Article | Published:

Oxygen loss from seagrass roots coincides with colonisation of sulphide-oxidising cable bacteria and reduces sulphide stress

The ISME Journal (2018) | Download Citation


Seagrasses thrive in anoxic sediments where sulphide can accumulate to phytotoxic levels. So how do seagrasses persist in this environment? Here, we propose that radial oxygen loss (ROL) from actively growing root tips protects seagrasses from sulphide intrusion not only by abiotically oxidising sulphides in the rhizosphere of young roots, but also by influencing the abundance and spatial distribution of sulphate-reducing and sulphide-oxidising bacteria. We used a novel multifaceted approach combining imaging techniques (confocal fluorescence in situ hybridisation, oxygen planar optodes, and sulphide diffusive gradients in thin films) with microbial community profiling to build a complete picture of the microenvironment of growing roots of the seagrasses Halophila ovalis and Zostera muelleri. ROL was restricted to young root tips, indicating that seagrasses will have limited ability to influence sulphide oxidation in bulk sediments. On the microscale, however, ROL corresponded with decreased abundance of potential sulphate-reducing bacteria and decreased sulphide concentrations in the rhizosphere surrounding young roots. Furthermore, roots leaking oxygen had a higher abundance of sulphide-oxidising cable bacteria; which is the first direct observation of these bacteria on seagrass roots. Thus, ROL may enhance both abiotic and bacterial sulphide oxidation and restrict bacterial sulphide production around vulnerable roots, thereby helping seagrasses to colonise sulphide-rich anoxic sediments.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1.

    Terrados J, Duarte CM, Kamp-Nielsen L, Agawin NSR, Gacia E, Lacap D, et al. Are seagrass growth and survival constrained by the reducing conditions of the sediment? Aquat Bot. 1999;65:175–97.

  2. 2.

    Jørgensen BB. Mineralization of organic matter in the sea bed - the role of sulphate reduction. Nature. 1982;296:643–45.

  3. 3.

    Holmer M, Andersen FO, Nielsen SL, Boschker HTS. The importance of mineralization based on sulfate reduction for nutrient regeneration in tropical seagrass sediments. Aquat Bot. 2001;71:1–17.

  4. 4.

    Lamers LPM, Govers LL, Janssen ICJM, Geurts JJM, Van der Welle MEW, Van Katwijk MM, et al. Sulfide as a soil phytotoxin-a review. Front Plant Sci. 2013;4:268.

  5. 5.

    Armstrong W. Aeration in higher plants. Adv Bot Res. 1979;7:225–332.

  6. 6.

    Colmer TD. Long-distance transport of gases in plants: a perspective on internal aeration and radial oxygen loss from roots. Plant Cell Environ. 2003;26:17–36.

  7. 7.

    Brodersen KE, Nielsen DA, Ralph PJ, Michael K. Oxic microshield and local pH enhancement protects Zostera muelleri from sediment derived hydrogen sulphide. New Phytol. 2014;3:1–13.

  8. 8.

    Luther GW, Findlay AJ, MacDonald DJ, Owings SM, Hanson TE, Beinart RA, et al. Thermodynamics and kinetics of sulfide oxidation by oxygen: A look at inorganically controlled reactions and biologically mediated processes in the environment. Front Microbiol. 2011;2:1–9.

  9. 9.

    van der Heide T, Govers LL, de Fouw J, Olff H, van der Geest M, van Katwijk MM, et al. A three-stage symbiosis forms the foundation of seagrass ecosystems. Science. 2012;336:1432–1434.

  10. 10.

    Joshi MM, Hollis JP. Interaction of Beggiatoa and rice plant: detoxification of hydrogen sulphide in the rice rhizosphere. Science. 1976;195:179–80.

  11. 11.

    Trojan D, Schreiber L, Bjerg JT, Bøggild A, Yang T. A Taxonomic framework for cable bacteria and proposal of the candidate genera Electrothrix and Electronema. Syst Appl Microbiol. 2016;39:297–306.

  12. 12.

    Pfeffer C, Larsen S, Song J, Dong M, Besenbacher F, Meyer RL, et al. Filamentous bacteria transport electrons over centimetre distances. Nature. 2012;491:10–13.

  13. 13.

    Burdorf LDW, Tramper A, Seitaj D, Meire L, Hidalgo-Martinez S, Zetsche EM, et al. Long-distance electron transport occurs globally in marine sediments. Biogeosciences. 2017;14:683–701.

  14. 14.

    Kjeldsen KU, Joulian C, Ingvorsen K. Oxygen tolerance of sulfate-reducing bacteria in activated sludge. Environ Sci Technol. 2004;38:2038–43.

  15. 15.

