Article | Published:

Genomic insights from Monoglobus pectinilyticus: a pectin-degrading specialist bacterium in the human colon

The ISME Journal (2019) | Download Citation


Pectin is abundant in modern day diets, as it comprises the middle lamellae and one-third of the dry carbohydrate weight of fruit and vegetable cell walls. Currently there is no specialized model organism for studying pectin fermentation in the human colon, as our collective understanding is informed by versatile glycan-degrading bacteria rather than by specialist pectin degraders. Here we show that the genome of Monoglobus pectinilyticus possesses a highly specialized glycobiome for pectin degradation, unique amongst Firmicutes known to be in the human gut. Its genome encodes a simple set of metabolic pathways relevant to pectin sugar utilization, and its predicted glycobiome comprises an unusual distribution of carbohydrate-active enzymes (CAZymes) with numerous extracellular methyl/acetyl esterases and pectate lyases. We predict the M. pectinilyticus degradative process is facilitated by cell-surface S-layer homology (SLH) domain-containing proteins, which proteomics analysis shows are differentially expressed in response to pectin. Some of these abundant cell surface proteins of M. pectinilyticus share unique modular organizations rarely observed in human gut bacteria, featuring pectin-specific CAZyme domains and the cell wall-anchoring SLH motifs. We observed M. pectinilyticus degrades various pectins, RG-I, and galactan to produce polysaccharide degradation products (PDPs) which are presumably shared with other inhabitants of the human gut microbiome (HGM). This strain occupies a new ecological niche for a primary degrader specialized in foraging a habitually consumed plant glycan, thereby enriching our understanding of the diverse community profile of the HGM.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Daher FB, Braybrook SA. How to let go: pectin and plant cell adhesion. Front Plant Sci. 2015;

  2. 2.

    Mohnen D. Pectin structure and biosynthesis. Curr Opin Plant Biol. 2008;11:266–77.

  3. 3.

    Ridley BL, O’Neill MA, Mohnen D. Pectins: structure, biosynthesis, and oligogalacturonide-related signalling. Phytochemistry. 2001;57:929–67.

  4. 4.

    Caffall KH, Mohnen D. The structure, function, and biosynthesis of plant cell wall pectic polysaccharides. Carbohydr Res. 2009;344:1879–1900.

  5. 5.

    Zykwinska AW, Ralet MJ, Garnier CD, Thibault JJ. Evidence for in vitro binding of pectin side chains to cellulose. Plant Physiol. 2005;139:397–407.

  6. 6.

    Yapo BM. Rhamnogalacturonan-I: a structurally puzzling and functionally versatile polysaccharide from plant cell walls and mucilages. Polym Rev. 2011;51:391–413.

  7. 7.

    Yapo BM. Pectin rhamnogalacturonan II: on the “small stem with four branches” in the primary cell walls of plants. Int J Carbohydr Chem. 2011;2011:1–11.

  8. 8.

    Ndeh D, Rogowski A, Cartmell A, Luis AS, Baslé A, Gray J, et al. Complex pectin metabolism by gut bacteria reveals novel catalytic functions. Nature. 2017;544:65–70.

  9. 9.

    O’Neill MA, Ishii T, Albersheim P, Darvill AG. Rhamnogalacturonan II: structure and function of a borate cross-linked cell wall pectic polysaccharide. Annu Rev Plant Biol. 2004;55:109–39.

  10. 10.

    Cheng KJ, Dinsdale D, Stewart CS. Maceration of clover and grass leaves by Lachnospira multiparus. Appl Environ Microbiol. 1979;38:723–9.

  11. 11.

    Chung D, Pattathil S, Biswal AK, Hahn MG, Mohnen D, Westpheling J. Deletion of a gene cluster encoding pectin degrading enzymes in Caldicellulosiruptor bescii reveals an important role for pectin in plant biomass recalcitrance. Biotechnol Biofuels. 2014;7:147.

  12. 12.

