Article | Published:

Phylogenetic imprint of woody plants on the soil mycobiome in natural mountain forests of eastern China

The ISME Journalvolume 13pages686697 (2019) | Download Citation

Abstract

Recent studies have detected strong phylogenetic signals in tree–fungus associations for diseased leaves and mycorrhizal symbioses. However, the extent of plant phylogenetic constraints on the free-living soil mycobiome remains unknown, especially at broad geographic scales. Here, 343 soil samples were collected adjacent to individual tree trunks, representing 58 woody plant species located in five mountain forests of eastern China. Integrating plant species identity and phylogenetic information, we aimed to unravel the relative contributions of phylogenetic relationships among tree species, abiotic environmental filtering, and geographic isolation to the geographic distribution of soil mycobiome. We found that the community dissimilarities of total fungi and each dominant guild (viz. saprotrophs, plant pathogens, and ectomycorrhizal fungi) significantly increased with increasing plant phylogenetic distance. Plant phylogenetic eigenvectors explained 11.4% of the variation in community composition, whereas environmental and spatial factors explained 24.1% and 7.2% of the variation, respectively. The communities of ectomycorrhizal fungi and plant pathogens were relatively more strongly affected by plant phylogeny than those of saprotrophs (13.7% and 10.4% vs. 8.5%). Overall, our results demonstrate how plant phylogeny, environment, and geographic space contribute to forest soil fungal distributions and suggest that the influence of plant phylogeny on fungal association may differ by guilds.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    Brundrett MC. Coevolution of roots and mycorrhizas of land plants. New Phytol. 2002;154:275–304.

  2. 2.

    van der Heijden MGA, Martin FM, Selosse MA, Sanders IR. Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol. 2015;205:1406–23.

  3. 3.

    Deslippe JR, Simard SW. Below-ground carbon transfer among Betula nana may increase with warming in Arctic tundra. New Phytol. 2011;192:689–98.

  4. 4.

    Klein T, Siegwolf RTW, Korner C. Belowground carbon trade among tall trees in a temperate forest. Science. 2016;352:342–4.

  5. 5.

    Freckleton RP, Lewis OT. Pathogens, density dependence and the coexistence of tropical trees. P R Soc B. 2006;273:2909–16.

  6. 6.

    Garcia-Guzman G, Heil M. Life histories of hosts and pathogens predict patterns in tropical fungal plant diseases. New Phytol. 2014;201:1106–20.

  7. 7.

    Liang M, Liu X, Gilbert GS, Zheng Y, Luo S, Huang F, et al. Adult trees cause density-dependent mortality in conspecific seedlings by regulating the frequency of pathogenic soil fungi. Ecol Lett. 2016;19:1448–56.

  8. 8.

    Liu XB, Liang MX, Etienne RS, Wang YF, Staehelin C, Yu SX. Experimental evidence for a phylogenetic Janzen-Connell effect in a subtropical forest. Ecol Lett. 2012;15:111–8.

  9. 9.

    Hoppe B, Purahong W, Wubet T, Kahl T, Bauhus J, Arnstadt T, et al. Linking molecular deadwood-inhabiting fungal diversity and community dynamics to ecosystem functions and processes in Central European forests. Fungal Divers. 2016;77:367–79.

  10. 10.

    Voriskova J, Baldrian P. Fungal community on decomposing leaf litter undergoes rapid successional changes. ISME J. 2013;7:477–86.

  11. 11.

    Burgess TI, Crous CJ, Slippers B, Hantula J, Wingfield MJ. Tree invasions and biosecurity: eco-evolutionary dynamics of hitchhiking fungi. AoB Plants. 2016;8:plw076.

  12. 12.

    Pautasso M, Schlegel M, Holdenrieder O. Forest health in a changing world. Microb Ecol. 2015;69:826–42.

  13. 13.

    Cavender-Bares J, Kozak KH, Fine PVA, Kembel SW. The merging of community ecology and phylogenetic biology. Ecol Lett. 2009;12:693–715.

  14. 14.

