The active layer of soil overlaying permafrost in the Arctic is subjected to annual changes in temperature and soil chemistry, which we hypothesize to affect the overall soil microbial community. We investigated changes in soil microorganisms at different temperatures during warming and freezing of the active layer soil from Svalbard, Norway. Soil community data were obtained by direct shotgun sequencing of total extracted RNA. No changes in soil microbial communities were detected when warming from −10 to −2 °C or when freezing from −2 to −10 °C. In contrast, within a few days we observed changes when warming from −2 to +2 °C with a decrease in fungal rRNA and an increase in several OTUs belonging to Gemmatimonadetes, Bacteroidetes and Betaproteobacteria. Even more substantial changes occurred when incubating at 2 °C for 16 days, with declines in total fungal potential activity and decreases in oligotrophic members from Actinobacteria and Acidobacteria. Additionally, we detected an increase in transcriptome sequences of bacterial phyla Bacteriodetes, Firmicutes, Betaproteobacteria and Gammaproteobacteria—collectively presumed to be copiotrophic. Furthermore, we detected an increase in putative bacterivorous heterotrophic flagellates, likely due to predation upon the bacterial community via grazing. Although this grazing activity may explain relatively large changes in the bacterial community composition, no changes in total 16S rRNA gene copy number were observed and the total RNA level remained stable during the incubation. Together, these results are showing the first comprehensive ecological evaluation across prokaryotic and eukaryotic microbial communities on thawing and freezing of soil by application of the TotalRNA technique.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Data availability

Complete OTU tables are available in the Supplementary datasheet. Sequence data generated in this study was deposited in the NCBI Sequence Read Archive and are accessible through accession number SRP124869.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Zhang T, Barry RG, Knowles K, Heginbottom J, Brown J. Statistics and characteristics of permafrost and ground‐ice distribution in the Northern Hemisphere. Polar Geogr. 1999;23:132–54.

  2. 2.

    Hugelius G, Strauss J, Zubrzycki S, Harden JW, Schuur EAG, Ping CL, et al. Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences. 2014;11:6573–93.

  3. 3.

    Siegenthaler U, Sarmiento J. Atmospheric carbon dioxide and the ocean. Nature. 1993;365:119–25.

  4. 4.

    Screen JA, Simmonds I. The central role of diminishing sea ice in recent Arctic temperature amplification. Nature. 2010;464:1334–7.

  5. 5.

    Serreze M, Barrett A, Stroeve J, Kindig D, Holland M. The emergence of surface-based Arctic amplification. Cryosphere. 2009;3:11.

  6. 6.

    Zhang T. Spatial and temporal variability in active layer thickness over the Russian Arctic drainage basin. J Geophys Res. 2005; 110, D16101.

  7. 7.

    Hayes DJ, Kicklighter DW, McGuire AD, Chen M, Zhuang Q, Yuan F, et al. The impacts of recent permafrost thaw on land–atmosphere greenhouse gas exchange. Environ Res Lett. 2014;9:045005.

  8. 8.

    Geisen S, Tveit AT, Clark IM, Richter A, Svenning MM, Bonkowski M, et al. Metatranscriptomic census of active protists in soils. ISME J. 2015;9:2178–90.

  9. 9.

    Pautler BG, Simpson AJ, Mcnally DJ, Lamoureux SF, Simpson MJ. Arctic permafrost active layer detachments stimulate microbial activity and degradation of soil organic matter. Environ Sci Technol. 2010;44:4076–82.

  10. 10.

    Schuur EAG, Bockheim J, Canadell JG, Euskirchen E, Field CB, Goryachkin SV, et al. Vulnerability of permafrost carbon to climate change: implications for the global carbon cycle. BioScience. 2008;58:701.

  11. 11.

    Graham DE, Wallenstein MD, Vishnivetskaya TA, Waldrop MP, Phelps TJ, Pfiffner SM, et al. Microbes in thawing permafrost: the unknown variable in the climate change equation. ISME J. 2012;6:709–12.

