Article | Published:

Evolutionary constraints on species diversity in marine bacterioplankton communities

The ISME Journalvolume 13pages10321041 (2019) | Download Citation

Abstract

Variation in microbial species diversity has typically been explained as the outcome of local ecological factors driving species coexistence, overlooking the roles of evolutionary constraints. Here, we argue that macro-evolutionary niche conservatism and unequal diversification rates among phylum-level lineages are strong determinants of diversity–environment relationships in bacterial systems. That is, apart from stochasticity, environmental effects operate most strongly on phylum composition, which in turn dictates the species diversity of bacterial communities. This concept is demonstrated using bacterioplankton in the surface seawaters of the East China Sea. Furthermore, we show that the species richness of a local bacterioplankton community can generally be estimated based on the relative abundances of phyla and their contributions of species numbers in the global seawater pool—highlighting the important influence of evolutionary constraints on local community diversity.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Currie DJ, Mittelbach GG, Cornell HV, Field R, Guegan JF, Hawkins BA, et al. Predictions and tests of climate-based hypotheses of broad-scale variation in taxonomic richness. Ecol Lett. 2004;7:1121–34.

  2. 2.

    Gaston KJ. Global patterns in biodiversity. Nature. 2000;405:220–7.

  3. 3.

    Huston M. A general hypothesis of species diversity. Am Nat. 1979;113:81–101.

  4. 4.

    Ricklefs RE. Disintegration of the ecological community. Am Nat. 2008;172:741–50.

  5. 5.

    MacArthur RH. Patterns of species diversity. Biol Rev. 1965;40:510–33.

  6. 6.

    Currie DJ. Energy and large-scale patterns of animal-species and plant-species richness. Am Nat. 1991;137:27–49.

  7. 7.

    Pianka ER. Latitudinal gradients in species diversity - a review of concepts. Am Nat. 1966;100:33–46.

  8. 8.

    Qian H. Environment-richness relationships for mammals, birds, reptiles, and amphibians at global and regional scales. Ecol Res. 2010;25:629–37.

  9. 9.

    Hawkins BA, Field R, Cornell HV, Currie DJ, Guegan JF, Kaufman DM, et al. Energy, water, and broad-scale geographic patterns of species richness. Ecology. 2003;84:3105–17.

  10. 10.

    Menge BA, Sutherland JP. Species diversity gradients: synthesis of roles of predation, competition, and temporal heterogeneity. Am Nat. 1976;110:351–69.

  11. 11.

    Palmer MW. Variation in species richness: towards a unification of hypotheses. Folia Geobot Phytotaxon. 1994;29:511–30.

  12. 12.

    Shmida A, Wilson MV. Biological determinants of species diversity. J Biogeogr. 1985;12:1–20.

  13. 13.

    Eriksson O. The species-pool hypothesis and plant community diversity. Oikos. 1993;68:371–4.

  14. 14.

    Ricklefs RE. Community diversity - relative roles of local and regional processes. Science. 1987;235:167–171.

  15. 15.

    Tokeshi M. Species coexistence: ecological and evolutionary perspectives. Oxford: Blackwell Science; 1999.

  16. 16.

    Huston MA. Local processes and regional patterns: appropriate scales for understanding variation in the diversity of plants and animals. Oikos. 1999;86:393–401.

  17. 17.

    Partel M, Zobel M, Zobel K, vanderMaarel E. The species pool and its relation to species richness: Evidence from Estonian plant communities. Oikos. 1996;75:111–7.

  18. 18.

    Partel M, Zobel M. Small-scale plant species richness in calcareous grasslands determined by the species pool, community age and shoot density. Ecography. 1999;22:153–9.

  19. 19.

    Ricklefs RE, He FL. Region effects influence local tree species diversity. Proc Natl Acad Sci USA. 2016;113:674–9.

  20. 20.

    Zobel M. The relative role of species pools in determining plant species richness: an alternative explanation of species coexistence? Trends Ecol Evol. 1997;12:266–9.

  21. 21.

    Mittelbach GG, Schemske DW, Cornell HV, Allen AP, Brown JM, Bush MB, et al. Evolution and the latitudinal diversity gradient: speciation, extinction and biogeography. Ecol Lett. 2007;10:315–31.

  22. 22.

    Ricklefs RE. Evolutionary diversification and the origin of the diversity–environment relationship. Ecology. 2006;87:S3–13.

  23. 23.

    Ricklefs RE. History and diversity: explorations at the intersection of ecology and evolution. Am Nat. 2007;170:S56–70.

  24. 24.

    Wiens JJ, Donoghue MJ. Historical biogeography, ecology and species richness. Trends Ecol Evol. 2004;19:639–44.

