Article | Published:

Effects of the captive and wild environment on diversity of the gut microbiome of deer mice (Peromyscus maniculatus)

The ISME Journal (2019) | Download Citation

Abstract

Vertebrate gastrointestinal tracts have co-existed with microbes over millennia. These microbial communities provide their host with numerous benefits. However, the extent to which different environmental factors contribute to the assemblage of gut microbial communities is not fully understood. The purpose of this study was to determine how the external environment influences the development of gut microbiome communities (GMCs). Faecal samples were collected from deer mice (Peromyscus maniculatus) born and raised in captivity and the wild at approximately 3–5 weeks of age. Additional samples were collected 2 weeks later, with a subset of individuals being translocated between captive and wild environments. Microbial data were analysed using 16S rRNA next-generation Illumina HiSeq sequencing methods. GMCs of deer mice were more similar between neighbours who shared the same environment, regardless of where an individual was born, demonstrating that GMCs are significantly influenced by the surrounding environment and can rapidly change over time. Mice in natural environments contained more diverse GMCs with higher relative abundances of Ruminoccocaceae, Helicobacteraceae and Lachnospiraceae spp. Future studies should examine the fitness consequences associated with the presence/absence of microbes that are characteristic of GMCs of wild populations to gain a better understanding of environment–microbe–host evolutionary and ecological relationships.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Bäckhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI. Host-bacterial mutualism in the human intestine. Science. 2005;307:1915–20.

  2. 2.

    Manson JM, Rauch M, Gilmore MS. The commensal microbiology of the gastrointestinal tract. Adv Exp Med Biol. 2008;7:15–28.

  3. 3.

    O’Hara AM, Shanahan F. The gut flora as a forgotten organ. EMBO Rep. 2006;7:688–93.

  4. 4.

    Round JL, Mazmanian SK. The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol. 2009;9:313–23.

  5. 5.

    Xu J, Gordon JI. Honor thy symbionts. Proc Natl Acad Sci USA. 2003;100:10452–9.

  6. 6.

    Hooper LV. Bacterial contributions to mammalian gut development. Trends Microbiol. 2004;12:129–34.

  7. 7.

    Hooper LV, Littman DR, Macpherson AJ, Program MP. Interactions between the microbiota and the immune system. Science. 2015;336:1268–73.

  8. 8.

    Ley RE, Hamady M, Lozupone C, Turnbaugh PJ, Ramey RR, Bircher JS, et al. Evolution of mammals and their gut microbes. Science. 2008;320:1647–51.

  9. 9.

    Muegge BD, Kuczynski J, Knights D, Clemente JC, González A, Fontana L, et al. Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science. 2011;332:970–4.

  10. 10.

    Wang J, Linnenbrink M, Künzel S, Fernandes R, Nadeau M, Rosenstiel P, et al. Dietary history contributes to enterotype-like clustering and functional metagenomic content in the intestinal microbiome of wild mice. Proc Natl Acad Sci USA. 2014;111:e2703–10.

  11. 11.

    Gavish Y, Kedem H, Messika I, Cohen C, Toh E, Munro D, et al. Association of host and microbial species diversity across spatial scales in desert rodent communities. PLoS ONE. 2014;9:1–9.

  12. 12.

    Koch H, Schmid-hempel P. Socially transmitted gut microbiota protect bumble bees against an intestinal parasite. Proc Natl Acad Sci USA. 2011;108:19288–92.

  13. 13.

    Lankau EW, Hong P, Mackie RI. Ecological drift and local exposures drive enteric bacterial community differences within species of Galápagos iguanas. Mol Ecol. 2012;21:1779–88.

  14. 14.

    Linnenbrink M, Wang J, Hardouin Ea, Künzel S, Metzler D, Baines JF. The role of biogeography in shaping diversity of the intestinal microbiota in house mice. Mol Ecol. 2013;22:1904–16.

  15. 15.

    Maurice CF, Knowles SC, Ladau J, Pollard KS, Fenton A, Pedersen AB, et al. Marked seasonal variation in the wild mouse gut microbiota. ISME J. 2015;9:2423–34.

  16. 16.

    Smits SA, Leach J, Sonnenburg ED, Gonzalez CG, Lichtman JS, Reid G. et al. Seasonal cycling in the gut microbiome of the Hadza hunter-gatherers of Tanzania. Science. 2017;806:1–18.

  17. 17.

    Friswell MK, Gika H, Stratford IJ, Theodoridis G, Telfer B, Wilson ID, et al. Site and strain-specific variation in gut microbiota profiles and metabolism in experimental mice. PLoS ONE. 2010;5:e8584.

  18. 18.

