Petroleum hydrocarbons reach the deep-sea following natural and anthropogenic factors. The process by which they enter deep-sea microbial food webs and impact the biogeochemical cycling of carbon and other elements is unclear. Hydrostatic pressure (HP) is a distinctive parameter of the deep sea, although rarely investigated. Whether HP alone affects the assembly and activity of oil-degrading communities remains to be resolved. Here we have demonstrated that hydrocarbon degradation in deep-sea microbial communities is lower at native HP (10 MPa, about 1000 m below sea surface level) than at ambient pressure. In long-term enrichments, increased HP selectively inhibited obligate hydrocarbon-degraders and downregulated the expression of beta-oxidation-related proteins (i.e., the main hydrocarbon-degradation pathway) resulting in low cell growth and CO2 production. Short-term experiments with HP-adapted synthetic communities confirmed this data, revealing a HP-dependent accumulation of citrate and dihydroxyacetone. Citrate accumulation suggests rates of aerobic oxidation of fatty acids in the TCA cycle were reduced. Dihydroxyacetone is connected to citrate through glycerol metabolism and glycolysis, both upregulated with increased HP. High degradation rates by obligate hydrocarbon-degraders may thus be unfavourable at increased HP, explaining their selective suppression. Through lab-scale cultivation, the present study is the first to highlight a link between impaired cell metabolism and microbial community assembly in hydrocarbon degradation at high HP. Overall, this data indicate that hydrocarbons fate differs substantially in surface waters as compared to deep-sea environments, with in situ low temperature and limited nutrients availability expected to further prolong hydrocarbons persistence at deep sea.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1.

    Maribus. World Ocean Review 3. 2014.

  2. 2.

    Rojo F. Degradation of alkanes by bacteria: minireview. Environ Microbiol. 2009;11:2477–90.

  3. 3.

    Head IM, Jones DM, Röling WFM. Marine microorganisms make a meal of oil. Nat Rev Microbiol. 2006;4:173–82.

  4. 4.

    Scoma A, Yakimov MM, Boon N. Challenging oil bioremediation at deep-sea hydrostatic pressure. Front Microbiol. 2016;7:1203.

  5. 5.

    Jørgensen BB, Boetius A. Feast and famine—microbial life in the deep-sea bed. Nat Rev Microbiol. 2007;5:770–81.

  6. 6.

    Head IM, Jones DM, Larter SR. Biological activity in the deep subsurface and the origin of heavy oil. Nature. 2003;426:344–52.

  7. 7.

    NOAA. Oil spill case histories 1967-91. Seattle, Washington; NOAA, Hazardous Materials Response and Assessment Division 1992.

  8. 8.

    Michel J, Gilbert T, Etkin DS. Potentially polluting wrecks in marine waters. An Issue Paper Prepared for the 2005 International Oil Spill Conference. 2005.

  9. 9.

    Federal Interagency Solutions Group. Oil Budget Calculator Science and Engineering team 2010. Oil budget Calculator Technical Documentation. 2010:1–49.

  10. 10.

    Kimes NE, Callaghan AV, Suflita JM, Morris PJ. Microbial transformation of the deepwater horizon oil spill-past, present, and future perspectives. Front Microbiol. 2014;5:603.

  11. 11.

    Joye SB, Teske AP, Kostka JE. Microbial dynamics following the macondo oil well blowout across gulf of Mexico environments. Bioscience. 2014;64:766–77.

  12. 12.

    King GM, Kostka JE, Hazen TC, Sobecky PA. Microbial responses to the deepwater horizon oil spill: from coastal wetlands to the deep sea. Ann Rev Mar Sci. 2015;7:15.1–15.25.

  13. 13.

    Buist I, Trudel K, Morrison J, Aurand D. Laboratory studies of the properties of in-situ burn residues. 1997 Int Oil Spill Conf. 1997;1997:149–56. https://doi.org/10.7901/2169-3358-1997-1-149

  14. 14.