    Losos JB. Phylogenetic niche conservatism, phylogenetic signal and the relationship between phylogenetic relatedness and ecological similarity among species. Ecol Lett. 2008;11:995–1003.

  15. 15.

    Kembel SW, O’Connor TK, Arnold HK, Hubbell SP, Wright SJ, Green JL. Relationships between phyllosphere bacterial communities and plant functional traits in a neotropical forest. P Natl Acad Sci USA. 2014;111:13715–20.

  16. 16.

    Yeoh YK, Dennis PG, Paungfoo-Lonhienne C, Weber L, Brackin R, Ragan MA, et al. Evolutionary conservation of a core root microbiome across plant phyla along a tropical soil chronosequence. Nat Commun. 2017;8:215.

  17. 17.

    Gilbert GS, Webb CO. Phylogenetic signal in plant pathogen-host range. P Natl Acad Sci Usa. 2007;104:4979–83.

  18. 18.

    Liu XB, Liang MX, Etienne RS, Gilbert GS, Yu SX. Phylogenetic congruence between subtropical trees and their associated fungi. Ecol Evol. 2016;6:8412–22.

  19. 19.

    Chen L, Zheng Y, Gao C, Mi XC, Ma KP, Wubet T, et al. Phylogenetic relatedness explains highly interconnected and nested symbiotic networks of woody plants and arbuscular mycorrhizal fungi in a Chinese subtropical forest. Mol Ecol. 2017;26:2563–75.

  20. 20.

    Gehring CA, Sthultz CM, Flores-Renteria L, Whipple AV, Whitham TG. Tree genetics defines fungal partner communities that may confer drought tolerance. P Natl Acad Sci Usa. 2017;114:11169–74.

  21. 21.

    Põlme S, Bahram M, Yamanaka T, Nara K, Dai YC, Grebenc T, et al. Biogeography of ectomycorrhizal fungi associated with alders (Alnus spp.) in relation to biotic and abiotic variables at the global scale. New Phytol. 2013;198:1239–49.

  22. 22.

    Tedersoo L, Mett M, Ishida TA, Bahram M. Phylogenetic relationships among host plants explain differences in fungal species richness and community composition in ectomycorrhizal symbiosis. New Phytol. 2013;199:822–31.

  23. 23.

    Gao C, Shi NN, Chen L, Ji NN, Wu BW, Wang YL, et al. Relationships between soil fungal and woody plant assemblages differ between ridge and valley habitats in a subtropical mountain forest. New Phytol. 2017;213:1874–85.

  24. 24.

    Peay KG, Baraloto C, Fine PVA. Strong coupling of plant and fungal community structure across western Amazonian rainforests. ISME J. 2013;7:1852–61.

  25. 25.

    Tedersoo L, Bahram M, Cajthaml T, Polme S, Hiiesalu I, Anslan S, et al. Tree diversity and species identity effects on soil fungi, protists and animals are context dependent. ISME J. 2016;10:346–62.

  26. 26.

    Solly EF, Lindahl BD, Dawes MA, Peter M, Souza RC, Rixen C, et al. Experimental soil warming shifts the fungal community composition at the alpine treeline. New Phytol. 2017;215:766–78.

  27. 27.

    Urbanova M, Snajdr J, Baldrian P. Composition of fungal and bacterial communities in forest litter and soil is largely determined by dominant trees. Soil Biol Biochem. 2015;84:53–64.

  28. 28.

    Aponte C, Garcia LV, Maranon T, Gardes M. Indirect host effect on ectomycorrhizal fungi: Leaf fall and litter quality explain changes in fungal communities on the roots of co-occurring Mediterranean oaks. Soil Biol Biochem. 2010;42:788–96.

  29. 29.

    Bais HP, Park SW, Weir TL, Callaway RM, Vivanco JM. How plants communicate using the underground information superhighway. Trends Plant Sci. 2004;9:26–32.

  30. 30.

    Waring BG, Alvarez-Cansino L, Barry KE, Becklund KK, Dale S, Gei MG, et al. Pervasive and strong effects of plants on soil chemistry: a meta-analysis of individual plant ‘Zinke’ effects. P R Soc B. 2015;282:91–8.