    Luis AS, Briggs J, Zhang X, Farnell B, Ndeh D, Labourel A, et al. Dietary pectic glycans are degraded by coordinated enzyme pathways in human colonic Bacteroides Nat Microbiol. 2017;

  13. 13.

    Martens EC, Koropatkin NM, Smith TJ, Gordon JI. Complex glycan catabolism by the human gut microbiota: the Bacteroidetes Sus-like paradigm. J Biol Chem. 2009;284:24673–7.

  14. 14.

    Comstock LE. Importance of glycans to the host-Bacteroides mutualism in the mammalian intestine. Cell Host Microbes. 2009;5:522–6.

  15. 15.

    Koropatkin NM, Cameron EA, Martens EC. How glycan metabolism shapes the human gut microbiota. Nat Rev Microbiol. 2012;10:323–35.

  16. 16.

    Cuskin F, Lowe EC, Temple MJ, Zhu Y, Cameron EA, Nicholas A, et al. Human gut Bacteroidetes can utilize yeast mannan through a selfish mechanism. Nature. 2015;517:165–9.

  17. 17.

    Rogowski A, Briggs JA, Mortimer JC, Tryfona T, Terrapon N, Lowe, EC, et al. Glycan complexity dictates microbial resource allocation in the large intestine. Nat Commun. 2015;

  18. 18.

    Leth ML, Ejby M, Workman C, Ewald DA, Pedersen SS, Sternberg C, et al. Differential bacterial capture and transport preferences facilitate co-growth on dietary xylan in the human gut. Nat Microbiol. 2018;3:570–80.

  19. 19.

    Chung WSF, Meijerink M, Zeuner B, Holck J, Louis P, Meyer A, et al. Prebiotic potential of pectin and pectic oligosaccharides to promote anti-inflammatory commensal bacteria in the human colon. FEMS Microbiol Ecol. 2017;

  20. 20.

    Salyers AA, West SE, Vercellotti JR, Wilkins TD. Fermentation of mucins and plant polysaccharides by anaerobic bacteria from the human colon. Appl Environ Microbiol. 1977;34:529–33.

  21. 21.

    Lopez-Siles M, Khan TM, Duncan SH, Harmsen HJM, Garcia-Gil LJ, Flint HJ. Cultured representatives of two major phylogroups of human colonic Faecalibacterium prausnitzii can utilize pectin, uronic acids, and host-derived substrates for growth. Appl Environ Microbiol. 2012;78:420–8.

  22. 22.

    Kim CC, Kelly WJ, Patchett ML, Tannock GW, Jordens Z, Stoklosinski HM, et al. Monoglobus pectinilyticus gen. nov., sp. nov., a pectinolytic bacterium isolated from human faeces. Int J Syst Evol Microbiol. 2017;

  23. 23.

    Flint HJ, Bayer EA, Rincon MT, Lamed R, White BA. Polysaccharide utilization by gut bacteria: potential for new insights from genomic analysis. Nat Rev Microbiol. 2008;6:121–31.

  24. 24.

    Bankevich A, Nurk S, Antipov D, Gurevich A, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19:455–77.

  25. 25.

    Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30:2068–9.

  26. 26.

    Lombard V, Ramulu HG, Drula E, Coutinho PM, Henrissat B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 2013;42:D490–D495.

  27. 27.

    Hugouvieux-Cotte-Pattat N, Condemine G, Shevchik VE. Bacterial pectate lyases, structural and functional diversity. Environ Microbiol Rep. 2014;

  28. 28.

    Cid M, Pedersen HL, Kaneko S, Coutinho PM, Henrissat B, Willats WGT, et al. Recognition of the helical structure of β-1,4-galactan by a new family of carbohydrate-binding modules. J Biol Chem. 2010;285:25999–6009.

  29. 29.

    Peer A, Smith SP, Bayer EA, Lamed R, Borovok I. Noncellulosomal cohesin- and dockerin-like modules in the three domains of life. FEMS Microbiol Lett. 2009;291:1–16.

  30. 30.