    Jézéquel R, Simon R, Pirot V. Development of a burning bench dedicated to In Situ Burning Study: assessment of oil nature and weathering effect. In: Proceedings of the Thirty-seventh AMOP Technical Seminar on Environmental Contamination and Response, Environment Canada, Ottawa, ON, 2014. 555–566.

  15. 15.

    Bagby SC, Reddy CM, Aeppli C, Fisher GB, Valentine DL. Persistence and biodegradation of oil at the ocean floor following Deepwater Horizon. Proc Natl Acad Sci USA. 2017;114:E9–E18. https://doi.org/10.1073/pnas.1610110114

  16. 16.

    Dyksterhouse SE, Gray JP, Herwig RP, Lara JC, Staley JT. Cycloclasticus pugetii gen. nov., sp. nov., an aromatic hydrocarbon-degrading bacterium from marine sediments. Int J Syst Bacteriol. 1995;45:116–23.

  17. 17.

    De Roy K, Clement L, Thas O, Wang Y, Boon N. Flow cytometry for fast microbial community fingerprinting. Water Res. 2012;46:907–19.

  18. 18.

    Heyer R, Kohrs F, Benndorf D, Rapp E, Kausmann R, Heiermann M, et al. Metaproteome analysis of the microbial communities in agricultural biogas plants. N Biotechnol. 2013;30:614–22.

  19. 19.

    Perkins DN, Pappin DJC, Creasy DM, Cottrell JS. Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis. 1999;20:3551–67.

  20. 20.

    Vizcaíno JA, Côté RG, Csordas A, Dianes JA, Fabregat A, Foster JM, et al. The Proteomics Identifications (PRIDE) database and associated tools: status in 2013. Nucleic Acids Res. 2013;41:D1063–9.

  21. 21.

    Fernandes AD, Macklaim JM, Linn TG, Reid G, Gloor GB. ANOVA-Like Differential Expression (ALDEx) analysis for mixed population RNA-Seq. PLoS ONE. 2013;8:e67019.

  22. 22.

    Fernandes AD, Reid JN, Macklaim JM, McMurrough TA, Edgell DR, Gloor GB. Unifying the analysis of high-throughput sequencing datasets: characterizing RNA-seq, 16S rRNA gene sequencing and selective growth experiments by compositional data analysis. Microbiome. 2014;2:15.

  23. 23.

    Tremaroli V, Workentine ML, Weljie AM, Vogel HJ, Ceri H, Viti C, et al. Metabolomic investigation of the bacterial response to a metal challenge. Appl Environ Microbiol. 2009;75:719–28.

  24. 24.

    Stacklies W, Redestig H, Scholz M, Walther D, Selbig J. pcaMethods - A bioconductor package providing PCA methods for incomplete data. Bioinformatics. 2007;23:1164–7.

  25. 25.

    MacKay D, Shiu WY. A critical review of Henry’s law constants for chemicals of environmental interest. J Phys Chem. 1981;10:1175–99.

  26. 26.

    Yakimov MM, Timmis KN, Golyshin PN. Obligate oil-degrading marine bacteria. Curr Opin Biotechnol. 2007;18:257–66.

  27. 27.

    Enns T, Scholander PF, Bradstreet ED. Effect of hydrostatic pressure on gases dissolved in water. J Phys Chem. 1965;69:389–91.

  28. 28.

    Abe F, Horikoshi K. Analysis of intracellular pH in the yeast Saccharomyces cerevisiae under elevated hydrostatic pressure: A study in baro- (piezo-) physiology. Extremophiles. 1998;2:223–8.

  29. 29.

    Ji Y, Mao G, Wang Y, Bartlam M. Structural insights into diversity and n-alkane biodegradation mechanisms of alkane hydroxylases. Front Microbiol. 2013;4:58.

  30. 30.