  25. 25.

    Donoghue MJ. A phylogenetic perspective on the distribution of plant diversity. Proc Natl Acad Sci USA. 2008;105:11549–55.

  26. 26.

    Buckley LB, Davies TJ, Ackerly DD, Kraft NJB, Harrison SP, Anacker BL, et al. Phylogeny, niche conservatism and the latitudinal diversity gradient in mammals. Proc R Soc Lond B Biol Sci. 2010;277:2131–8.

  27. 27.

    Partel M. Local plant diversity patterns and evolutionary history at the regional scale. Ecology. 2002;83:2361–6.

  28. 28.

    Cavalier-Smith T. Cell evolution and Earth history: stasis and revolution. Philos T R Soc B. 2006;361:969–1006.

  29. 29.

    Hanson CA, Fuhrman JA, Horner-Devine MC, Martiny JBH. Beyond biogeographic patterns: processes shaping the microbial landscape. Nat Rev Microbiol. 2012;10:497–506.

  30. 30.

    Martiny JBH, Bohannan BJM, Brown JH, Colwell RK, Fuhrman JA, Green JL, et al. Microbial biogeography: putting microorganisms on the map. Nat Rev Microbiol. 2006;4:102–112.

  31. 31.

    Vass M, Langenheder S. The legacy of the past: effects of historical processes on microbial metacommunities. Aquat Microb Ecol. 2017;79:13–19.

  32. 32.

    Ricklefs RE. Evolutionary diversification, coevolution between populations and their antagonists, and the filling of niche space. Proc Natl Acad Sci USA. 2010;107:1265–72.

  33. 33.

    Goberna M, Verdu M. Predicting microbial traits with phylogenies. ISME J. 2016;10:959–67.

  34. 34.

    Martiny AC, Treseder K, Pusch G. Phylogenetic conservatism of functional traits in microorganisms. ISME J. 2013;7:830–8.

  35. 35.

    Morrissey EM, Mau RL, Schwartz E, Caporaso JG, Dijkstra P, van Gestel N, et al. Phylogenetic organization of bacterial activity. ISME J. 2016;10:2336–40.

  36. 36.

    Herlemann DPR, Lundin D, Andersson AF, Labrenz M, Jurgens K. Phylogenetic signals of salinity and season in bacterial community composition across the salinity gradient of the Baltic Sea. Front Microbiol. 2016;7:1883.

  37. 37.

    Lu HP, Yeh YC, Sastri AR, Shiah FK, Gong GC, Hsieh CH. Evaluating community-environment relationships along fine to broad taxonomic resolutions reveals evolutionary forces underlying community assembly. ISME J. 2016;10:2867–78.

  38. 38.

    Philippot L, Andersson SGE, Battin TJ, Prosser JI, Schimel JP, Whitman WB, et al. The ecological coherence of high bacterial taxonomic ranks. Nat Rev Microbiol. 2010;8:523–9.

  39. 39.

    Fierer N, Bradford MA, Jackson RB. Toward an ecological classification of soil bacteria. Ecology. 2007;88:1354–64.

  40. 40.

    Lauber CL, Hamady M, Knight R, Fierer N. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl Environ Microbiol. 2009;75:5111–20.

  41. 41.

    Philippot L, Bru D, Saby NPA, Cuhel J, Arrouays D, Simek M, et al. Spatial patterns of bacterial taxa in nature reflect ecological traits of deep branches of the 16S rRNA bacterial tree. Environ Microbiol. 2009;11:3096–104.

  42. 42.

    Magallon S, Sanderson MJ. Absolute diversification rates in angiosperm clades. Evolution. 2001;55:1762–80.

  43. 43.

    Marin J, Battistuzzi FU, Brown AC, Hedges SB. The timetree of prokaryotes: new insights into their evolution and speciation. Mol Biol Evol. 2017;34:437–46.

  44. 44.

    Scholl JP, Wiens JJ. Diversification rates and species richness across the Tree of Life. Proc Biol Sci. 2016;283:1334.

  45. 45.

    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–6.

  46. 46.

    Gong GC, Wen YH, Wang BW, Liu GJ. Seasonal variation of chlorophyll a concentration, primary production and environmental conditions in the subtropical East China Sea. Deep Sea Res Part 2 Top Stud Oceanogr. 2003;50:1219–36.

  47. 47.

    Yeh YC, Peres-Neto PR, Huang SW, Lai YC, Tu CY, Shiah FK, et al. Determinism of bacterial metacommunity dynamics in the southern East China Sea varies depending on hydrography. Ecography. 2015;38:198–212.

  48. 48.