    Adelsberger H, Hertel C, Glawischnig E, Zverlov VV, Schwarz WH. Enzyme system of Clostridium stercorarium for hydrolysis of arabinoxylan: reconstitution of the in vivo system from recombinant enzymes. Microbiology. 2004;150:2257–66.

  31. 31.

    Ali E, Araki R, Zhao G, Sakka M, Karita S, Kimura T, et al. Functions of family 22 carbohydrate-binding modules in Clostridium josui Xyn10A. Biosci Biotechnol Biochem. 2005;69:2389–94.

  32. 32.

    Conway JM, Pierce WS, Le JH, Harper GW, Wright JH, Tucker AL, et al. Multi-domain, surface layer associated glycoside hydrolases contribute to plant polysaccharide degradation by Caldicellulosiruptor species. J Biol Chem. 2016;

  33. 33.

    Fuchs KP, Zverlov VV, Velikodvorskaya GA, Lottspeich F, Schwarz WH. Lic16A of Clostridium thermocellum, a non-cellulosomal, highly complex endo-β-1,3-glucanase bound to the outer cell surface. Microbiology. 2003;149:1021–31.

  34. 34.

    Han YJ, Agarwal V, Dodd D, Kim J, Bae B, Mackie RI, et al. Biochemical and structural insights into xylan utilization by the thermophilic bacterium Caldanaerobius polysaccharolyticus. J Biol Chem. 2012;287:34946–60.

  35. 35.

    Hung KS, Liu SM, Fang TY, Tzou WS, Lin FP, Sun KH, et al. Characterization of a salt-tolerant xylanase from Thermoanaerobacterium saccharolyticum NTOU1. Biotechnol Lett. 2011;33:1441–7.

  36. 36.

    Huang X, Li Z, Du C, Wang J, Li S. Improved expression and characterization of a multidomain xylanase from Thermoanaerobacterium aotearoense SCUT27 in Bacillus subtills. J Agric Food Chem. 2015;63:6430–9.

  37. 37.

    Itoh T, Sugimoto I, Hibi T, Suzuki F, Matsuo K, Fujii Y, et al. Overexpression, purification, and characterization of Paenibacillus cell surface-expressed chitinase ChiW with two catalytic domains. Biosci Biotechnol Biochem. 2014;78:624–34.

  38. 38.

    Lee SP, Morikawa M, Takagi M, Imanaka T. Cloning of the aapT gene and characterization of its product, α-amylase-pullulanase (AapT), from Thermophilic and alkaliphilic Bacillus sp strain Xal601. Appl Environ Microbiol. 1994;60:3764–73.

  39. 39.

    St John FJ, Preston JF, Pozharski E. Novel structural features of xylanase A1 from Paenibacillus sp JDR-2. 2012. J Struct Biol. 2012;180:303–11.

  40. 40.

    Waeonukul R, Pason P, Kyu KL, Sakka K, Kosugi A, Mori Y, et al. Cloning, sequencing, and expression of the gene encoding a multidomain endo-β-1,4-xylanase from Paenibacillus curdlanolyticus B-6, and characterization of the recombinant enzyme. J Microbiol Biotechnol. 2009;19:277–85.

  41. 41.

    Fagan RP, Fairweather NF. Biogenesis and functions of bacterial S-layers. Nat Rev Microbiol. 2014;12:211–22.

  42. 42.

    Ozdemir I, Blumer-Schuette SE, Kelly RM. S-layer homology domain proteins Csac_0678 and Csac_2722 are implicated in plant polysaccharide deconstruction by the extremely thermophilic bacterium Caldicellulosiruptor saccharolyticus. Appl Environ Microbiol. 2012;78:768–77.

  43. 43.

    Fraser JS, Yu Z, Maxwell KL, Davidson AR. Ig-like domains on bacteriophages: a tale of promiscuity and deceit. J Mol Biol. 2006;359:496–507.

  44. 44.