    Lucas FS, Heeb P. Environmental factors shape cloacal bacterial assemblages in great tit Parus major and blue tit P. caeruleus nestlings. J Avian Biol. 2005;36:510–6.

  19. 19.

    Neu J. Perinatal and neonatal manipulation of the intestinal microbiome: a note of caution. Nutr Rev. 2007;65:282–5.

  20. 20.

    Clemente JC, Pehrsson EC, Blaser MJ, Sandhu K, Gao Z, Wang B, et al. The microbiome of uncontacted Amerindians. Sci Adv. 2015;1:e1500183.

  21. 21.

    Martínez I, Stegen JC, Maldonado-Gómez MX, Eren MA, Siba PM, Greenhill AR, et al. The gut microbiota of rural Papua New Guineans: composition, diversity patterns, and ecological processes. Cell Rep. 2015;11:527–38.

  22. 22.

    Cheng Y, Fox S, Pemberton D, Hogg C, Papenfuss AT, Belov K. The Tasmanian devil microbiome—implications for conservation and management. Microbiome. 2015;3:76.

  23. 23.

    Villers LM, Jang SS, Lent CL, Lewin-Koh S-C, Norosoarinaivo JA. Survey and comparison of major intestinal flora in captive and wild ring-tailed lemur (Lemur catta) populations. Am J Primatol. 2008;184:175–84.

  24. 24.

    Xenoulis PG, Gray PL, Brightsmith D, Palculict B, Hoppes S, Steiner JM, et al. Molecular characterization of the cloacal microbiota of wild and captive parrots. Vet Microbiol. 2010;146:320–5.

  25. 25.

    Nakamura N, Amato KR, Garber P, Estrada A, Mackie RI, Gaskins HR. Analysis of the hydrogenotrophic microbiota of wild and captive black howler monkeys (Alouatta pigra) in Palenque national park, Mexico. Am J Primatol. 2011;73:909–19.

  26. 26.

    McKenzie VJ, Song SJ, Delsuc F, Prest TL, Oliverio AM, Korpita TM, et al. The effects of captivity on the mammalian gut microbiome. Integr Comp Biol. 2017;57:690–704.

  27. 27.

    Nelson TM, Rogers TL, Carlini AR, Brown MV. Diet and phylogeny shape the gut microbiota of Antarctic seals: a comparison of wild and captive animals. Environ Microbiol. 2013;15:1132–45.

  28. 28.

    Moloney RD, Desbonnet L, Clarke G, Dinan TG, Cryan JF. The microbiome: stress, health and disease. Mamm Genome. 2014;25:49–74.

  29. 29.

    Dillion JR, Vennard CT, Buckling A, Charnley AK. Diversity of locust gut bacteria protects against pathogen invasion. Ecol Lett. 2005;8:1291–8.

  30. 30.

    Sonnenburg JL, Angenent LT, Gordon JI. Getting a grip on things: how do communities of bacterial symbionts become established in our intestine? Nat Immunol. 2004;5:569–73.

  31. 31.

    Thaiss CA, Zmora N, Levy M, Elinav E. The microbiome and innate immunity. Nature. 2016;535:65–74.

  32. 32.

    Macpherson AJ, Harris NL. Interactions between commensal intestinal bacteria and the immune system. Nat Rev Immunol. 2004;4:1626–32.

  33. 33.

    Chung H, Pamp SJ, Hill JA, Surana NK, Edelman SM, Troy EB, et al. Gut immune maturation depends on colonization with a host-specific microbiota. Cell. 2012;149:1578–93.

  34. 34.

    Spor A, Koren O, Ley R. Unravelling the effects of the environment and host genotype on the gut microbiome. Nat Rev Microbiol. 2011;9:279–90.

  35. 35.

    Mulder IE, Schmidt B, Lewis M, Delday M, Stokes CR, Bailey M, et al. Restricting microbial exposure in early life negates the immune benefits associated with gut colonization in environments of high microbial diversity. PLoS ONE. 2011;6:e28279.

  36. 36.

    Ley RE, Bäckhed F, Turnbaugh P, Lozupone Ca, Knight RD, Gordon JI. Obesity alters gut microbial ecology. Proc Natl Acad Sci USA. 2005;102:11070–5.

  37. 37.

    Cahenzli J, Balmer ML, Mccoy KD. Microbial-immune cross-talk and regulation of the immune system. Immunology. 2013;138:12–22.

  38. 38.

    Gensollen T, Iyer SS, Kasper DL, Blumberg RS. How colonization by microbiota in early life shapes the immune system. Science. 2016;352:539–44.

  39. 39.

    Cash HL, Hooper LV. Commensal bacteria shape intestinal immune system development. ASM News. 2005;71:77–83.

  40. 40.

