Article | Published:

Bacterial community structure in a sympagic habitat expanding with global warming: brackish ice brine at 85–90 °N

Abstract

Larger volumes of sea ice have been thawing in the Central Arctic Ocean (CAO) during the last decades than during the past 800,000 years. Brackish brine (fed by meltwater inside the ice) is an expanding sympagic habitat in summer all over the CAO. We report for the first time the structure of bacterial communities in this brine. They are composed of psychrophilic extremophiles, many of them related to phylotypes known from Arctic and Antarctic regions. Community structure displayed strong habitat segregation between brackish ice brine (IB; salinity 2.4–9.6) and immediate sub-ice seawater (SW; salinity 33.3–34.9), expressed at all taxonomic levels (class to genus), by dominant phylotypes as well as by the rare biosphere, and with specialists dominating IB and generalists SW. The dominant phylotypes in IB were related to Candidatus Aquiluna and Flavobacterium, those in SW to Balneatrix and ZD0405, and those shared between the habitats to Halomonas, Polaribacter and Shewanella. A meta-analysis for the oligotrophic CAO showed a pattern with Flavobacteriia dominating in melt ponds, Flavobacteriia and Gammaproteobacteria in solid ice cores, Flavobacteriia, Gamma- and Betaproteobacteria, and Actinobacteria in brine, and Alphaproteobacteria in SW. Based on our results, we expect that the roles of Actinobacteria and Betaproteobacteria in the CAO will increase with global warming owing to the increased production of meltwater in summer. IB contained three times more phylotypes than SW and may act as an insurance reservoir for bacterial diversity that can act as a recruitment base when environmental conditions change.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    Sunagawa S, Coelho LP, Chaffron S, Kultima JR, Labadie K, Salazar G, et al. Structure and function of the global ocean microbiome. Science. 2015;348:1261359.

  2. 2.

    Fernández-Méndez M, Turk-Kubo KA, Buttigieg PL, Rapp JZ, Krumpen T, Zehr JP, Boetius A. Diazotroph diversity in the sea ice, melt ponds, and surface waters of the Eurasian Basin of the Central Arctic Ocean. Front Microbiol. 2016;7:1884.

  3. 3.

    Gosselin M, Levasseur M, Wheeler PA, Horner RA, Booth BC. New measurements of phytoplankton and ice algal production in the Arctic Ocean. Deep Sea Res II. 1997;44:1623–44.

  4. 4.

    Rich J, Gosselin M, Sherr E, Sherr B, Kirchman DL. High bacterial production, uptake and concentration of dissolved organic matter in the Central Arctic Ocean. Deep Sea Res II. 1997;44:1645–63.

  5. 5.

    Wheeler PA, Gosselin M, Sherr E, Thibault D, Kirchman DL, Benner R, Whitledge TE. Active cycling of organic carbon in the Central Arctic Ocean. Nature. 1996;380:697–9.

  6. 6.

    Galand PE, Potvin M, Casamayor EO, Lovejoy C. Hydrography shapes bacterial biogeography of the deep Arctic Ocean. ISME J. 2010;4:564–76.

  7. 7.

    Bano N, Hollibaugh JT. Phylogenetic composition of bacterioplankton assemblages from the Arctic Ocean. Appl Environ Microbiol. 2002;68:505–18.

  8. 8.

    Li Y, Wang Z, Lin X. Microbial community structure of Arctic seawater as revealed by pyrosequencing. Acta Oceanol Sin. 2016;35:78–84.

  9. 9.

    Bowman JS, Rasmussen S, Blom N, Deming JW, Rysgaard S, Sicheritz-Ponten T. Microbial community structure of Arctic multiyear sea ice and surface seawater by 454 sequencing of the 16S RNA gene. ISME J. 2012;6:11–20.

  10. 10.

    Rapp JZ. Bacterial diversity in sea ice, melt ponds, water column, ice algal aggregates and deep-sea sediments of the Central Arctic Ocean. Bremen, Germany: AWI; 2014. p. 99.

  11. 11.

    Deming JW, Collins RE. Sea ice as a habitat for bacteria, archaea and viruses. In:Thomas DN, editor. Sea Ice. 3rd ed. Oxford: John Wiley & Sons; 2017. p. 326–51.

  12. 12.

    Pedrós-Alió C, Potvin M, Lovejoy C. Diversity of planktonic microorganisms in the Arctic Ocean. Progr Oceanogr. 2015;139:233–43.

  13. 13.

