-
matical model of its response to antibiotic perturbation. Our
framework, based on phylogenetic diversity, successfully
captures the dynamics of a previously published 16S rRNA
gene dataset for four common antibiotics [3], providing
quantitative support for these simplifying ecological
assumptions. Using model selection, our framework pro-
vides additional insight—we find that the effects of clin-
damycin persist for a year after exposure, and also identify a
state transition in the oral microbiome with clindamycin,
neither of which was detected by the initial authors. We also
demonstrate the flexibility of our model by fitting it to data
from a recent shotgun metagenomics antibiotic perturbation
experiment [27].

While pairwise comparisons of diversity can still identify
differences in microbiome state, they provide no informa-
tion on dynamics. Our framework therefore gives additional
insight in this regard. Zaura et al. observed that the lowest
diversity in the gut microbiome was observed after a month
rather than immediately after treatment [3]. This cannot be
due to a persistence of the antibiotic effect, as all antibiotics
used have short half-lives of the order of hours [39, 40].
Within our framework, this can be understood as an over-
damping effect: we found a consistent damping ratio for
both ciprofloxacin and clindamycin. This is not in itself a
complete explanation (it does not identify a mechanistic
biological process behind the ‘damping’) but it gives insight
that such a process may exist.

We have also demonstrated how our framework could be
used to compare different hypotheses about the long-term
effects of antibiotic perturbation by fitting different models
and using Bayesian model selection. Our model provides an
additional line of evidence that while short-term restoration

Table 4 Median and 95%
credible intervals for all model
parameters for the Palleja et al.
(2018) dataset

D A Phi1 Phi2

Median 95% CI Median 95% CI Median 95% CI Median 95% CI

2.24 (1.02 to 3.88) 0.60 (0.26 to 0.91) 0.39 (−0.37 to 1.23) 1.70 (0.99 to 1.99)

Results from Bayesian fitting of the full model (model 2) to the rescaled richness dataset. These should not
be directly compared to the fitting to the Zaura et al. dataset, as the diversity metrics used are different. The
estimated Bayes factor supporting model 2 over model 1 was BF= 75.6
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obeys a simple impulse response, the underlying long-term
community state can be fundamentally altered by a brief
course of antibiotics, as suggested previously [7], raising
concerns about the long-term impacts of antibiotic use.
While this state transition may not necessarily equate to any
negative health impacts for the host (none of the participants
involved in the original study [3] reported any gastro-
intestinal disturbance), the transition to a new state with
reduced diversity in the gut microbiome may increase the
risk of colonisation and overgrowth of pathogenic species. It
has been shown experimentally in Drosophila that invasion
and subsequent colonization is a stochastic process that is
reduced by a more diverse gut [41]. Conversely, in the oral
microbiome the state transition was to a state with increased
diversity, which is correspondingly associated with a greater
risk of disease in the oral cavity [42]. We believe this makes
sense within a stability landscape framework. Even if only
marginal, when considered at a population level, such effects
may mean that antibiotics have substantial negative health
consequences, which could support reductions in the length
of antibiotic courses independently of concerns about anti-
biotic resistance [43]. Modelling the long-term impact on the
microbiome of different doses and courses could help to
influence antibiotic use in routine clinical care. Our sample
size is small, so the precise posterior estimates for para-
meters that we obtain should not be over-interpreted, but
comparing antibiotics using these parameter estimates
represents another practical application.

Our framework lends itself naturally to comparing dif-
ferent dynamical models. We see our two variant models as
a starting point for stability landscape approaches, and
would hope that better models can be constructed. Hier-
archical mixed effects models may offer an improved fit,
particularly if they take into account other covariates; we
lacked the necessary metadata on the participants from the
original study (Table 1) to explore such models. Further-
more, diversity as a single metric clearly fails to capture all
the complexity of the microbial community and its inter-
actions, and there are multiple issues with calculating it
accurately. Nevertheless, the observation that treating phy-
logenetic diversity as the key variable in the stability
landscape captures microbiome dynamics supports obser-
vations of functional redundancy in the microbiome [31].
An interesting extension of this work would be to system-
atically fit the model to a variety of diversity metrics or
other summary statistics and assess the model fit to see
which metric (or combination of metrics) is most appro-
priately interpreted as the state variable parameterising the
stability landscape. A complementary approach could con-
sider the ‘resistome’, which should conversely rise in
diversity after antibiotic treatment [44].