    Dobler L, Vilela LF, Almeida RV, Neves BC. Rhamnolipids in perspective: gene regulatory pathways, metabolic engineering, production and technological forecasting. N Biotechnol. 2016;33:123–35.

  31. 31.

    Schwarz JR, Walder JD, Colwell RR. Deep-sea bacteria: growth and utilization of n-hexadecane at in situ temperature and pressure. Can J Microbiol. 1975;21:682–7.

  32. 32.

    Schwarz JR, Walder JD, Colwell RR. Deep-sea bacteria: growth and utilization of hydrocarbons at ambient and in situ pressure. Appl Microbiol. 1974;28:982–6.

  33. 33.

    Grossi V, Yakimov MM, Ali BAl, Tapilatu Y, Cuny P, Goutx M, et al. Hydrostatic pressure affects membrane and storage lipid compositions of the piezotolerant hydrocarbon-degrading Marinobacter hydrocarbonoclasticus strain #5. Environ Microbiol. 2010;12:2020–33.

  34. 34.

    Schedler M, Hiessl R, Valladares Juárez AG, Gust G, Müller R. Effect of high pressure on hydrocarbon-degrading bacteria. AMB Express. 2014;4:77.

  35. 35.

    Fasca H, de Castilho LVA, de Castilho JFM, Pasqualino IP, Alvarez VM, de Azevedo Jurelevicius D, et al. Response of marine bacteria to oil contamination and to high pressure and low temperature deep sea conditions. Microbiologyopen. 2018;7:e00550.

  36. 36.

    Scoma A, Barbato M, Borin S, Daffonchio D, Boon N. An impaired metabolic response to hydrostatic pressure explains Alcanivorax borkumensis recorded distribution in the deep marine water column. Sci Rep. 2016;6:31316.

  37. 37.

    Scoma A, Barbato M, Hernandez-Sanabria E, Mapelli F, Daffonchio D, Borin S, et al. Microbial oil-degradation under mild hydrostatic pressure (10 MPa): which pathways are impacted in piezosensitive hydrocarbonoclastic bacteria? Sci Rep. 2016;6:23526.

  38. 38.

    Scoma A, Boon N. Osmotic stress confers enhanced cell integrity to hydrostatic pressure but impairs growth in Alcanivorax borkumensis SK2. Front Microbiol. 2016;7:729.

  39. 39.

    Yakimov MM, Giuliano L, Denaro R, Crisafi E, Chernikova TN, Abraham WR, et al. Thalassolituus oleivorans gen. nov., sp. nov., a novel marine bacterium that obligately utilizes hydrocarbons. Int J Syst Evol Microbiol. 2004;54:141–8.

  40. 40.

    Yakimov MM, Golyshin PN, Lang S, Moore ERB, Abraham W, Lunsdorf H, et al. Alcanivorax borkurnensis gen. now, sp. nov., a new, hydrocarbon-degrading and surfactant-producing marine bacterium. Int J Syst Bacteriol. 1998;48:339–48.

  41. 41.

    Liu C, Shao Z. Alcanivorax dieselolei sp. nov., a novel alkane-degrading bacterium isolated from sea water and deep-sea sediment. Int J Syst Evol Microbiol. 2005;55:1181–6.

  42. 42.

    Taylor J, Parkes RJ. The cellular fatty acids of the sulphate-reducing bacteria, Desulfobacter sp., Desulfobulbus sp. and Desulfovibrio desulfuricans. Microbiology. 1983;129:3303–9.

  43. 43.

    Vainshtein M, Hippe H, Kroppenstedt RM. Cellular fatty acid composition of desulfovibrio species and its use in classification of sulfate-reducing bacteria. Syst Appl Microbiol. 1992;5:554–66.

  44. 44.

    Kohring LL, Ringelberg DB, Devereux R, Stahl DA, Mittelman MW, White DC. Comparison of phylogenetic relationships based on phospholipid fatty acid profiles and ribosomal RNA sequence similarities among dissimilatory sulfate-reducing bacteria. FEMS Microbiol Lett. 1994;119:303–8.