    Overland J, Walsh J, Kattsov V. Trends and feedbacks. In: Snow, water, ice and permafrost in the Arctic (SWIPA). Arctic Monitoring and Assessment Programme (AMAP): Oslo, Norway; 2017. p. 9–23.

  14. 14.

    Ding Q, Schweiger A, L’Heureux M, Battisti DS, Po-Chedley S, Johnsen NA, et al. Influence of high-latitude atmospheric circulation changes on summertime Arctic sea ice. Nat Clim Change. 2017;7:289–95.

  15. 15.

    IPCC. Climate Change 2014 – Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Pachauri RK, Meyer LA, editors]. Geneva, Switzerland: IPCC, 2015. p.151.

  16. 16.

    Barnhart KR, Miller CR, Overeem I, Kay JE. Mapping the future expansion of Arcticopen water. Nat Clim Change. 2015;6:280–5.

  17. 17.

    Schweiger A, Lindsay R, Zhang J, Steele M, Stern H, Kwok R. Uncertainty in modeled Arctic sea ice volume. J Geophys Res. 2011;116:C00D06.

  18. 18.

    Laxon SW, Giles KA, Ridout AL, Wingham DJ, Willatt R, Cullen R, et al. CryoSat-2 estimates of Arctic sea ice thickness and volume. Geophys Res Lett. 2013;40:732–7.

  19. 19.

    Perovich DK, Richter-Menge JA. Regional variability in sea ice melt in a changing Arctic. Philos Trans R Soc A. 2015;373:20140165.

  20. 20.

    Screen JA, Williamson D. Ice-free Arctic at 1.5 °C? Nat Clim Change. 2017;7:230–1.

  21. 21.

    Duarte CM, Lenton TM, Wadhams P, Wassmann P. Abrupt climate change in the Arctic. Nat Clim Change. 2012;2:60–2.

  22. 22.

    Stroeve JC, Markus T, Boisvert L, Miller J, Barrett A. Changes in Arctic melt season and implications for sea ice loss. Geophys Res Lett. 2014;41:1216–25.

  23. 23.

    Wang C, Granskog MA, Hudson SR, Gerland S, Pavlov AK, Perovich DK, et al. Atmospheric conditions in the Central Arctic Ocean through the melt seasons of 2012 and 2013: impact on surface conditions and solar energy deposition into the ice-ocean system. J Geophys Res. 2016;121:1043–58.

  24. 24.

    Maslanik J, Stroeve J, Fowler C, Emery W. Distribution and trends in Arctic sea ice age through spring 2011. Geophys Res Lett. 2011;38:L13502.

  25. 25.

    Haine TWN, Martin T. The Arctic-Subarctic sea ice system is entering a seasonal regime: implications for future Arctic amplification. Sci Rep. 2017;7:4618.

  26. 26.

    Arrigo KR. Sea ice as a habitat for primary producers. In:Thomas DN, editor. Sea Ice. 3rd ed. Oxford: John Wiley & Sons; 2017. p. 352–69.

  27. 27.

    Eicken H, Bock C, Wittig R, Miller H, Poertner HO. Magnetic resonance imaging of sea-ice pore fluids: methods and thermal evolution of pore microstructure. Cold Reg Sci Technol. 2000;31:207–25.

  28. 28.

    Petrich C, Eicken H. Overview of sea ice growth and properties. In:Thomas DN, editor. Sea Ice. 3rd ed. Oxford: John Wiley & Sons; 2017. p. 1–41.

  29. 29.

    Stoecker DK, Gustafson DE, Baier CT, Black MMD. Primary production in the upper sea ice. Aquat Microb Ecol. 2000;21:275–87.

  30. 30.

    Reid PC, Johns DG, Edwards M, Starr M, Poulin M, Snoeijs P. A biological consequence of reducing Arctic ice cover: arrival of the Pacific diatom Neodenticula seminae in the North Atlantic for the first time in 800 000 years. Glob Change Biol. 2007;13:1910–21.

  31. 31.

    Lund-Hansen LC, Markager S, Hancke K, Stratman T, Rysgaard S, Ramløv H, et al. Effects of sea-ice light attenuation and CDOM absorption in the water below the Eurasian sector of Central Arctic Ocean (>88°N). Polar Res. 2015;34:23978.

  32. 32.

    Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010a;7:335–6.

  33. 33.

    McDonald D, Price MN, Goodrich J, Nawrocki EP, DeSantis TZ, Probst A, et al. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J. 2012;6:610–8.

  34. 34.

    Gotelli NJ, Entsminger GL. Swap and fill algorithms in null model analysis: rethinking the knight’s tour. Oecologia. 2001;129:281–91.