    Kataeva IA, Seidel RD, Shah A, West LT, Li XL, Ljungdahl LG. The fibronectin type 3-like repeat from the Clostridium thermocellum cellobiohydrolase CdhA promotes hydrolysis of cellulose by modifying its surface. Appl Environ Microbiol. 2002;68:4294–4300.

  45. 45.

    Meile L, Rohr LM, Geissmann TA, Herensperger M, Teuber M. Characterization of the D-xylulose 5-phosphate/D-fructose 6-phosphate phosphoketolase gene (xfp) from Bifidobacterium lactis. J Bacteriol. 2002;183:2929–36.

  46. 46.

    Yin X, Chambers JR, Barlow K, Park AS, Wheatcroft R. The gene encoding xylulose-5-phosphate/fructose-6-phosphate phosphoketolase (xfp) is conserved among Bifidobacterium species within a more variable region of the genome and both are useful for strain identification. FEMS Microbiol Lett. 2005;246:251–7.

  47. 47.

    Tanaka K, Komiyama A, Sonomoto K, Ishizaki A, Hall SJ, Stanbury PF. Two different pathways for D-xylose metabolism and the effect of xylose concentration on the yield coefficient of L-lactate in mixed-acid fermentation by the lactic acid bacterium Lactococcus lactis IO-1. Appl Microbiol Biotechnol. 2002;60:160–7.

  48. 48.

    Okano K, Yoshida S, Yamada R, Tanaka T, Ogino C, Fukuda H, et al. Improved production of homo-D-lactic acid via xylose fermentation by introduction of xylose assimilation genes and redirection of the phosphoketolase pathway to the pentose phosphate pathway in L-lactate dehydrogenase gene-deficient Lactobacillus plantarum. Appl Environ Microbiol. 2009;75:7858–61.

  49. 49.

    Liu L, Zhang L, Tang W, Gu Y, Hua Q, Yang S, et al. Phosphoketolase pathway for xylose catabolism in Clostridium acetobutylicum revealed by 13C metabolic flux analysis. J Bacteriol. 2012;194:5413–22.

  50. 50.

    Sund CJ, Liu S, Germane KL, Servinsky MD, Gerlach ES, Hurley MM. Phosphoketolase flux in Clostridium acetobutylicum during growth on L-arabinose. Microbiology. 2015;161:430–40.

  51. 51.

    Servinsky MD, Germane KL, Liu S, Kiel JT, Clark AM, Shankar J, et al. Arabinose is metabolized via a phosphoketolase pathway in Clostridium acetobutylicum ATCC 824. Ind Microbiol Biotechnol. 2012;39:1859–67.

  52. 52.

    Nataf Y, Bahari L, Kahel-Raifer H, Borovok I, Lamed R, Bayer EA, et al. Clostridium thermocellum cellulosomal genes are regulated by extracytoplasmic polysaccharides via alternative sigma factors. Proc Natl Acad Sci USA. 2010;107:18646–51.

  53. 53.

    Fichant G, Basse MJ, Quentin Y. ABCdb: an online resource for ABC transporter repertories from sequenced archaeal and bacterial genomes. FEMS Microbiol Lett. 2006;256:333–9.

  54. 54.

    Mukhopadhya I, Morais S, Laverde-Gomez J, Sheridan PO, Walker AW, Kelly W, et al. Sporulation capability and amylosome conserved among diverse human colonic and rumen isolates of the keystone starch-degrader Ruminococcus bromii. Environ. Microbiol. 2017;

  55. 55.

    Dongowski G, Lorenz A, Anger H. Degradation of pectins with different degrees of esterification by Bacteroides thetaiotaomicron isolated from human gut flora. Appl Environ Microbiol. 2000;66:1321–7.

  56. 56.

    Yadav S, Yadav PK, Yadav D, Yadav KDS. Pectin lyase: a review. Process Biochem. 2009;44:1–10.

  57. 57.

    El Kaoutari A, Armougom F, Gordon JI, Raoult D, Henrissat B. The abundance and variety of carbohydrate-active enzymes in the human gut microbiota. 2013. Nat Rev Microbiol. 2013;11:497–504.