  31. 31.

    Barberan A, McGuire KL, Wolf JA, Jones FA, Wright SJ, Turner BL, et al. Relating belowground microbial composition to the taxonomic, phylogenetic, and functional trait distributions of trees in a tropical forest. Ecol Lett. 2015;18:1397–405.

  32. 32.

    Leff JW, Bardgett RD, Wilkinson A, Jackson BG, Pritchard WJ, De Long JR et al. Predicting the structure of soil communities from plant community taxonomy, phylogeny, and traits. ISME J. 2018;12:1794-805.

  33. 33.

    Talbot JM, Bruns TD, Taylor JW, Smith DP, Branco S, Glassman SI, et al. Endemism and functional convergence across the North American soil mycobiome. P Natl Acad Sci Usa. 2014;111:6341–6.

  34. 34.

    Tedersoo L, Bahram M, Polme S, Koljalg U, Yorou NS, Wijesundera R, et al. Fungal biogeography. Global diversity and geography of soil fungi. Science. 2014;346:1256688.

  35. 35.

    Treseder KK, Maltz MR, Hawkins BA, Fierer N, Stajich JE, McGuire KL. Evolutionary histories of soil fungi are reflected in their large-scale biogeography. Ecol Lett. 2014;17:1086–93.

  36. 36.

    Erlandson S, Wei XJ, Savage J, Cavender-Bares J, Peay K. Soil abiotic variables are more important than Salicaceae phylogeny or habitat specialization in determining soil microbial community structure. Mol Ecol. 2018;27:2007–24.

  37. 37.

    Hiiesalu I, Bahram M, Tedersoo L. Plant species richness and productivity determine the diversity of soil fungal guilds in temperate coniferous forest and bog habitats. Mol Ecol. 2017;26:4846–58.

  38. 38.

    Yang T, Adams JM, Shi Y, He JS, Jing X, Chen LT, et al. Soil fungal diversity in natural grasslands of the Tibetan Plateau: associations with plant diversity and productivity. New Phytol. 2017;215:756–65.

  39. 39.

    Zhang KP, Adams JM, Shi Y, Yang T, Sun RB, He D, et al. Environment and geographic distance differ in relative importance for determining fungal community of rhizosphere and bulk soil. Environ Microbiol. 2017;19:3649–59.

  40. 40.

    Qian H, Jin Y, Ricklefs RE. Phylogenetic diversity anomaly in angiosperms between eastern Asia and eastern North America. P Natl Acad Sci Usa. 2017;114:11452–7.

  41. 41.

    Lu LM, Mao LF, Yang T, Ye JF, Liu B, Li HL, et al. Evolutionary history of the angiosperm flora of China. Nature . 2018;554:234–8.

  42. 42.

    Setala H, McLean MA. Decomposition rate of organic substrates in relation to the species diversity of soil saprophytic fungi. Oecologia . 2004;139:98–107.

  43. 43.

    Qian H, Ricklefs RE. Geographical distribution and ecological conservatism of disjunct genera of vascular plants in eastern Asia and eastern North America. J Ecol. 2004;92:253–65.

  44. 44.

    Bahram M, Kõljalg U, Courty PE, Diedhiou AG, Kjoller R, Polme S, et al. The distance decay of similarity in communities of ectomycorrhizal fungi in different ecosystems and scales. J Ecol. 2013;101:1335–44.

  45. 45.

    Wang B, Qiu YL. Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza . 2006;16:299–363.

  46. 46.

    APG IV. An update of the angiosperm phylogeny group classification for the orders and families of flowering plants: APG IV. Bot J Linn Soc. 2016;181:1–20.

  47. 47.

    Zanne AE, Tank DC, Cornwell WK, Eastman JM, Smith SA, FitzJohn RG, et al. Three keys to the radiation of angiosperms into freezing environments. Nature . 2014;506:89–92.

  48. 48.

    Smith SA, Beaulieu JM, Donoghue MJ. Mega-phylogeny approach for comparative biology: an alternative to supertree and supermatrix approaches. Bmc Evol Biol. 2009;9:37.