  35. 35.

    Caporaso JG, Bittinger K, Bushman FD, DeSantis TZ, Andersen GL, Knight R. PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics. 2010b;26:266–7.

  36. 36.

    Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26:2460–1.

  37. 37.

    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nuclei Acids Res. 2013;41:D590–D596.

  38. 38.

    Lynch MDJ, Neufeld JD. Ecology and exploration of the rare biosphere. Nat Rev Microbiol. 2015;13:217–29.

  39. 39.

    Pedrós-Alió C. Dipping into the rare biosphere. Science. 2007;315:192–3.

  40. 40.

    Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, et al. (2013). Vegan: community Ecology Package. R package version 2.0-7. (http://cran.r-project.org/package=vegan).

  41. 41.

    R Development Core Team. R: A Language and Environment for Statistical Computing Vienna. Austria: the R Foundation for Statistical Computing; 2014. ISBN: 3-900051-07-0, Available online at http://www.R-project.org/#.

  42. 42.

    Mantel N. The detection of disease clustering and a generalized regression approach. Cancer Res. 1967;27:209–20.

  43. 43.

    Rintala JM, Piiparinen J, Blomster J, Majaneva M, Müller S, Uusikivi J, Autio R. Fast direct melting of brackish sea-ice samples results in biologically more accurate results than slow buffered melting. Polar Biol. 2014;37:1811–22.

  44. 44.

    Garrison R, Buck KR. Organism losses during ice melting: a serious bias in sea-ice community studies. Polar Biol. 1986;6:237–9.

  45. 45.

    Stoecker DK, Gustafson DE, Black MMD, Baier CT. Population dynamics of microalgae in the upper land-fast sea ice at a snow-free location. J Phycol. 1998;34:60–69.

  46. 46.

    Harada N. Review: potential catastrophic reduction of sea ice in the western Arctic Ocean: its impact on biogeochemical cycles and marine ecosystems. Glob Planet Change. 2016;136:1–17.

  47. 47.

    Fuhrman JA, Cram JA, Needham DM. Marine microbial community dynamics and their ecological interpretation. Nat Rev Microbiol. 2015;13:133–46.

  48. 48.

    Horner-Devine MC, Bohannan BJM. Phylogenetic clustering and overdispersion in bacterial communities. Ecology. 2006;87:S100–S108.

  49. 49.

    Dupont CL, Larsson J, Yooseph S, Ininbergs K, Goll J, Asplund-Samuelsson J, et al. Functional tradeoffs underpin salinity-driven divergence in microbial community composition. PLoS ONE. 2014;9:e89549.

  50. 50.

    Herlemann DPR, Labrenz M, Jürgens K, Bertilsson S, Waniek JJ, Andersson AF. Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME J. 2011;5:1571–9.

  51. 51.

    Herlemann DPR, Lundin D, Andersson AF, Labrenz M, Jürgens K. Phylogenetic signals of salinity and season in bacterial community composition across the salinity gradient of the Baltic Sea. Front Microbiol. 2016;7:1883.

  52. 52.

    Lozupone CA, Knight R. Global patterns in bacterial diversity. PNAS. 2007;104:11436–40.

  53. 53.

    Han D, Kang I, Ha HK, Kim HC, Kim OS, Lee BY, et al. Bacterial communities of surface mixed layer in the Pacific sector of the western Arctic Ocean during sea-ice melting. PLoS ONE. 2014;9:e86887.

  54. 54.

    Zinger L, Amaral-Zettler LA, Fuhrman JA, Horner-Devine MC, Huse SM, Mark Welch DB. Global patterns of bacterial beta-diversity in seafloor and seawater ecosystems. PLoS ONE. 2011;6:e24570.

  55. 55.

    Ladau J, Sharpton TJ, Finucane MM, Jospin G, Kembel SW, O’Dwyer J, et al. Global marine bacterial diversity peaks at high latitudes in winter. ISME J. 2013;7:1669–77.

  56. 56.

    Marteinsson VB, Groben R, Reynisson E, Vannier P. Biogeography of marine microorganisms. In:Stal LJ, Cretoiu MS, editor. The Marine Microbiome. Switzerland: Springer International Publishing; 2016. p. 187–207.

  57. 57.

    Ghiglione JF, Galand PE, Pommier T, Pedrós-Alió C, Maas EW, Bakker K, et al. Pole-to-pole biogeography of surface and deep marine bacterial communities. PNAS. 2012;109:17633–8.

  58. 58.