    Kilminster K, Forbes V, Holmer M. Development of a ‘sediment-stress’ functional-level indicator for the seagrass Halophila ovalis. Ecol Indic. 2014;36:280–9.

  16. 16.

    Holmer M, Bennett WW, Ferguson AJP, Potts J, Hasler-Sheetal H, Welsh DT. Drivers of sulfide intrusion in Zostera muelleri in a moderately affected estuary in south-eastern Australia. Mar Freshw Res. 2017;68:2134–44.

  17. 17.

    Larsen M, Borisov SM, Grunwald B, Klimant I, Glud RN. A simple and inexpensive high resolution color ratiometric planar optode imaging approach: application to oxygen and pH sensing. Limnol Oceanogr Methods. 2011;9:348–60.

  18. 18.

    Glud RN, Ramsing NB, Gundersen JK, Klimant I, Gludl RN. Planar optrodes: a new tool for fine scale measurements of two-dimensional O2 distribution in benthic communities. Mar Ecol Prog Ser. 1996;140:217–26.

  19. 19.

    Armstrong J, Armstrong W. Phragmities australis-a preliminary study of soil-oxidizing sites and internal gas transport pathways. New Phytol. 1988;108:373.

  20. 20.

    Schmidt H, Eickhorst T. Detection and quantification of native microbial populations on soil-grown rice roots by catalyzed reporter deposition-fluorescence in situ hybridization. FEMS Microbiol Ecol. 2014;87:390–402.

  21. 21.

    Teasdale PR, Hayward S, Davison W. In situ, high-resolution measurement of dissolved sulfide using diffusive gradients in thin films with computer-imaging densitometry. Anal Chem. 1999;71:2186–91.

  22. 22.

    Robertson D, Teasdale PR, Welsh DT. A novel gel-based technique for the high resolution, two-dimensional determination of iron (II) and sulfide in sediment. Limnol Oceanogr. 2008;6:502–12.

  23. 23.

    Watt M, Hugenholtz P, White R, Vinall K. Numbers and locations of native bacteria on field-grown wheat roots quantified by fluorescence in situ hybridization. (FISH). 2006;8:871–84.

  24. 24.

    Stoecker K, Dorninger C, Daims H, Wagner M. Double labeling of oligonucleotide probes for fluorescence in situ hybridization (DOPE-FISH) improves signal intensity and increases rRNA accessibility. Appl Environ Microbiol. 2010;76:922–6.

  25. 25.

    Buschmann V, Weston KD, Sauer M. Spectroscopic study and evaluation of red-absorbing fluorescent dyes. Bioconjugate Chem. 2003;14:195–204.

  26. 26.

    Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. PNAS. 2011;108:4516–22.

  27. 27.

    Muhling M, Woolven-Allen J, Murrell JC, Joint I. Improved group-specific PCR primers for denaturing gradient gel electrophoresis analysis of the genetic diversity of complex microbial communities. Isme J. 2008;2:379–92.

  28. 28.

    Muyzer G, De Waal EC, Uitterlinden AG. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol. 1993;59:695–700.

  29. 29.

    Comeau AM, Douglas GM, Langille MGI. Microbiome Helper: a custom and streamlined workflow for microbiome research. mSystems. 2017;2:1–11.

  30. 30.

    Zhang J, Kobert K, Flouri T, Stamatakis A. PEAR: a fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics. 2014;30:614–20.

  31. 31.

    Rognes T, Flouri T, Nichols B, Quince C, Mahé F. VSEARCH: a versatile open source tool for metagenomics. PeerJ. 2016;4:1–22.

  32. 32.

    Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335–6.

  33. 33.

    Kopylova E, Noé L, Touzet H. SortMeRNA: Fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics. 2012;28:3211–17.

  34. 34.

    Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26:2460–61.

  35. 35.

    Caporaso JG, Bittinger K, Bushman FD, Desantis TZ, Andersen GL, Knight R. PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics. 2010;26:266–7.

  36. 36.

    McMurdie PJ, Holmes S. Waste not, want not: why rarefying microbiome data is inadmissible. PLoS Comput Biol. 2014;10:1–12.

  37. 37.

    McMurdie PJ, Holmes S. Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE. 2013;8:1–11.

  38. 38.

    Frederiksen MS, Glud RN. Oxygen dynamics in the rhizosphere of Zostera marina: a two-dimensional planar optode study. Limnol Oceanogr. 2006;51:1072–83.

  39. 39.

    Brodersen K, Nielsen D, Ralph PJ, Kühl M. A split flow chamber with artificial sediment to examine the below‑ground microenvironment of aquatic macrophytes. Mar Biol. 2014;161:2921–30.

  40. 40.

    Kotula L, Colmer TD, Nakazono M. Effects of organic acids on the formation of the barrier to radial oxygen loss in roots of hordeum marinum. Funct Plant Biol. 2014;41:187–202.