  45. 45.

    Wang F, Xiao X, Ou H-Y, Gai Y, Wang F. Role and regulation of fatty acid biosynthesis in the response of shewanella piezotolerans WP3 to different temperatures and pressures. J Bacteriol. 2009;191:2574–84.

  46. 46.

    Tholozan JL, Ritz M, Jugiau F, Federighi M, Tissier JP. Physiological effects of high hydrostatic pressure treatments on Listeria monocytogenes and Salmonella typhimurium. J Appl Microbiol. 2000;88:202–12.

  47. 47.

    Molina-Gutierrez A, Stippl, VolkerDelgado A, Gänzle MG, Vogel RF, Ga MG. In situ determination of the intracellular pH of Lactococcus lactis and Lactobacillus plantarum during pressure treatment. Appl Environ Microbiol. 2002;68:4399–406.

  48. 48.

    Molina-Höppner A, Doster W, Vogel RF, Gänzle MG. Protective effect of sucrose and sodium chloride for Lactococcus lactis during sublethal and lethal high-pressure treatments. Appl Environ Microbiol. 2004;70:2013–20.

  49. 49.

    Chong PLG, Fortes PAG, Jameson DM. Mechanisms of inhibition of (Na,K)-ATPase by hydrostatic pressure studied with fluorescent probes. J Biol Chem. 1985;260:14484–90.

  50. 50.

    Smelt JPPM, Rijke AGF, Hayhurst A. Possible mechanism of high pressure inactivation of microorganisms. High Press Res. 1994;12:199–203.

  51. 51.

    Mapelli F, Scoma A, Michoud G, Aulenta F, Boon N, Borin S, et al. Biotechnologies for marine oil spill cleanup: indissoluble ties with microorganisms. Trends Biotechnol. 2017;35:860–70.

  52. 52.

    Dubinsky EA, Conrad ME, Chakraborty R, Bill M, Borglin SE, Hollibaugh JT, et al. Succession of hydrocarbon-degrading bacteria in the aftermath of the deepwater horizon oil spill in the gulf of Mexico. Environ Sci Technol. 2013;47:10860–7.

  53. 53.

    Marietou A, Chastain R, Beulig F, Scoma A, Hazen TC, Bartlett DH. The effect of hydrostatic pressure on enrichments of hydrocarbon degrading microbes from the Gulf of Mexico following the deepwater Horizon oil spill. Front Microbiol. 2018;9:808.

  54. 54.

    Yakimov MM, Giuliano L, Gentile G, Crisafi E, Chernikova TN, Abraham WR, et al. Oleispira antarctica gen. nov., sp. nov., a novel hydrocarbonoclastic marine bacterium isolated from Antarctic coastal sea water. Int J Syst Evol Microbiol. 2003;53:779–85.

  55. 55.

    Martin DD, Bartlett DH, Roberts MF. Solute accumulation in the deep-sea bacterium Photobacterium profundum. Extremophiles. 2002;6:507–14.

  56. 56.

    Simpson RK, Gilmour A. The effect of high hydrostatic pressure on the activity of intracellular enzymes of Listeria monocytogenes. Lett Appl Microbiol. 1997;25:48–53.

Download references


These findings were financially supported by the FP7-EU project Kill Spill (312139), the Geconcentreerde Onderzoeksactie, Ghent University (BOF15/GOA/006), the Danish Ministry of Higher Education and Science (AU-2010-612-181) and The Novonordisk Foundation (NNF16OC0021110). F.-M.K. was supported by the Inter-University Attraction Pole ‘μ-manager’ (BELSPO, P7/25). A.S. thanks Dr. Ann Vanreusel (Ghent University, Belgium) for her supervision during deep-sea sampling. Dr. Xiao Xiang and Yu Zhang (Shanghai Jiao Tong University, China) are acknowledged for their assistance with high-pressure reactors. A. Bastian (Otto von Guericke University of Magdeburg) and Katrine Bay Jensen (Aarhus University) are acknowledged for their technical assistance.