  12. 12.

    Bradley JA, Arndt S, Šabacká M, Benning LG, Barker GL, Blacker JJ, et al. Microbial dynamics in a high Arctic glacier forefield: a combined field, laboratory, and modelling approach. Biogeosciences. 2016;13:5677–96.

  13. 13.

    Chu H, Fierer N, Lauber CL, Caporaso J, Knight R, Grogan P. Soil bacterial diversity in the Arctic is not fundamentally different from that found in other biomes. Environ Microbiol. 2010;12:2998–3006.

  14. 14.

    Neufeld JD, Mohn WW. Unexpectedly high bacterial diversity in arctic tundra relative to boreal forest soils, revealed by serial analysis of ribosomal sequence tags. Appl Environ Microbiol. 2005;71:5710–8.

  15. 15.

    Tedersoo L, Bahram M, Põlme S, Kõljalg U, Yorou NS, Wijesundera R, et al. Global diversity and geography of soil fungi. science. 2014;346:1256688.

  16. 16.

    Timling I, Walker DA, Nusbaum C, Lennon NJ, Taylor DL. Rich and cold: diversity, distribution and drivers of fungal communities in patterned-ground ecosystems of the North American Arctic. Microb Ecol. 2014;23:3258–72.

  17. 17.

    Jefferies RL, Walker NA, Edwards KA, Dainty J. Is the decline of soil microbial biomass in late winter coupled to changes in the physical state of cold soils? Soil Biol Biochem. 2010;42:129–35.

  18. 18.

    Larsen KS, Grogan P, Jonasson S, Michelsen A. Respiration and microbial dynamics in two subarctic ecosystems during winter and spring thaw: effects of increased snow depth. Arct Antarct Alp Res. 2007;39:268–76.

  19. 19.

    Lipson D, Schadt C, Schmidt S. Changes in soil microbial community structure and function in an alpine dry meadow following spring snow melt. Microb Ecol. 2002;43:307–14.

  20. 20.

    Schadt CW, Martin AP, Lipson DA, Schmidt SK. Seasonal dynamics of previously unknown fungal lineages in tundra soils. science. 2003;301:1359–61.

  21. 21.

    McMahon SK, Wallenstein MD, Schimel JP. A cross-seasonal comparison of active and total bacterial community composition in Arctic tundra soil using bromodeoxyuridine labeling. Soil Biol Biochem. 2011;43:287–95.

  22. 22.

    Schostag M, Stibal M, Jacobsen CS, Bælum J, Taş N, Elberling B, et al. Distinct summer and winter bacterial communities in the active layer of Svalbard permafrost revealed by DNA-and RNA-based analyses. Front Microbiol. 2015;6:399.

  23. 23.

    Zifcakova L, Vetrovsky T, Howe A, Baldrian P. Microbial activity in forest soil reflects the changes in ecosystem properties between summer and winter. Environ Microbiol. 2016;18:288–301.

  24. 24.

    Kumar N, Grogan P, Chu H, Christiansen CT, Walker VK. The effect of freeze-thaw conditions on arctic soil bacterial communities. Biol (Basel). 2013;2:356–77.

  25. 25.

    Männistö MK, Tiirola M, Häggblom MM. Effect of freeze-thaw cycles on bacterial communities of Arctic tundra soil. Microb Ecol. 2009;58:621–31.

  26. 26.

    Schimel JP, Clein JS. Microbial response to freeze-thaw cycles in tundra and taiga soils. Soil Biol Biochem. 1996;28:1061–6.

  27. 27.

    Fierer N, Bradford MA, Jackson RB. Toward an ecological classification of soil bacteria. Ecology. 2007;88:1354–64.

  28. 28.

    Fierer N, Lauber CL, Ramirez KS, Zaneveld J, Bradford MA, Knight R. Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients. ISME J. 2012;6:1007–17.

  29. 29.

    Nemergut DR, Cleveland CC, Wieder WR, Washenberger CL, Townsend AR. Plot-scale manipulations of organic matter inputs to soils correlate with shifts in microbial community composition in a lowland tropical rain forest. Soil Biol Biochem. 2010;42:2153–60.