    Fuhrman JA, Comeau DE, Hagstrom A, Chan AM. Extraction from natural planktonic microorganisms of DNA suitable for molecular biological studies. Appl Environ Microbiol. 1988;54:1426–9.

  49. 49.

    Gong GC, Chen YLL, Liu KK. Chemical hydrography and chlorophyll a distribution in the East China Sea in summer: Implications in nutrient dynamics. Cont Shelf Res. 1996;16:1561–90.

  50. 50.

    Gong GC, Shiah FK, Liu KK, Wen YH, Liang MH. Spatial and temporal variation of chlorophyll a, primary productivity and chemical hydrography in the southern East China Sea. Cont Shelf Res. 2000;20:411–36.

  51. 51.

    Sogin ML, Morrison HG, Huber JA, Mark Welch D, Huse SM, Neal PR, et al. Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc Natl Acad Sci USA. 2006;103:12115–20.

  52. 52.

    Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335–6.

  53. 53.

    Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26:2460–1.

  54. 54.

    Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Micriol. 2014;64:346–51.

  55. 55.

    Chao A. Non-parametric estimation of the number of classes in a population. Scand J Stat. 1984;11:265–70.

  56. 56.

    Chao A, Lee S-M. Estimating the number of classes via sample coverage. J Am Stat Assoc. 1992;87:210–7.

  57. 57.

    Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J, et al. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res. 2007;35:7188–96.

  58. 58.

    Wright S. The method of path coefficients. Ann Math Stat. 1934;5:161–215.

  59. 59.

    Sanchez G. PLS Path Modeling with R. Berkeley: Trowchez Editions; 2013.

  60. 60.

    Fox J. Structural equation modeling with the sem package in R. Struct Equ Modeling. 2006;13:465–86.

  61. 61.

    R Development Core Team. R: A language and environment for statistical computing. 3.3.2 edn. Vienna, Austria: The R Foundation for Statistical Computing Platform; 2016.

  62. 62.

    Petraitis PS, Dunham AE, Niewiarowski PH. Inferring multiple causality: The limitations of path analysis. Funct Ecol. 1996;10:421–31.

  63. 63.

    Borcard D, Legendre P, Drapeau P. Partialling out the spatial component of ecological variation. Ecology. 1992;73:1045–55.

  64. 64.

    Peres-Neto PR, Legendre P, Dray S, Borcard D. Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology. 2006;87:2614–25.

  65. 65.

    Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D et al. Vegan: Community Ecology Package. R package version 2.4-4. 2017.

  66. 66.

    Dray S, Pelissier R, Couteron P, Fortin MJ, Legendre P, Peres-Neto PR, et al. Community ecology in the age of multivariate multiscale spatial analysis. Ecol Monogr. 2012;82:257–75.

  67. 67.

    Soergel DA, Dey N, Knight R, Brenner SE. Selection of primers for optimal taxonomic classification of environmental 16S rRNA gene sequences. ISME J. 2012;6:1440–4.

  68. 68.

    Amaral-Zettler L, Artigas LF, Baross J, Bharathi L, Boetius A, Chandramohan D et al. (2010). A global census of marine microbes. Life in the world’s oceans: diversity, distribution and abundance. Oxford: Blackwell Publishing Ltd; McIntyre AD 2010. p. 223–45.

  69. 69.

    Huse SM, Mark Welch DB, Voorhis A, Shipunova A, Morrison HG, Eren AM, et al. VAMPS: a website for visualization and analysis of microbial population structures. Bmc Bioinformatics. 2014;15:41.

  70. 70.

    Cornell HV, Lawton JH. Species interactions, local and regional processes, and limits to the richness of ecological communities: a theoretical perspective. J Anim Ecol. 1992;61:1–12.

  71. 71.

    Dial KP, Marzluff JM. Nonrandom diversification within taxonomic assemblages. Syst Zool. 1989;38:26–37.

  72. 72.

    Scotland RW, Sanderson MJ. The significance of few versus many in the tree of life. Science. 2004;303:643–3.

  73. 73.

    Willig MR, Kaufman DM, Stevens RD. Latitudinal gradients of biodiversity: pattern, process, scale, and synthesis. Annu Rev Ecol Evol Syst. 2003;34:273–309.

  74. 74.

    Ladau J, Sharpton TJ, Finucane MM, Jospin G, Kembel SW, O’Dwyer J, et al. Global marine bacterial diversity peaks at high latitudes in winter. ISME J. 2013;7:1669–77.

  75. 75.

    Milici M, Deng ZL, Tomasch J, Decelle J, Wos-Oxley ML, Wang H, et al. Co-occurrence analysis of microbial taxa in the Atlantic Ocean reveals high connectivity in the free-living bacterioplankton. Front Microbiol. 2016a;7:649.