Author contributions

A.S. conceived, designed and performed the experiments, and wrote the manuscript. R.H. performed the metaproteome analyses and co-wrote the manuscript. C.D. performed the metaproteome analyses. R.R. performed the experiments at high pressure and isolation of the micro-colonies. F.-M.K. performed the 16S rRNA analyses. I.M.B. performed the statistical analysis and the sequencing of the isolates. A.M. co-wrote the manuscript. P.V. analysed the amino acid data. H.B. and F.M. analysed the PLFA data. I.M.B. performed surfactants analysis and general editing. K.M. and T.V. analysed intracellular compounds. D.B. performed the metaproteome data analysis. U.R. supervised the metaproteome analysis. N.B. funded and supervised the project. All authors reviewed the manuscripts.

Author information


  1. Center for Microbial Ecology and Technology (CMET), Gent University, Coupure Links 653, Gent, B 9000, Belgium

    • Alberto Scoma
    • , Ridwan Rifai
    • , Frederiek-Maarten Kerckhof
    •  & Nico Boon
  2. Department of Bioscience, Microbiology Section, Aarhus University, Ny Munkegade 116, Aarhus C, 8000, Denmark

    • Alberto Scoma
    • , Ian Marshall
    •  & Angeliki Marietou
  3. Biological and Chemical Engineering, Aarhus University, Hangøvej 2, Aarhus N, 8200, Denmark

    • Alberto Scoma
  4. Otto von Guericke University of Magdeburg, Bioprocess Engineering, Universitätsplatz 2 G25, Magdeburg, 39106, Germany

    • Robert Heyer
    • , Christian Dandyk
    •  & Dirk Benndorf
  5. Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, Delft, 2629HZ, The Netherlands

    • Henricus T. S. Boshker
    •  & Filip J. R. Meysman
  6. Department of Biology, University of Antwerp, Universiteitsplein 1, Wilrijk (Antwerp), BE- 2610, Belgium

    • Henricus T. S. Boshker
    •  & Filip J. R. Meysman
  7. Department of Analytical, Environmental and Geochemistry (AMGC), Vrije Univeriteit Brussel (VUB), Pleinlaan 2, Brussel, 1050, Belgium

    • Filip J. R. Meysman
  8. iNANO, Department of Chemistry, Aarhus University, Gustav Wieds vej 14, Aarhus C, 8000, Denmark

    • Kirsten G. Malmos
    •  & Thomas Vosegaard
  9. Laboratory for Chemical Analyses (LCA), Department of Green Chemistry and Technology, Gent University, Valentin Vaerwyckweg 1, Ghent, 9000, Belgium

    • Pieter Vermeir
  10. School of Biomedical Sciences, University of Ulster, Coleraine, N. Ireland, UK

    • Ibrahim M. Banat
  11. Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Sandtorstraße 1, Magdeburg, 39106, Germany

    • Dirk Benndorf


  1. Search for Alberto Scoma in:

  2. Search for Robert Heyer in:

  3. Search for Ridwan Rifai in:

  4. Search for Christian Dandyk in:

  5. Search for Ian Marshall in:

  6. Search for Frederiek-Maarten Kerckhof in:

  7. Search for Angeliki Marietou in:

  8. Search for Henricus T. S. Boshker in:

  9. Search for Filip J. R. Meysman in:

  10. Search for Kirsten G. Malmos in:

  11. Search for Thomas Vosegaard in:

  12. Search for Pieter Vermeir in:

  13. Search for Ibrahim M. Banat in:

  14. Search for Dirk Benndorf in:

  15. Search for Nico Boon in:

Conflict of interest

The authors declare that they have no conflict of interest.

Corresponding author

Correspondence to Alberto Scoma.

Supplementary information

About this article

Publication history