  49. 49.

    Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics . 2014;30:1312–3.

  50. 50.

    Hinchliff CE, Smith SA, Allman JF, Burleigh JG, Chaudhary R, Coghill LM, et al. Synthesis of phylogeny and taxonomy into a comprehensive tree of life. P Natl Acad Sci Usa. 2015;112:12764–9.

  51. 51.

    Gitzendanner MA, Soltis PS, Wong GKS, Ruhfel BR, Soltis DE. Plastid phylogenomic analysis of green plants: a billion years of evolutionary history. Am J Bot. 2018;105:291–301.

  52. 52.

    Soltis DE, Smith SA, Cellinese N, Wurdack KJ, Tank DC, Brockington SF, et al. Angiosperm phylogeny: 17 Genes, 640 Taxa. Am J Bot. 2011;98:704–30.

  53. 53.

    Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30:2725–9.

  54. 54.

    Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H, Ackerly DD, et al. Picante: R tools for integrating phylogenies and ecology. Bioinformatics . 2010;26:1463–4.

  55. 55.

    Gardes M, Bruns TD. ITS primers with enhanced specificity for basidiomycetes - application to the identification of mycorrhizae and rusts. Mol Ecol. 1993;2:113–8.

  56. 56.

    White TJBT, Lee S, Taylor J. Analysis of phylogenetic relationships by amplification and direct sequencing of ribosomal RNA genes. In: Innis MA, Gelfand DN, Sninsky JJ, White TJ, (Eds.). PCR Protocols: a guide to methods and applications. New York, NY, USA: Academic Press; 1990. p. 315–322.

  57. 57.

    Magoc T, Salzberg SL. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics . 2011;27:2957–63.

  58. 58.

    Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335–6.

  59. 59.

    Bengtsson-Palme J, Ryberg M, Hartmann M, Branco S, Wang Z, Godhe A, et al. Improved software detection and extraction of ITS1 and ITS2 from ribosomal ITS sequences of fungi and other eukaryotes for analysis of environmental sequencing data. Methods Ecol Evol. 2013;4:914–9.

  60. 60.

    Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics . 2011;27:2194–200.

  61. 61.

    Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics . 2010;26:2460–1.

  62. 62.

    Kunin V, Engelbrektson A, Ochman H, Hugenholtz P. Wrinkles in the rare biosphere: pyrosequencing errors can lead to artificial inflation of diversity estimates. Environ Microbiol. 2010;12:118–23.

  63. 63.

    Tedersoo L, Nilsson RH, Abarenkov K, Jairus T, Sadam A, Saar I, et al. 454 Pyrosequencing and Sanger sequencing of tropical mycorrhizal fungi provide similar results but reveal substantial methodological biases. New Phytol. 2010;188:291–301.

  64. 64.

    Kõljalg U, Nilsson RH, Abarenkov K, Tedersoo L, Taylor AFS, Bahram M, et al. Towards a unified paradigm for sequence-based identification of fungi. Mol Ecol. 2013;22:5271–7.

  65. 65.

    Nguyen NH, Song ZW, Bates ST, Branco S, Tedersoo L, Menke J, et al. FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 2016;20:241–8.

  66. 66.

    R core Team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2017. https://www.R-project.org/

  67. 67.

    Giraudoux P. pgirmess: Spatial analysis and data mining for field ecologists. R package version 1.6.9. https://CRAN.R-project.org/package=pgirmess. 2018.

  68. 68.

    Venables WN, Ripley BD, (eds). Modern Applied Statistics with S. Fourth Edition. New York, NY, USA: Springer; 2002.

  69. 69.

    Fox J, Weisberg S, An R. Companion to Applied Regression. Second Edition. Thousand Oaks CA: Sage; 2011. http://socserv.socsci.mcmaster.ca/jfox/Books/Companion

  70. 70.

    Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D et al. vegan: Community Ecology Package. R package version 2.4-3. https://CRAN.R-project.org/package=vegan. 2017.

  71. 71.

    McArdle BH, Anderson MJ. Fitting multivariate models to community data: a comment on distance-based redundancy analysis. Ecology . 2001;82:290–7.