Expanding the stability landscape approach to other
microbiome datasets might require re-examining our

assumptions. A non-diversity metric might well be superior
in situations where the ‘ideal’ state of the microbiome can
be clearly defined: for example, in a bioreactor where
experimental conditions can be maintained to consistently
produce a given equilibrium community composition, one
could define displacement using ecological distance from
this well-defined state. However, even a single microbial
strain under constant conditions can exhibit astonishing and
unpredictable complexity over time [45], so we feel that
diversity is a good starting point. As a general guide for
experiments, because an impulse response model for a
perturbation of length τ assumes an experiment length
T � τ, we suggest the appropriate sampling effort for
microbiomes undergoing perturbation should be to have
samples immediately before and after, as well as samples
out to T > 30τ. We recommend more dense sampling at
longer times to firmly establish whether a new equilibrium
state has been reached.

We would not expect the behaviour of the microbiome
after longer or repeated courses of antibiotics to be well-
described by our model, which assumes a course of
negligible duration. Nevertheless, it would be possible to
use the stability landscape framework given here to obtain
an analytic form for the possible system response by
convolving any given perturbation function with the
impulse response, although the model might break down
in such circumstances. If the model fails to give a good fit,
the inclusion of higher-order terms in the Taylor expan-
sion of the chosen potential function about equilibrium
(and correspondingly modifying Eq. 1) could prove
useful.

As we have demonstrated, while the precise nature of the
gut microbiome’s response to antibiotics is individualized, a
general model still captures important dynamics. We
believe it would be a mistake to assume that our model is
‘too simple’ to provide insight on a complex ecosystem. At
this stage of our understanding, creating a comprehensive
inter-species model of the hundreds of members of the gut
microbiome is intractable; it may also be unnecessary if the
aim is to inform clinical treatment based on sparse data. We
believe there is a place for both fine-grained models using
pairwise interactions—particularly for systems of reduced
complexity—and coarse-grained models built from high-
level ecological principles, as we have demonstrated here.
Shade has argued that microbiome diversity is “the ques-
tion, not the answer” [46]; diversity can still be an extre-
mely useful quantity for modelling, but the patterns we
report here warrant more mechanistic investigation. We
have argued that a ‘top-down’ framework with multiple
stable states of different diversities is consistent with the
emergent behaviour of a multispecies Lotka–Volterra
model. Further mathematical work to connect these two
extremes would be worthwhile.
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Materials and methods

Mathematical model of trajectories in the potential
landscape

Treating the microbiome as a unit mass resting in a stability
landscape parameterized by phylogenetic diversity leads to
a second-order differential equation. To solve this equation,
we assume that b2 > 4k (the ‘overdamped’ case) based on
the lack of any oscillatory behaviour previously observed in
the microbiome. Then, subject to the initial conditions x(t=
0)= 0 and _x t ¼ 0ð Þ ¼ D we obtain the following equation
describing the system’s trajectory:

x tð Þ ¼ D
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Fitting the model therefore requires fitting three para-
meters: b (the damping on the system), k (the strength of the
restoring force), and D (how strong the perturbation is). For
the purposes of fitting the model, having parameters
be allowed values over all real numbers (−∞, +∞) is pre-
ferable to only positive numbers (0, +∞), so we choose to
reparameterize the model using the following definitions:

b ¼ eϕ1 þ eϕ2 ð6Þ

k ¼ eϕ1þϕ2 ð7Þ

This results in Model 1 (Eq. 3, Fig. 1c).
Antibiotics may lead not just to displacement from

equilibrium, but also state transitions to new equilibria
[2]. To investigate this possibility, we also consider a
model where the value of equilibrium diversity asymp-
totically tends to a new value A. To minimize model
complexity, we add a single parameter with a term that
asymptotically grows over time, resulting in Model 2
(Eq. 4, Fig. 1c).