  58. 58.

    Dongowski G, Lorenz A, Proll J. The degree of methylation influences the degradation of pectin in the intestinal tract of rats and in vitro. J Nutr. 2002;132:1935–44.

  59. 59.

    Shevchik VE, Hugouvieux-Cotte-Pattat N. Identification of a bacterial pectin acetyl esterase in Erwinia chrysanthemi 3937. Mol Microbiol. 1997;24:1285–301.

  60. 60.

    Shevchik VE, Hugouvieux-Cotte-Pattat N. PaeX, a second pectin acetylesterase of Erwinia chrysanthemi 3937. J Bacteriol. 2003;185:3091–3100.

  61. 61.

    Sara M. Conserved anchoring mechanisms between crystalline cell surface S-layer proteins and secondary cell wall polymers in Gram-positive bacteria? Trends Microbiol. 2001;9:47–49.

  62. 62.

    Xu Q, Gao W, Ding SY, Kenig R, Shoham Y, Bayer EA, et al. The cellulosome system of Acetivibrio cellulolyticus includes a novel type of adaptor protein and a cell surface anchoring protein. J Bacteriol. 2003;185:4548–57.

  63. 63.

    Artzi L, Morag E, Barak Y, Lamed R, Bayer E. Clostridium clariflavum: key cellulosome players are revealed by proteomic analysis. mBio. 2015;6:e00411–15.

  64. 64.

    Ratanakhanokchai K, Waeonukul R, Pason P, Tachaapaikoon C, Kyu KL, Sakka K, et al. Paenibacillus curdlanolyticus strain B-6 multienzyme complex: a novel system for biomass utilization. In: Matovic MD editor. Biomass Now-Cultivation and Utilization; 2013.

  65. 65.

    MØller MS, Goh YJ, Rasmussen KB, Cypryk W, Celebioglu HU, Klaenhammer TR, et al. An extracellular cell-attached pullulanase confers branched α-glucan utilization in human gut Lactobacillus acidophilus. Appl Environ Microbiol. 2017;83:e00402–17.

  66. 66.

    Sheridan PO, Martin JC, Lawley TD, Browne H, Harris HM, Bernalier-Donadille A, et al. Polysaccharide utilization loci and nutritional specialization in a dominant group of butyrate-producing human colonic Firmicutes. Microbial Genom. 2016;

  67. 67.

    Moraïs S, David YB, Bensoussan L, Duncan SH, Koropatkun NM, Martens EC, et al. Enzymatic profiling of cellulosomal enzymes from the human gut bacterium, Ruminococcus champanellensis, reveals a fine-tuned system for cohesin-dockerin recognition. Environ Microbiol. 2015;

  68. 68.

    Cann I, Bernardi RC, Mackie RI. Cellulose degradation in the human gut: Ruminococcus champanellensis expands the cellulosome paradigm. Environ Microbiol. 2016;

  69. 69.

    Ze X, David YB, Laverde-Gomez JA, Dassa B, Sheridan PO, Duncan SH, et al. Unique organization of extracellular amylases into amylosomes in the resistant starch-utilizing human colonic Firmicutes bacterium Ruminococcus bromii. mBio. 2015;6:e01058–15.

  70. 70.

    Condemine G, Robertbaudouy J. 2-keto-3-deoxygluconate transport system in Erwinia chrysanthemi. J Bacteriol. 1987;169:1972–8.

  71. 71.

    Flamholz A, Noor E, Bar-Even A, Liebermeister W, Milo R. Glycolytic strategy as a trade-off between energy yield and protein cost. Proc Natl Acad Sci USA. 2013;110:10039–44.

  72. 72.

    Richard P, Hilditch S. D-galacturonic acid catabolism in microorganisms and its biotechnological relevance. Appl Microbiol Biotechnol. 2009;82:597–604.

  73. 73.

    Macfarlane S, Macfarlane GT. Regulation of short-chain fatty acid production. Proc Nutr Soc. 2003;62:67–72.