  76. 76.

    Sunagawa S, Coelho LP, Chaffron S, Kultima JR, Labadie K, Salazar G, et al. Structure and function of the global ocean microbiome. Science. 2015;348:1261359.

  77. 77.

    Milici M, Tomasch J, Wos-Oxley ML, Wang H, Jauregui R, Camarinha-Silva A, et al. Low diversity of planktonic bacteria in the tropical ocean. Sci Rep. 2016b;6:19054.

  78. 78.

    Hendershot JN, Read QD, Henning JA, Sanders NJ, Classen AT. Consistently inconsistent drivers of microbial diversity and abundance at macroecological scales. Ecology. 2017;98:1757–63.

  79. 79.

    Thompson LR, Sanders JG, McDonald D, Amir A, Ladau J, Locey KJ, et al. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature. 2017;551:457–63.

  80. 80.

    Saleem M, Fetzer I, Dormann CF, Harms H, Chatzinotas A. Predator richness increases the effect of prey diversity on prey yield. Nat Commun. 2012;3:1305.

  81. 81.

    Yang JW, Wu W, Chung CC, Chiang KP, Gong GC, Hsieh CH. Predator and prey biodiversity relationship and its consequences on marine ecosystem functioning-interplay between nanoflagellates and bacterioplankton. ISME J. 2018;12:1532–42.

  82. 82.

    Ettema TJ, Andersson SG. The alpha-proteobacteria: the Darwin finches of the bacterial world. Biol Lett. 2009;5:429–32.

  83. 83.

    Kloesges T, Popa O, Martin W, Dagan T. Networks of gene sharing among 329 proteobacterial genomes reveal differences in lateral gene transfer frequency at different phylogenetic depths. Mol Biol Evol. 2011;28:1057–74.

  84. 84.

    Jezkova T, Wiens JJ. What explains patterns of diversification and richness among animal phyla? Am Nat. 2017;189:201–12.

  85. 85.

    Castro-Insua A, Gomez-Rodriguez C, Wiens JJ, Baselga A. Climatic niche divergence drives patterns of diversification and richness among mammal families. Sci Rep. 2018;8:8781.

  86. 86.

    McPeek MA, Brown JM. Clade age and not diversification rate explains species richness among animal taxa. Am Nat. 2007;169:E97–106.

  87. 87.

    Ricklefs RE, Renner SS. Species richness within families of flowering plants. Evolution. 1994;48:1619–36.

  88. 88.

    Cohan FM. Bacterial speciation: genetic sweeps in bacterial species. Curr Biol. 2016;26:R112–5.

  89. 89.

    Louca S, Parfrey LW, Doebeli M. Decoupling function and taxonomy in the global ocean microbiome. Science. 2016;353:1272–7.

  90. 90.

    Armitage DW. Experimental evidence for a time-integrated effect of productivity on diversity. Ecol Lett. 2015;18:1216–25.

Download references

Acknowledgements

We thank Hon-Tsen Yu for providing facilities and advice on laboratory work, and the Genome Research Center in National Yang-Ming University for sequencing service. Comments from David Armitage have greatly improved this work. This work was supported by the National Center for Theoretical Sciences, Foundation for the Advancement of Outstanding Scholarship, and the Ministry of Science and Technology, Taiwan.

Author information

Affiliations

  1. Institute of Oceanography, National Taiwan University, Taipei, Taiwan

    • Hsiao-Pei Lu
    • , Fuh-Kwo Shiah
    •  & Chih-hao Hsieh
  2. Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA

    • Yi-Chun Yeh
  3. Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan

    • Fuh-Kwo Shiah
    •  & Chih-hao Hsieh
  4. Institute of Marine Environment and Ecology, National Taiwan Ocean University, Keelung, Taiwan

    • Fuh-Kwo Shiah
    •  & Gwo-Ching Gong
  5. Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan

    • Gwo-Ching Gong
  6. Department of Life Science, Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei, Taiwan

    • Chih-hao Hsieh
  7. National Center for Theoretical Sciences, Taipei, Taiwan

    • Chih-hao Hsieh

Authors

  1. Search for Hsiao-Pei Lu in:

  2. Search for Yi-Chun Yeh in:

  3. Search for Fuh-Kwo Shiah in:

  4. Search for Gwo-Ching Gong in:

  5. Search for Chih-hao Hsieh in:

Conflict of interest

The authors declare that they have no conflict of interest.

Corresponding author

Correspondence to Chih-hao Hsieh.

Supplementary information

About this article

Publication history

Received

Revised

Accepted

Published

Issue Date

DOI

https://doi.org/10.1038/s41396-018-0336-1