Main experimental dataset

To apply our framework, we fitted both models to two
empirical datasets (see Supplementary Text 1). Zaura
et al. [3] conducted a study on the long-term effect of
antibiotics on the gut and oral microbiomes, where indi-
viduals were randomly assigned to one of five treatment
groups: placebo, clindamycin, ciprofloxacin, minocycline,
or amoxicillin (Table 1). Samples were collected at
baseline (before treatment), immediately after exposure,
then at 1 month, 2 months, 4 months, and 1 year after
treatment.

Phylogenetic diversity

There are many possible diversity metrics that could be
used to compute the displacement from equilibrium.
Because of our assumptions (see ‘Ecological theory moti-
vates a simplified representation of the microbiome’), we
chose to use Faith’s phylogenetic diversity [47] (see Sup-
plementary Text 1).

Bayesian model fitting

We used a Bayesian framework to fit our basic model 1
(Eq. 3) using Stan [48] and RStan [49] to the gut and oral
microbiome samples for the five separate groups: placebo,
ciprofloxacin, clindamycin, minocycline, and amoxicillin
(i.e. n= 2 × 5= 10 fits). In brief, our approach used four
chains with a burn-in period of 1000 iterations and
9000 subsequent iterations, verifying that all chains con-
verged (R̂= 1) and the effective sample size for each
parameter was sufficiently large (n_eff > 1000). We addi-
tionally fitted model 2 with a possible state transition (Eq. 4)
to all non-placebo groups (n= 2 × 4= 8 fits).

We used non-informative priors for all parameters in the
original model 1 without a state transition (Eq. 3). For all
groups, we used the same uniformly distributed prior for D
(positive i.e. decrease in diversity) and uniform priors for
ϕ1, ϕ2. For fitting model 2, we used an additional uniform
prior centred at zero for the new equilibrium value A and the
same priors for other parameters. In summary, the priors are
as follows:

D � uniform 0; 10ð Þ ð8:1Þ

ϕ1 � uniform �1:99; 1; 99ð Þ ð8:2Þ

ϕ2 � uniform �2; 2ð Þ ð8:3Þ

A � uniform �2; 2ð Þ ð8:4Þ

We compared models 1 and 2 (Supplementary Files 1
and 2). for each antibiotic treatment group using the Bayes
factor [50, 51] after extracting the model fits using bridge
sampling with the bridgesampling R package v0.2-2 [52].
A prior sensitivity analysis (not shown) showed that choice
of priors did not affect our conclusions about model
selection, although the strength of the Bayes factor varied.

Full code and data for fitting the models and reproducing
figures is available with this article (Supplementary Files 1–5).

Shotgun metagenomics dataset

For fitting to the dataset released by Palleja et al. [27], we
used the published species richness data with an arbitrary
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scaling factor (see Supplementary Text 1 for details, Sup-
plementary File 6 for code, Supplementary File 7 for
downloaded data).

Lotka–Volterra simulations

We numerically simulated 59 = 1953125 parameter sets of
the GLV model with n= 3 species and investigated their
behaviour and stable states. For more details see the
corresponding supplementary discussion (Supplementary
Text 2) and Mathematica notebook (Supplementary
File 8).

Data availability

The original sequencing dataset from Zaura et al. [3] used in
this paper is available in the NCBI Short Read Archive
(SRA Accession: SRP057504). Full code and reanalyzed
datasets supporting the conclusions of this article are
included as Supplementary Information. A full archive of
main analyses including cached model fits is available in
figshare (https://doi.org/10.6084/m9.figshare.6754880.v1).
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