  74. 74.

    Wolfe AJ. The acetate switch. Microbiol Mol Biol Rev. 2005;69:12–50.

  75. 75.

    Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33:1870–4.

  76. 76.

    Saitou N, Nei M. The neighbor-joining method - a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4:406–25.

  77. 77.

    Healey G, Murphy R, Butts C, Brough L, Whelan K, Coad J. Habitual dietary fibre intake influences gut microbiota response to an inulin-type fructan prebiotic: a randomised, double-blind, placebo-controlled, cross-over, human intervention study. Br J Nutr. 2018;

  78. 78.

    Australian Government, National Health and Medical Research Council. Nutrient reference values for Australia and New Zealand. 2006; Available online at:

  79. 79.

    New Zealand Government, Ministry of Health. A focus on nutrition: key findings from the 2008/09 NZ adult nutrition survey. 2011; Available online at:

  80. 80.

    Marlett JA, Cheung TF. Database and quick methods of assessing typical dietary fiber intakes using data for 228 commonly consumed foods. J Am Diet Assoc. 1997;97:1139–51.

  81. 81.

    Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden TL. Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinforma. 2012;13:134.

  82. 82.

    Andrews S FastQC: a quality control tool for high throughput sequence data. 2010; Available online at:

  83. 83.

    Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.

  84. 84.

    O’Connell J, Schulz-Trieglaff O, Carlson E, Hims MM, Gormley NA, Cox AJ. NxTrim: optimized trimming of Illumina mate pair reads. Bioinformatics. 2015;31:2035–7.

  85. 85.

    Boetzer M, Henkel CV, Jansen HJ, Butler D, Pirovano W. Scaffolding pre-assembled contigs using SSPACE. Bioinformatics. 2011;27:578–9.

  86. 86.

    Hyatt D, Chen G, LoCascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinform. 2011;11:119.

  87. 87.

    Jones P, Binns D, Chang HY, Fraser M, Li W, McAnulla C, et al. InterProScan 5: genome-scale protein function classification. Bioinformatics. 2014;30:1236–40.

  88. 88.

    Eddy S, Wheeler T. HMMER user’s guide version 3.1b1. 2013; Available online at:

  89. 89.

    Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 2016;44:D457–D462.

  90. 90.

    Jensen LJ, Julien P, Kuhn M, von Mering C, Muller J, Doerks T, et al. eggNOG: automated construction and annotation of orthologous groups of genes. Nucleic Acids Res. 2008;36:D250–D254.

  91. 91.

    Petersen TN, Brunak S, von Heijne G, Nielsen H. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods. 2011;8:785–6.

  92. 92.

    Krogh A, Larsson B, von Heijne G, Sonnhammer EL. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol. 2001;305:567–80.

  93. 93.

    Lowe TM, Eddy SR. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 1997;25:955–64.

  94. 94.

    Yin Y, Mao X, Yang J, Chen X, Mao F, Xu Y, et al. dbCAN: a web resource for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 2012;40:W445–W451.

  95. 95.

    Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, et al. Clustal W and Clustal X version 2.0. Bioinformatics. 2007;23:2947–8.

  96. 96.

    Chen IA, Markowitz VM, Chu K, Palaniappan K, Szeto E, Pillay M, et al. IMG/M: integrated genome and metagenome comparative data analysis system. Nucleic Acids Res. 2017;45:D507–D516.

  97. 97.

    Grant JR, Stothard P. The CGView Server: a comparative genomics tool for circular genomes. Nucleic Acids Res. 2008;36:W181–W184.

  98. 98.

    Van Domselaar GH, Stothard P, Shrivastava S, Cruz JA, Guo A, Dong X, et al. BASys: a web server for automated bacterial genome annotation. Nucleic Acids Res. 2005;33:W455–W459.