  30. 30.

    Philippot L, Andersson SG, Battin TJ, Prosser JI, Schimel JP, Whitman WB, et al. The ecological coherence of high bacterial taxonomic ranks. Nat Rev Microbiol. 2010;8:523–9.

  31. 31.

    Ramirez KS, Craine JM, Fierer N. Consistent effects of nitrogen amendments on soil microbial communities and processes across biomes. Glob Chang Biol. 2012;18:1918–27.

  32. 32.

    Stewart EJ. Growing unculturable bacteria. J Bacteriol. 2012;194:4151–60.

  33. 33.

    Jacquiod S, Stenbæk J, Santos SS, Winding A, Sørensen SJ, Priemé A. Metagenomes provide valuable comparative information on soil microeukaryotes. Res Microbiol. 2016;167:436–50.

  34. 34.

    Carini P, Marsden PJ, Leff JW, Morgan EE, Strickland MS, Fierer N. Relic DNA is abundant in soil and obscures estimates of soil microbial diversity. Nat Microbiol. 2016;2:16242.

  35. 35.

    Blazewicz SJ, Barnard RL, Daly RA, Firestone MK. Evaluating rRNA as an indicator of microbial activity in environmental communities: limitations and uses. ISME J. 2013;7:2061–8.

  36. 36.

    Urich T, Lanzén A, Qi J, Huson DH, Schleper C, Schuster SC. Simultaneous assessment of soil microbial community structure and function through analysis of the meta-transcriptome. PLoS One. 2008;3:e2527.

  37. 37.

    Tveit A, Schwacke R, Svenning MM, Urich T. Organic carbon transformations in high-Arctic peat soils: key functions and microorganisms. ISME J. 2013;7:299–311.

  38. 38.

    Hultman J, Waldrop MP, Mackelprang R, David MM, McFarland J, Blazewicz SJ, et al. Multi-omics of permafrost, active layer and thermokarst bog soil microbiomes. Nature. 2015;521:208–12.

  39. 39.

    Kirtman B, Power S, Adedoyin A, Boer G, Bojariu R, Camilloni I et al. Near-term climate change: projections and predictability. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, et al.(eds.) Climate Change: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA 2013.

  40. 40.

    Rønn R, McCaig AE, Griffiths BS, Prosser JI. Impact of protozoan grazing on bacterial community structure in soil microcosms. Appl Environ Microbiol. 2002;68:6094–105.

  41. 41.

    Ingólfsson Ó. Fingerprints of Quaternary glaciations on Svalbard. Geol Soc Spec Publ. 2011;354:15–31.

  42. 42.

    Bang-Andreasen T, Schostag M, Priemé A, Elberling B, Jacobsen CS. Potential microbial contamination during sampling of permafrost soil assessed by tracers. Sci Rep. 2017;7:43338.

  43. 43.

    Lane D. 16S/23S rRNA sequencing. Nucleic acid techniques in bacterial systematics: Edited by E. Stackebrandt & M. Goodfellow. Chichester: Wiley. 125–75, 1991.

  44. 44.

    Kopylova E, Noé L, Touzet H. SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics. 2012;28:3211–7.

  45. 45.

    Bengtsson-Palme J, Hartmann M, Eriksson KM, Pal C, Thorell K, Larsson DG, et al. METAXA2: improved identification and taxonomic classification of small and large subunit rRNA in metagenomic data. Mol Ecol Resour. 2015;15:1403–14.

  46. 46.

    Jacquiod S, Brejnrod A, Morberg SM, Abu Al‐Soud W, Sørensen SJ, Riber L. Deciphering conjugative plasmid permissiveness dynamics in wastewater microbiomes. Microb Ecol 2017;26:3556–3571.

  47. 47.

    Team Rc. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2013. p. 2013.

  48. 48.