  41. 41.

    Connell EL, Colmer TD, Walker DI. Radial oxygen loss from intact roots of Halophila ovalis as a function of distance behind the root tip and shoot illumination. Aquat Bot. 1999;63:219–28.

  42. 42.

    Martin BC, Statton J, Siebers AR, Grierson PF, Ryan MH, Kendrick GA. Colonizing tropical seagrasses increase root exudation under fluctuating and continuous low light. Limnol Oceanogr. 2018;63:381–91.

  43. 43.

    Wenzho F, Glud RN, Wenzhofer F. Small-scale spatial and temporal variability in coastal benthic O2 dynamics: Effects of fauna activity. Limnol Oceanogr. 2004;49:1471–81.

  44. 44.

    Samper-Villarreal J, Lovelock CE, Saunders MI, Roelfsema C, Mumby PJ. Organic carbon in seagrass sediments is influenced by seagrass canopy complexity, turbidity, wave height, and water depth. Limnol Oceanogr. 2016;61:938–52.

  45. 45.

    Morris BEL, Henneberger R, Huber H, Moissl-Eichinger C. Microbial syntrophy: Interaction for the common good. FEMS Microbiol Rev. 2013;37:384–406.

  46. 46.

    Shane MW, Lambers H. Cluster roots: a curiosity in context. Plant Soil. 2005;274:101–25.

  47. 47.

    Martin BC, George SJ, Price CA, Ryan MH, Tibbett M. The role of root exuded low molecular weight organic anions in facilitating petroleum hydrocarbon degradation: Current knowledge and future directions. Sci Total Environ. 2014;472:642–53.

  48. 48.

    Bjerg JT, Damgaard L, Holm A, Schramm A, Nielsen P. Motility of electric cable bacteria. Appl Environ Microbiol. 2016;82:3816–21.

  49. 49.

    Malkin SY, Meysman FJR. Rapid redox signal transmission by ‘cable bacteria’ beneath a photosynthetic biofilm. Appl Environ Microbiol. 2015;81:948–56.

  50. 50.

    Vasquez-Cardenas D, van de Vossenberg J, Polerecky L, Malkin SY, Schauer R, Hidalgo-Martinez S, et al. Microbial carbon metabolism associated with electrogenic sulphur oxidation in coastal sediments. ISME J. 2015;9:1966–78.

  51. 51.

    Rao AMF, Malkin SY, Hidalgo-Martinez S, Meysman FJR. The impact of electrogenic sulfide oxidation on elemental cycling and solute fluxes in coastal sediment. Geochim Cosmochim Acta. 2016;172:265–86.

  52. 52.

    Malkin SY, Seitaj D, Burdorf LDW, Nieuwhof S, Hidalgo-Martinez S, Tramper A, et al. Electrogenic sulfur oxidation by cable bacteria in bivalve reef sediments. Front Mar Sci. 2017;4:28.

  53. 53.

    Roberts DG. Root-hair structure and development in the seagrass Halophila ovalis (R. Br.) Hook. f. Mar Freshw Res. 1993;44:85–100.

  54. 54.

    Fraser MW, Kendrick GA, Grierson PF, Fourqurean JW, Vanderklift MA, Walker DI. Nutrient status of seagrasses cannot be inferred from system-scale distribution of phosphorus in Shark Bay, Western Australia. Mar Freshw Res. 2012;63:1015–26.

  55. 55.

    Waite DW, Vanwonterghem I, Rinke C, Parks DH, Zhang Y, Takai K et al. Comparative genomic analysis of the class Epsilonproteobacteria and proposed reclassification to epsilonbacteraeota (phyl. nov.). Front Microbiol 2017; 8:682.

  56. 56.

    Campbell BJ, Engel AS, Porter ML, Takai K. The versatile epsilon-proteobacteria: key players in sulphidic habitats. Nat Rev Microbiol. 2006;4:458–68.

  57. 57.

    Han Y, Perner M. The globally widespread genus Sulfurimonas: versatile energy metabolisms and adaptations to redox clines. Front Microbiol. 2015;6:1–17.

  58. 58.

    Wilbanks EG, Jaekel U, Salman V, Humphrey PT, Eisen JA, Facciotti MT, et al. Microscale sulfur cycling in the phototrophic pink berry consortia of the sippewissett salt marsh. Environ Microbiol. 2014;16:3398–415.

  59. 59.

    Dubilier N, Mülders C, Ferdelman T, de Beer D, Pernthaler A, Klein M, et al. Endosymbiotic sulphate-reducing and sulphide-oxidizing bacteria in an oligochaete worm. Nature. 2001;411:298–302.

  60. 60.