  72. 72.

    Anderson MJ. DISTLM forward: a FORTRAN computer program to calculate a distance-based multivariate analysis for a linear model using forward selection. New Zealand: Department of Statistics, University of Auckland; 2003.

  73. 73.

    Borcard D, Gillet F, Legendre P, (eds). Numerical ecology with R. New York, NY, USA: Springer; 2011.

  74. 74.

    Dray S LP, Blanchet G. Packfor: forward selection with permutation (Canoco p. 46). R package version 0.0-8/r136. https://R-Forge.R-project.org/projects/sedar/. 2016.

  75. 75.

    Hanson CA, Fuhrman JA, Horner-Devine MC, Martiny JBH. Beyond biogeographic patterns: processes shaping the microbial landscape. Nat Rev Microbiol. 2012;10:497–506.

  76. 76.

    Nekola JC, White PS. The distance decay of similarity in biogeography and ecology. J Biogeogr. 1999;26:867–78.

  77. 77.

    He JH, Tedersoo LH, Hu A, Han CH, He D, Wei H, et al. Greater diversity of soil fungal communities and distinguishable seasonal variation in temperate deciduous forests compared with subtropical evergreen forests of eastern China. Fems Microbiol Ecol. 2017;93:fix069.

  78. 78.

    Liu JJ, Sui YY, Yu ZH, Shi Y, Chu HY, Jin J, et al. Soil carbon content drives the biogeographical distribution of fungal communities in the black soil zone of northeast China. Soil Biol Biochem. 2015;83:29–39.

  79. 79.

    Nguyen NH, Williams LJ, Vincent JB, Stefanski A, Cavender-Bares J, Messier C, et al. Ectomycorrhizal fungal diversity and saprotrophic fungal diversity are linked to different tree community attributes in a field-based tree experiment. Mol Ecol. 2016;25:4032–46.

  80. 80.

    Zhou DQ, Hyde KD. Host-specificity, host-exclusivity, and host-recurrence in saprobic fungi. Mycol Res. 2001;105:1449–57.

  81. 81.

    Vasutova M, Edwards-Jonasova M, Baldrian P, Cermak M, Cudlin P. Distinct environmental variables drive the community composition of mycorrhizal and saprotrophic fungi at the alpine treeline ecotone. Fungal Ecol. 2017;27:116–24.

  82. 82.

    Martin FM, Uroz S, Barker DG. Ancestral alliances: plant mutualistic symbioses with fungi and bacteria. Science . 2017;356:819–28.

  83. 83.

    van der Does HC, Rep M. Virulence genes and the evolution of host specificity in plant-pathogenic fungi. Mol Plant Microbe. 2007;20:1175–82.

  84. 84.

    Bonito G, Reynolds H, Robeson MS, Nelson J, Hodkinson BP, Tuskan G, et al. Plant host and soil origin influence fungal and bacterial assemblages in the roots of woody plants. Mol Ecol. 2014;23:3356–70.

  85. 85.

    Peay KG, Russo SE, McGuire KL, Lim ZY, Chan JP, Tan S, et al. Lack of host specificity leads to independent assortment of dipterocarps and ectomycorrhizal fungi across a soil fertility gradient. Ecol Lett. 2015;18:807–16.

  86. 86.

    Schlaeppi K, Dombrowski N, Oter RG, van Themaat EVL, Schulze-Lefert P. Quantitative divergence of the bacterial root microbiota in Arabidopsis thaliana relatives. P Natl Acad Sci Usa. 2014;111:585–92.

  87. 87.

    Chen YL, Xu TL, Veresoglou SD, Hu HW, Hao ZP, Hu YJ, et al. Plant diversity represents the prevalent determinant of soil fungal community structure across temperate grasslands in northern China. Soil Biol Biochem. 2017;110:12–21.

  88. 88.

    Timling I, Walker DA, Nusbaum C, Lennon NJ, Taylor DL. Rich and cold: diversity, distribution and drivers of fungal communities in patterned-ground ecosystems of the North American Arctic. Mol Ecol. 2014;23:3258–72.