Download references


We thank staff at Macrogen (South Korea) and Massey Genome Service (Palmerston North, New Zealand) for sequencing services; and Martin Middleditch and Leo Payne (University of Auckland, New Zealand) for iTRAQ proteomics analysis. We are grateful to Louise Brough (Massey Institute of Food Science and Technology, School of Food and Nutrition, Massey University, Palmerston North, New Zealand), Chrissie Butts (Department of Food, Nutrition and Health, Plant and Food Research Limited, Palmerston North, New Zealand), Rinki Murphy (Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand), and Jane Coad (Massey Institute of Food Science and Technology, School of Food and Nutrition, Massey University, Palmerston North, New Zealand) for assistance and supervision of the clinical study conducted by GRH during her PhD studies. We thank Peter Janssen at AgResearch Ltd (Grasslands Research Centre, Palmerston North) for providing rumen fluid. We are grateful to David Brummell (Plant and Food Research Limited, Palmerston North) for his valuable advice on pectin structure. This work has been carried out with the financial support of Ministry of Business, Innovation and Employment of New Zealand (‘Foods for Health at Different Life Stages’ C11X1312).

Author contributions

CCK performed all experiments and data analysis related to genome sequencing of M. pectinilyticus. CCK conducted 16S rRNA phylogenetic analysis and quantitative PCR detection of M. pectinilyticus in human faecal samples. GRH designed the clinical study, obtained ethics approval, recruited donors, conducted the study, collected dietary records, and faecal samples, and prepared DNA samples. GH performed the dietary intake analysis. CCK prepared fermented pectin samples, and IMS and TJB assisted with SEC and data analysis. CCK prepared samples for iTRAQ protein quantification, and analysed the data. CCK performed all enzyme phylogeny and metagenome analysis. DH assisted with all statistical analysis used in this study. CAZyme domains were identified by BH using the CAZy database. This study was conceived and supervised by IMS, GWT, WJK, DIR, ZJ, and MLP, and directed by CKK and DIR. All authors contributed to research designing and planning. CCK and DIR wrote the article, with contributions from all other authors.

Author information


  1. The New Zealand Institute for Plant and Food Research, Palmerston North, 4474, New Zealand

    • Caroline C. Kim
    • , Genelle R. Healey
    • , Duncan Hedderley
    •  & Douglas I. Rosendale
  2. Institute of Fundamental Sciences, Massey University, Palmerston North, 4442, New Zealand

    • Caroline C. Kim
    • , Mark L. Patchett
    •  & Zoe Jordens
  3. Massey Institute of Food Science and Technology, School of Food and Nutrition, Massey University, Palmerston North, New Zealand

    • Genelle R. Healey
  4. Donvis Limited, Ashhurst, 4810, New Zealand

    • William J. Kelly
  5. Department of Microbiology and Immunology, Microbiome Otago, University of Otago, Dunedin, 9016, New Zealand

    • Gerald W. Tannock
  6. Ferrier Research Institute, Victoria University of Wellington, Gracefield Research Centre, Lower Hutt, 5040, New Zealand

    • Ian M. Sims
    •  & Tracey J. Bell
  7. Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille University, Marseille, F-13288, France

    • Bernard Henrissat
  8. Institut National de la Recherche Agronomique, USC1408 Architecture et Fonction des Macromolécules Biologiques, Marseille, F-13288, France

    • Bernard Henrissat
  9. Department of Biological Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia

    • Bernard Henrissat


  1. Search for Caroline C. Kim in:

  2. Search for Genelle R. Healey in:

  3. Search for William J. Kelly in:

  4. Search for Mark L. Patchett in:

  5. Search for Zoe Jordens in:

  6. Search for Gerald W. Tannock in:

  7. Search for Ian M. Sims in:

  8. Search for Tracey J. Bell in:

  9. Search for Duncan Hedderley in:

  10. Search for Bernard Henrissat in:

  11. Search for Douglas I. Rosendale in:

Conflict of interest

The authors declare that they have no conflict of interest.

Corresponding authors

Correspondence to Caroline C. Kim or Douglas I. Rosendale.

Supplementary information

About this article

Publication history