    Stappenbeck TS, Hooper LV, Gordon JI. Developmental regulation of intestinal angiogenesis by indigenous microbes via Paneth cells. Proc Natl Acad Sci USA. 2002;99:15451–5.

  41. 41.

    Hird SM. Evolutionary biology needs wild microbiomes. Front Microbiol. 2017;8:1–10.

  42. 42.

    Kohl KD, Brun A, Magallanes M, Brinkerhoff J, Laspiur A, Acosta JC, et al. Gut microbial ecology of lizards: insights into diversity in the wild, effects of captivity, variation across gut regions and transmission. Mol Ecol. 2017;26:1175–89.

  43. 43.

    Kohl KD, Dearing MD. Wild-caught rodents retain a majority of their natural gut microbiota upon entrance into captivity. Environ Microbiol Rep. 2014;6:191–5.

  44. 44.

    Redford KH, Segre JA, Salafsky N, Del Rio CM, Mcaloose D. Conservation and the microbiome. Conserv Biol. 2012;26:195–7.

  45. 45.

    Kreisinger J, Cížková D, Vohánka J, Piálek J. Gastrointestinal microbiota of wild and inbred individuals of two house mouse subspecies assessed using high throughput parallel pyrosequencing. Mol Ecol. 2014;23:5048–60.

  46. 46.

    Banfield AW. The mammals of Canada. 1st edn. Toronto and Buffalo: University of Toronto Press; 1974.

  47. 47.

    Suzuki TA, Nachman MW. Spatial heterogeneity of gut microbial composition along the gastrointestinal tract in natural populations of house mice. PLoS ONE. 2016;11:1–15.

  48. 48.

    Weiss S, Amir A, Hyde ER, Metcalf JL, Song SJ, Knight R. Tracking down the sources of experimental contamination in microbiome studies. Genome Biol. 2014;15:1–3.

  49. 49.

    Zhang J, Kobert K, Flouri T, Stamatakis A. PEAR: a fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics. 2014;30:614–20.

  50. 50.

    Brian B. BBMap. Webhttps://jgi.doe.gov/data-and-tools/bbtools/bb-tools-user-guide/bbduk-guide/

  51. 51.

    Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26:2460–1.

  52. 52.

    Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Publ Gr. 2010;7:335–6.

  53. 53.

    Lozupone C, Knight R. UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol. 2005;71:8228–35.

  54. 54.

    McMurdie PJ, Holmes S. Waste not, want not: why rarefying microbiome data is inadmissible. PLOS Comput Biol. 2014;10:1003531.

  55. 55.

    Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, et al. Metagenomic biomarker discovery and explanation. Genome Biol. 2011;12:R60.

  56. 56.

    Anderson MJ, Willis TJ. Canonical analysis of principal coordinates: a useful method of constrained ordination for ecology. Ecol Soc Am. 2003;84:511–25.

  57. 57.

    Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al. vegan: Community Ecology Package. 2018. R package version 2.5-1. https://CRAN.R-project.org/package=vegan.

  58. 58.

    Shade A, Handelsman J. Beyond the Venn diagram: the hunt for a core microbiome. Environ Microbiol. 2012;14:4–12.

  59. 59.

    Turroni S, Rampelli S, Centanni M, Schnorr SL, Consolandi C, Severgnini M, et al. Enterocyte-associated microbiome of the Hadza hunter-gatherers. Front Microbiol. 2016;7:1–12.

  60. 60.

    Burns AR, Stephens WZ, Stagaman K, Wong S, Rawls JF, Guillemin K, et al. Contribution of neutral processes to the assembly of gut microbial communities in the zebrafish over host development. ISME J. 2016;10:655–64.

  61. 61.

    Adair KL, Douglas AE. Making a microbiome: the many determinants of host-associated microbial community composition. Curr Opin Microbiol. 2017;35:23–29.

  62. 62.

    Bobbie CB, Mykytczuk NCS, Schulte-hostedde AI. Temporal variation of the microbiome is dependent on body region in a wild mammal (Tamiasciurus hudsonicus). FEMS Microbiol Ecol. 2017;93:fix081.

  63. 63.

    Chave J. Neutral theory and community ecology. Ecol Lett. 2004;7:241–53.

  64. 64.

    Hubbell SP. The unified neutral theory of biodviersity and biogeography. Princeton, New Jersey, USA: Princeton University Press; 2001.

  65. 65.

    Uenishi G, Fujita S, Ohashi G, Kato A, Yamauchi S, Matsuzawa T, et al. Molecular analyses of the intestinal microbiota of chimpanzees in the wild and in captivity. Am J Primatol. 2007;69:367–76.

  66. 66.

    Weldon L, Abolins S, Lenzi L, Bourne C, Riley EM, Viney M. The gut microbiota of wild mice. PLoS ONE. 2015;10:e0134643.