  89. 89.

    Kreft H, Jetz W. Global patterns and determinants of vascular plant diversity. P Natl Acad Sci Usa. 2007;104:5925–30.

  90. 90.

    Griffiths RI, Thomson BC, James P, Bell T, Bailey M, Whiteley AS. The bacterial biogeography of British soils. Environ Microbiol. 2011;13:1642–54.

  91. 91.

    Fierer N, Jackson RB. The diversity and biogeography of soil bacterial communities. P Natl Acad Sci Usa. 2006;103:626–31.

  92. 92.

    Murata M, Kinoshita A, Nara K. Revisiting the host effect on ectomycorrhizal fungal communities: implications from host-fungal associations in relict Pseudotsuga japonica forests. Mycorrhiza . 2013;23:641–53.

  93. 93.

    Russell A, Kivlin S, Hawkes C. Tropical tree species effects on soil pH and biotic factors and the consequences for macroaggregate dynamics. Forests . 2018;9:184.

  94. 94.

    Zheng XF, Wei X, Zhang SX. Tree species diversity and identity effects on soil properties in the Huoditang area of the Qinling Mountains, China. Ecosphere . 2017;8:e01732.

  95. 95.

    Peay KG, Kennedy PG, Talbot JM. Dimensions of biodiversity in the earth mycobiome. Nat Rev Microbiol. 2016;14:434–47.

  96. 96.

    Salvucci E. Microbiome, holobiont and the net of life. Crit Rev Microbiol. 2016;42:485–94.

Download references

Acknowledgements

We are grateful to Yuying Ma, Yingying Ni, Liang Chen for assistance in soil sampling and laboratory assays, and Jianfei Ye, Bing Liu, Luxian Liu, Xiaoming Zheng, Ji Ye, Zhanqing Hao for assistance with vegetation survey. We also thank Sergei Põlme and Xu Liu for assistance with statistical analyses. This work was supported by the NSFC-NSF Dimensions of Biodiversity program (31461123001), the Strategic Priority Research Program (XDB 15010101) of the Chinese Academy of Sciences, the National Program on Key Basic Research Project (2014CB954002), US National Science Foundation grant DEB-1442280 to PSS and DES, and the China Biodiversity Observation Networks (Sino BON).

Author information

Affiliations

  1. State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, East Beijing Road 71, Nanjing, 210008, China

    • Teng Yang
    • , Yu Shi
    • , Hongfei Wang
    • , Yuntao Li
    •  & Haiyan Chu
  2. University of Chinese Academy of Sciences, Beijing, 100049, China

    • Teng Yang
  3. Natural History Museum, University of Tartu, 14a Ravila, Tartu, 50411, Estonia

    • Leho Tedersoo
  4. Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA

    • Pamela S. Soltis
    • , Douglas E. Soltis
    •  & Miao Sun
  5. Department of Ecology and Evolution, and Department of Surgery, University of Chicago, Chicago, IL, 60637, USA

    • Jack A. Gilbert
  6. State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China

    • Jian Zhang
    •  & Zhiduan Chen
  7. Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China

    • Hanyang Lin
    • , Yunpeng Zhao
    •  & Chengxin Fu

Authors

  1. Search for Teng Yang in:

  2. Search for Leho Tedersoo in:

  3. Search for Pamela S. Soltis in:

  4. Search for Douglas E. Soltis in:

  5. Search for Jack A. Gilbert in:

  6. Search for Miao Sun in:

  7. Search for Yu Shi in:

  8. Search for Hongfei Wang in:

  9. Search for Yuntao Li in:

  10. Search for Jian Zhang in:

  11. Search for Zhiduan Chen in:

  12. Search for Hanyang Lin in:

  13. Search for Yunpeng Zhao in:

  14. Search for Chengxin Fu in:

  15. Search for Haiyan Chu in:

Conflict of interest

The authors declare that they have no conflict of interest.

Corresponding author

Correspondence to Haiyan Chu.

Electronic supplementary material

About this article

Publication history

Received

Revised

Accepted

Published

DOI

https://doi.org/10.1038/s41396-018-0303-x