    Fahimipour AK, Kardish MR, Eisen JA, Lang JM, Green JL, Stachowicz JJ. Global-scale structure of the eelgrass microbiome. Appl Environ Microbiol. 2017;83:1–12.

  61. 61.

    Ettinger CL, Voerman SE, Lang JM, Stachowicz JJ, Eisen JA. Microbial communities in sediment from Zostera marina patches, but not the Z. marina leaf or root microbiomes, vary in relation to distance from patch edge. PeerJ. 2017;5:1–25.

  62. 62.

    Martin BC, Gleeson D, Statton J, Siebers AR, Grierson P, Ryan MH, et al. Low light availability alters root exudation and reduces putative beneficial microorganisms in seagrass roots. Front Microbiol. 2018;8:1–16.

  63. 63.

    Amann RI, Blinder BJ, Olson RJ, Chisholm SW, Devereux R, Stahl DA. Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol. 1990;56:1919–25.

  64. 64.

    Daims H, Brühl A, Amann R, Schleifer KH, Wagner M. The domain-specific probe EUB338 is insufficient for the detection of all Bacteria: development and evaluation of a more comprehensive probe set. Syst Appl Microbiol. 1999;22:434–44.

  65. 65.

    Loy A, Lehner A, Lee N, Adamczyk J, Meier H, Ernst J, et al. Oligonucleotide microarray for 16S rRNA gene based detection of all recognized lineages of sulfate reducing prokaryotes in the environment. Appl Env Microbiol. 2002;68 SRC-:5064–81.

  66. 66.

    Lucker S, Steger D, Kjeldsen KU, MacGregor BJ, Wagner M, Loy A. Improved 16S rRNA-targeted probe set for analysis of sulfate-reducing bacteria by fluorescence in situ hybridization. J Microbiol Methods. 2007;69:523–28.

  67. 67.

    Wallner G, Amann R, Beisker W. Optimizing fluorescent in situ hybridization with rRNA targeted oligonucleotide probes for flow cytometric identification of microorganisms. Cytometry. 1993;14:136–43.

Download references


Thanks to Morten Larsen and Adam Kessler for their advice in building and optimising the oxygen-optode system and Hannes Schmidt for advice in FISH protocols, as well as PWIS and the PP for many fruitful discussions. We thank the anonymous reviewers whose detailed comments helped improve and clarify this manuscript. We acknowledge the use of the services and facilities of AGRF as well as the facilities, and the scientific and technical assistance of the Australian Microscopy & Microanalysis Research Facility at the Centre for Microscopy, Characterisation & Analysis, The University of Western Australia, a facility funded by the University, State and Commonwealth Governments. Graduate Women WA provided financial support for BCM. Megan Ryan is funded by an ARC Future Fellowship (FT140100103) and Gary Kendrick by two ARC Linkage Grants that also funded the 16 S rRNA sequencing (LP130100918, LP130100155). William Bennett was funded by an ARC Discovery Early Career Researcher Award (DE140100056).

Author information


  1. School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia

    • Belinda C. Martin
    • , Ylva S. Olsen
    •  & Gary A. Kendrick
  2. The UWA Oceans Institute, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia

    • Belinda C. Martin
    • , Ylva S. Olsen
    •  & Gary A. Kendrick
  3. Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia

    • Jeremy Bougoure
    •  & Timothy D. Colmer
  4. School of Agriculture and Environment, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia

    • Megan H. Ryan
  5. Environmental Futures Research Institute, Griffith University, Parklands Drive, Southport, QLD, 4215, Australia

    • William W. Bennett
  6. Ooid Scientific Graphics and Editing, White Gum Valley, WA, 6163, Australia

    • Belinda C. Martin
    •  & Natalie K. Joyce


  1. Search for Belinda C. Martin in:

  2. Search for Jeremy Bougoure in:

  3. Search for Megan H. Ryan in:

  4. Search for William W. Bennett in:

  5. Search for Timothy D. Colmer in:

  6. Search for Natalie K. Joyce in:

  7. Search for Ylva S. Olsen in:

  8. Search for Gary A. Kendrick in:


BCM: study design and conception, method development, data collection data analysis, and drafting manuscript. JB: study design and conception, method development, and drafting manuscript. MR: drafting manuscript. WB: method development, data analysis, and drafting manuscript. TC: method development and drafting of manuscript. NJ: method development and drafting of manuscript. YO: method development, data analysis, and drafting manuscript. GK: study design and conception and drafting manuscript. All authors approved the final manuscript.

Conflict of interest

All authors declare they have no affiliations with or involvement in any organisation or entity with any financial interest or non-financial interest in the work described.

Corresponding author

Correspondence to Belinda C. Martin.

Electronic supplementary material

About this article

Publication history