    Hammer Ø, Harper D, Ryan P. PAST-palaeontological statistics, ver. 1.89. Palaeontol Electronica. 2001;4:1–9.

  49. 49.

    Oksanen J, Kindt R, Legendre P, O’Hara B, Stevens MHH, Oksanen MJ, et al. The vegan package. Community Ecol Package. 2007;10:631–7.

  50. 50.

    Dray S, Dufour A-B. The ade4 package: implementing the duality diagram for ecologists. J Stat Softw. 2007;22:1–20.

  51. 51.

    Robinson MD, McCarthy DJ, Smyth GK. edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–40.

  52. 52.

    Warnes GR, Bolker B, Bonebakker L, Gentleman R, Huber W, Liaw A et al. gplots: Various R programming tools for plotting data. R package version 2, 2009. https://CRAN.R-project.org/package=gplots.

  53. 53.

    Juggins S (2009). rioja: analysis of Quaternary science data. R package version 0.5-6. http://cranr-projectorg/package=rioja.

  54. 54.

    Neuwirth E. RColorBrewer: ColorBrewer palettes. R package version 1, 2011. https://cran.rproject.org/web/packages/RColorBrewer/.

  55. 55.

    Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335–6.

  56. 56.

    Langille MG, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol. 2013;31:814–21.

  57. 57.

    Tuorto SJ, Darias P, McGuinness LR, Panikov N, Zhang T, Haggblom MM, et al. Bacterial genome replication at subzero temperatures in permafrost. ISME J. 2014;8:139–49.

  58. 58.

    Nikrad MP, Kerkhof LJ, Häggblom MM. The subzero microbiome: microbial activity in frozen and thawing soils. FEMS Microbiol Ecol. 2016;92:fiw081.

  59. 59.

    Coolen MJ, van de Giessen J, Zhu EY, Wuchter C. Bioavailability of soil organic matter and microbial community dynamics upon permafrost thaw. Environ Microbiol. 2011;13:2299–314.

  60. 60.

    Deng J, Gu Y, Zhang J, Xue K, Qin Y, Yuan M, et al. Shifts of tundra bacterial and archaeal communities along a permafrost thaw gradient in Alaska. Microb Ecol. 2015;24:222–34.

  61. 61.

    Mackelprang R, Waldrop MP, DeAngelis KM, David MM, Chavarria KL, Blazewicz SJ, et al. Metagenomic analysis of a permafrost microbial community reveals a rapid response to thaw. Nature. 2011;480:368–71.

  62. 62.

    Placella SA, Brodie EL, Firestone MK. Rainfall-induced carbon dioxide pulses result from sequential resuscitation of phylogenetically clustered microbial groups. Proc Natl Acad Sci USA. 2012;109:10931–6.

  63. 63.

    Cleveland CC, Nemergut DR, Schmidt SK, Townsend AR. Increases in soil respiration following labile carbon additions linked to rapid shifts in soil microbial community composition. Biogeochemistry. 2007;82:229–40.

  64. 64.

    Onyenwoke RU, Brill JA, Farahi K, Wiegel J. Sporulation genes in members of the low G + C Gram-type-positive phylogenetic branch (Firmicutes). Arch Microbiol. 2004;182:182–92.

  65. 65.

    Paredes CJ, Alsaker KV, Papoutsakis ET. A comparative genomic view of clostridial sporulation and physiology. Nat Rev Microbiol. 2005;3:969–78.

  66. 66.

    Chambon P, Deutscher. MP, Kornberg. A. Biochemical studies of bacterial sporulation and germination X. Ribosomes and nucleic acids of vegetative cells and spores of bacillus megaterium. J Biol Chem. 1968;243:5110–6.

  67. 67.

    Jones RT, Robeson MS, Lauber CL, Hamady M, Knight R, Fierer N. A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses. ISME J. 2009;3:442–53.

  68. 68.

    Kielak AM, Barreto CC, Kowalchuk GA, van Veen JA, Kuramae EE. The ecology of Acidobacteria: moving beyond genes and genomes. Front Microbiol. 2016;7:744

  69. 69.