  67. 67.

    Turnbaugh PJ, Ley RE, Mahowald Ma, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444:1027–31.

  68. 68.

    Schubert AM, Rogers MaM, Ring C, Mogle J, Petrosino JP, Young VB, et al. Microbiome data distinguish patients with Clostridium difficile infection and non-C. difficile-associated diarrhea from healthy. mBio. 2014;5:1–9.

  69. 69.

    Mackie RI, Aminov RI, Hu W, Klieve AV, Ouwerkerk D, Sundset MA, et al. Ecology of uncultivated Oscillospira species in the rumen of cattle, sheep, and reindeer as assessed by microscopy and molecular approaches. Appl Environ Microbiol. 2003;69:6808–15.

  70. 70.

    Biddle A, Stewart L, Blanchard J, Leschine S. Untangling the genetic basis of fibrolytic specialization by lachnospiraceae and ruminococcaceae in diverse gut communities. Diversity. 2013;5:627–40.

  71. 71.

    Flint HJ, Bayer EA, Rincon MT, Lamed R, White BA. Polysaccharide utilization by gut bacteria: potential for new insights from genomic analysis. Nat Rev Microbiol. 2008;6:121–31.

  72. 72.

    Myles MH, Livingston RS, Franklin CL. Pathogenicity of Helicobacter rodentium in A/JCr and SCID mice. Comp Med. 2004;54:549–57.

  73. 73.

    Baxter NT, Wan JJ, Schubert AM, Jenior ML, Myers P, Schloss PD. Intra- and interindividual variations mask interspecies variation in the microbiota of sympatric Peromyscus populations. Appl Environ Microbiol. 2015;81:396–404.

  74. 74.

    Wasimuddin, Čí̌ková D, Bryja J, Albrechtov J, Hauffe HC, Pi lek J. High prevalence and species diversity of helicobacter spp. detected in wild house mice. Appl Environ Microbiol. 2012;78:8158–60.

  75. 75.

    Serino M, Luche E, Gres S, Baylac A, Bergé M, Cenac C, et al. Metabolic adaptation to a high-fat diet is associated with a change in the gut microbiota. Gut. 2012;61:543–53.

  76. 76.

    Evans CC, LePard KJ, Kwak JW, Stancukas MC, Laskowski S, Dougherty J, et al. Exercise prevents weight gain and alters the gut microbiota in a mouse model of high fat diet-induced obesity. PLoS ONE. 2014;9:e92193.

  77. 77.

    Caporaso JG, Lauber CL, Costello EK, Berg-Lyons D, Gonzalez A, Stombaugh J, et al. Moving pictures of the human microbiome. Genome Biol. 2011;12:R50.

  78. 78.

    Banks PB, Norrdahl K, Korpimäki E. Mobility decisions and the predation risks of reintroduction. Biol Conserv. 2002;103:133–8.

  79. 79.

    Konikoff T, Gophna U. Oscillospira: a central, enigmatic component of the human gut microbiota. Trends Microbiol. 2016;24:523–4.

  80. 80.

    Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, et al. A core gut microbiome in obese and lean twins. Nature. 2009;457:480–4.

  81. 81.

    Kovacs A, Ben-Jacob N, Tayem H, Halperin E, Iraqi FA, Gophna U. Genotype is a stronger determinant than sex of the mouse gut microbiota. Microb Ecol. 2011;61:423–8.

  82. 82.

    Campbell JH, Foster CM, Vishnivetskaya T, Campbell AG, Yang ZK, Wymore A, et al. Host genetic and environmental effects on mouse intestinal microbiota. ISME J. 2012;6:2033–44.

Download references

Acknowledgements

We thank A. Sawyer and S. Wilkes for their assistance in the field collecting data. This work has been funded by the Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant and the Canadian Foundation of Innovation (CFI)—Leaders Opportunity Grant to A.I.S.-H.

Author information

Affiliations

  1. Department of Biology, Laurentian University, Sudbury, ON, P3E 2C6, Canada

    • Elliott Schmidt
    •  & Albrecht I. Schulte-Hostedde
  2. Vale Living with Lakes Centre, Laurentian University, Sudbury, ON, P3E 2C6, Canada

    • Nadia Mykytczuk

Authors

  1. Search for Elliott Schmidt in:

  2. Search for Nadia Mykytczuk in:

  3. Search for Albrecht I. Schulte-Hostedde in:

Conflict of interest

The authors declare that they have no conflict of interest.

Corresponding author

Correspondence to Elliott Schmidt.

Supplementary information

About this article

Publication history

Received

Revised

Accepted

Published

DOI

https://doi.org/10.1038/s41396-019-0345-8