    Eilers KG, Lauber CL, Knight R, Fierer N. Shifts in bacterial community structure associated with inputs of low molecular weight carbon compounds to soil. Soil Biol Biochem. 2010;42:896–903.

  70. 70.

    Pan Y, Cassman N, de Hollander M, Mendes LW, Korevaar H, Geerts RH, et al. Impact of long-term N, P, K, and NPK fertilization on the composition and potential functions of the bacterial community in grassland soil. FEMS Microbiol Ecol. 2014;90:195–205.

  71. 71.

    Buelow HN, Winter AS, Van Horn DJ, Barrett JE, Gooseff MN, Schwartz E, et al. Microbial Community Responses to Increased Water and Organic Matter in the Arid Soils of the McMurdo Dry Valleys, Antarctica. Front Microbiol. 2016;7:1040.

  72. 72.

    Lazzaro A, Brankatschk R, Zeyer J. Seasonal dynamics of nutrients and bacterial communities in unvegetated alpine glacier forefields. Appl Soil Ecol. 2012;53:10–22.

  73. 73.

    Aanderud ZT, Lennon JT. Validation of heavy-water stable isotope probing for the characterization of rapidly responding soil bacteria. Appl Environ Microbiol. 2011;77:4589–96.

  74. 74.

    Nunes I, Jacquiod S, Brejnrod A, Holm PE, Johansen A, Brandt KK et al. Coping with copper: legacy effect of copper on potential activity of soil bacteria following a century of exposure. FEMS Microbiol Ecol. 2016;92:fiw175.

  75. 75.

    Barnard RL, Osborne CA, Firestone MK. Responses of soil bacterial and fungal communities to extreme desiccation and rewetting. ISME J. 2013;7:2229–41.

  76. 76.

    LeBlanc JC, Gonçalves ER, Mohn WW. Global response to desiccation stress in the soil actinomycete Rhodococcus jostii RHA1. Appl Environ Microbiol. 2008;74:2627–36.

  77. 77.

    McHugh TA, Koch GW, Schwartz E. Minor changes in soil bacterial and fungal community composition occur in response to monsoon precipitation in a semiarid grassland. Microb Ecol. 2014;68:370–8.

  78. 78.

    Zhang H, Sekiguchi Y, Hanada S, Hugenholtz P, Kim H, Kamagata Y, et al. Gemmatimonas aurantiaca gen. nov., sp. nov., a Gram-negative, aerobic, polyphosphate-accumulating micro-organism, the first cultured representative of the new bacterial phylum Gemmatimonadetes phyl. nov. Int J Syst Evol Microbiol. 2003;53:1155–63.

  79. 79.

    Wilhelm RC, Niederberger TD, Greer C, Whyte LG. Microbial diversity of active layer and permafrost in an acidic wetland from the Canadian High Arctic. Can J Microbiol. 2011;57:303–15.

  80. 80.

    Deutscher MP. Degradation of stable RNA in bacteria. J Biol Chem. 2003;278:45041–4.

  81. 81.

    Klappenbach JA, Dunbar JM, Schmidt TM. rRNA operon copy number reflects ecological strategies of bacteria. Appl Environ Microbiol. 2000;66:1328–33.

  82. 82.

    Roller BR, Stoddard SF, Schmidt TM. Exploiting rRNA operon copy number to investigate bacterial reproductive strategies. Nat Microbiol. 2016;1:16160.

  83. 83.

    Nemergut DR, Knelman JE, Ferrenberg S, Bilinski T, Melbourne B, Jiang L, et al. Decreases in average bacterial community rRNA operon copy number during succession. ISME J. 2016;10:1147–56.

  84. 84.

    Shrestha PM, Noll M, Liesack W. Phylogenetic identity, growth-response time and rRNA operon copy number of soil bacteria indicate different stages of community succession. Environ Microbiol. 2007;9:2464–74.

  85. 85.

    Rønn R, Vestergård M, Ekelund F. Interactions between bacteria, protozoa and nematodes in soil. Acta Protozool. 2015;51:223–35.

  86. 86.

    Harder CB, Ekelund F, Karpov SA. Ultrastructure and phylogenetic position of Regin rotiferus and Otto terricolus genera et species novae (Bicosoecida, Heterokonta/Stramenopiles). Protist. 2014;165:144–60.

  87. 87.

    Harder CB, Rønn R, Brejnrod A, Bass D, Al-Soud WA, Ekelund F. Local diversity of heathland Cercozoa explored by in-depth sequencing. ISME J. 2016;10:2488–2497.

  88. 88.

    Howe AT, Bass D, Vickerman K, Chao EE, Cavalier-Smith T. Phylogeny, taxonomy, and astounding genetic diversity of Glissomonadida ord. nov., the dominant gliding zooflagellates in soil (Protozoa: Cercozoa). Protist. 2009;160:159–89.

  89. 89.

    Ekelund F, Rønn R. Notes on protozoa in agricultural soil with emphasis on heterotrophic flagellates and naked amoebae and their ecology. FEMS Microbiol Rev. 1994;15:321–53.

  90. 90.

    Fenchel T (2013). Ecology of Protozoa: The biology of free-living phagotropic protists. Springer-Verlag. Berlin.

  91. 91.

    Altenburger A, Ekelund F, Jacobsen CS. Protozoa and their bacterial prey colonize sterile soil fast. Soil Biol Biochem. 2010;42:1636–9.

  92. 92.

    Ekelund F, Frederiksen HB, Ronn R. Population dynamics of active and total ciliate populations in arable soil amended with wheat. Appl Environ Microbiol. 2002;68:1096–101.

  93. 93.

    Ekelund F, Saj S, Vestergård M, Bertaux J, Mikola J. The “soil microbial loop” is not always needed to explain protozoan stimulation of plants. Soil Biol Biochem. 2009;41:2336–42.

  94. 94.

    Pedersen AL, Winding A, Altenburger A, Ekelund F. Protozoan growth rates on secondary-metabolite-producing Pseudomonas spp. correlate with high-level protozoan taxonomy. FEMS Microbiol Lett. 2011;316:16–22.

  95. 95.

    Choma M, Barta J, Santruckova H, Urich T. Low abundance of Archaeorhizomycetes among fungi in soil metatranscriptomes. Sci Rep. 2016;6:38455.

  96. 96.

    Gittel A, Barta J, Kohoutova I, Mikutta R, Owens S, Gilbert J, et al. Distinct microbial communities associated with buried soils in the Siberian tundra. ISME J. 2014;8:841–53.

  97. 97.

    Frey S, Elliott E, Paustian K. Bacterial and fungal abundance and biomass in conventional and no-tillage agroecosystems along two climatic gradients. Soil Biol Biochem. 1999;31:573–85.

  98. 98.

    Beare M, Hu S, Coleman D, Hendrix P. Influences of mycelial fungi on soil aggregation and organic matter storage in conventional and no-tillage soils. Appl Soil Ecol. 1997;5:211–9.

  99. 99.

    Shamlou PA, Makagiansar H, Ison A, Lilly M, Thomas C. Turbulent breakage of filamentous microorganisms in submerged culture in mechanically stirred bioreactors. Chem Eng Sci. 1994;49:2621–31.

  100. 100.

    Hanson CA, Allison SD, Bradford MA, Wallenstein MD, Treseder KK. Fungal taxa target different carbon sources in forest soil. Ecosystems. 2008;11:1157–67.

  101. 101.

    Richardson M. The ecology of the Zygomycetes and its impact on environmental exposure. Clin Microbiol Infect. 2009;15:2–9.

  102. 102.

    Schmidt SK, Wilson KL, Meyer AF, Gebauer MM, King AJ. Phylogeny and ecophysiology of opportunistic “snow molds” from a subalpine forest ecosystem. Microb Ecol. 2008a;56:681–7.

  103. 103.

    Shanthi S, Vittal BPR. Fungi associated with decomposing leaf litter of cashew (Anacardium occidentale). Mycology. 2010;1:121–9.

  104. 104.

    Lindahl BD, de Boer W, Finlay RD. Disruption of root carbon transport into forest humus stimulates fungal opportunists at the expense of mycorrhizal fungi. ISME J. 2010;4:872–81.

  105. 105.

    Schmidt SK, Wilson KL, Monson RK, Lipson DA. Exponential growth of “snow molds” at sub-zero temperatures: an explanation for high beneath-snow respiration rates and Q 10 values. Biogeochemistry. 2008b;95:13–21.

  106. 106.

    Tsuji M, Uetake J, Tanabe Y. Changes in the fungal community of Austre Brøggerbreen deglaciation area, Ny-Ålesund, Svalbard, High Arctic. Mycoscience. 2016;57:448–51.

  107. 107.

    Perez J, Munoz-Dorado J, de la Rubia T, Martinez J. Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview. Int Micro. 2002;5:53–63.

  108. 108.

    Eichorst SA, Kuske CR, Schmidt TM. Influence of plant polymers on the distribution and cultivation of bacteria in the phylum Acidobacteria. Appl Environ Microbiol. 2011;77:586–96.

  109. 109.

    Rawat SR, Mannisto MK, Bromberg Y, Haggblom MM. Comparative genomic and physiological analysis provides insights into the role of Acidobacteria in organic carbon utilization in Arctic tundra soils. FEMS Microbiol Ecol. 2012;82:341–55.

  110. 110.

    Vetrovsky T, Steffen KT, Baldrian P. Potential of cometabolic transformation of polysaccharides and lignin in lignocellulose by soil Actinobacteria. PLoS One. 2014;9:e89108.

  111. 111.

    Warren R. Microbial hydrolysis of polysaccharides. Annu Rev Microbiol. 1996;50:183–212.

  112. 112.

    Padmanabhan P, Padmanabhan S, DeRito C, Gray A, Gannon D, Snape J, et al. Respiration of 13C-labeled substrates added to soil in the field and subsequent 16S rRNA gene analysis of 13C-labeled soil DNA. Appl Environ Microbiol. 2003;69:1614–622.

Download references


This work was supported by the Danish National Research Foundation (CENPERM DNRF100), Danish Geocenter for sequencing funding, Danish Council for Independent Research (DFF-4002-00274) and the EU MSC Action 675546: MicroArctic. The authors thank Pia Bach Jacobsen for help and technical support in the laboratory, Samuel Faucherre for sampling the soil core, and Annelise Kjøller for discussions on the fungal community changes. The authors would also like to thank Martin Asser Hansen for bioinformatics support.

Author information


  1. Department of Geosciences and Natural Resource Management, Center for Permafrost, University of Copenhagen, Copenhagen, Denmark

    • Morten Schostag
    • , Anders Priemé
    •  & Carsten Suhr Jacobsen
  2. Department of Biology, University of Copenhagen, Copenhagen, Denmark

    • Morten Schostag
    • , Anders Priemé
    • , Samuel Jacquiod
    • , Jakob Russel
    •  & Flemming Ekelund
  3. Geological Survey of Denmark and Greenland, Copenhagen, Denmark

    • Morten Schostag
    •  & Carsten Suhr Jacobsen
  4. INRA Dijon, UMR1347 Agroécologie, Dijon, France

    • Samuel Jacquiod
  5. Department of Environmental Science, Aarhus University, Roskilde, Denmark

    • Carsten Suhr Jacobsen


  1. Search for Morten Schostag in:

  2. Search for Anders Priemé in:

  3. Search for Samuel Jacquiod in:

  4. Search for Jakob Russel in:

  5. Search for Flemming Ekelund in:

  6. Search for Carsten Suhr Jacobsen in:

Conflict of interest

The authors declare that they have no conflict of interest.

Corresponding author

Correspondence to Carsten Suhr Jacobsen.

Supplementary information

About this article

Publication history