    Bowman JS. The relationship between sea ice bacterial community structure and biogeochemistry: a synthesis of current knowledge and known unknowns. Elem Sci Anthr. 2015;3:000072.

  59. 59.

    Boetius A, Anesio AM, Deming JW, Mikucki JA, Rapp JZ. Microbial ecology of the cryosphere: sea ice and glacial habitats. Nat Rev Microbiol. 2015;13:677–90.

  60. 60.

    Malmström RR, Straza TRA, Cottrell MT, Kirchman DL. Diversity, abundance, and biomass production of bacterial groups in the western Arctic Ocean. Aquat Microb Ecol. 2007;47:45–55.

  61. 61.

    Kirchman DL, Dittel AI, Malmstrom RR, Cottrell MT. Biogeography of major bacterial groups in the Delaware estuary. Limnol Oceanogr. 2005;50:1697–706.

  62. 62.

    Zeng YX, Zhang F, He JF, Lee SH, Qiao ZY, Yu Y, et al. Bacterioplankton community structure in the Arctic waters as revealed by pyrosequencing of 16S rRNA genes. Antonie Van Leeuwenhoek. 2013;103:1309–19.

  63. 63.

    Brinkmeyer R, Knittel K, Jurgens J, Weyland H, Amann R, Helmke E. Diversity and structure of bacterial communities in Arctic versus Antarctic pack ice. Appl Environ Microbiol. 2003;69:6610–9.

  64. 64.

    Hatam I, Lange B, Beckers J, Haas C, Lanoil B. Bacterial communities from Arctic seasonal sea ice are more compositionally variable than those from multi-year sea ice. ISME J. 2016;10:2543–52.

  65. 65.

    Larose C, Berger S, Ferrari C, Navarro E, Dommergue A, Schneider D, Vogel TM. Microbial sequences retrieved from environmental samples from seasonal Arctic snow and meltwater from Svalbard, Norway. Extremophiles. 2010;14:205–12.

  66. 66.

    Eronen-Rasimus E, Kaartokallio H, Lyra C, Autio R, Kuosa H, Dieckmann GS, et al. Bacterial community dynamics and activity in relation to dissolved organic matter availability during sea-ice formation in a mesocosm experiment. Microbiol Open. 2014;3:139–56.

  67. 67.

    Sambrotto RN, Goering JJ, McRoy CP. Large yearly production of phytoplankton in the western Bering Strait. Science. 1984;225:1147–50.

  68. 68.

    Yergeau E, Michel C, Tremblay J, Niemi A, King TL, Wyglinski J, et al. Metagenomic survey of the taxonomic and functional microbial communities of seawater and sea ice from the Canadian Arctic. Sci Rep. 2017;7:42242.

  69. 69.

    Eronen-Rasimus E, Piiparinen J, Karkman A, Lyra C, Gerland S, Kaartokallio H. Bacterial communities in Arctic first-year drift ice during the winter/spring transition. Environ Microbiol Rep. 2016;8:527–35.

  70. 70.

    Hatam I, Charchuk R, Lange B, Beckers J, Haas C, Lanoil B. Distinct bacterial assemblages reside at different depths in Arctic multiyear sea ice. FEMS Microbiol Ecol. 2014;90:115–25.

  71. 71.

    Boeuf D, Humily F, Jeanthon C. Diversity of Arctic pelagic Bacteria with an emphasis on photoheterotrophs: a review. Biogeosciences. 2014;11:3309–22.

  72. 72.

    Kelllogg CTE, Deming JW. Comparison of free-living, suspended particle, and aggregate-associated bacterial and archaeal communities in the Laptev Sea. Aquat Microb Ecol. 2009;57:1–18.

  73. 73.

    Monier A, Findlay HS, Charvet S, Lovejoy C. Late winter under ice pelagic microbial communities in the high Arctic Ocean and the impact of short-term exposure to elevated CO2 levels. Front Microbiol. 2014;5:490.

  74. 74.

    Collins RE, Rocap G, Deming JW. Persistence of bacterial and archaeal communities in sea ice through an Arctic winter. Environ Microbiol. 2010;12:1828–41.

  75. 75.

    Kirchman DL, Cottrell MT, Lovejoy C. The structure of bacterial communities in the western Arctic Ocean as revealed by pyrosequencing of 16S rRNA genes. Environ Microbiol. 2010;12:1132–43.

  76. 76.

    Giovannoni SJ. SAR11 bacteria: the most abundant plankton in the oceans. Annu Rev Mar Sc. 2017;9:231–55.

  77. 77.

    Herlemann DPR, Woelk J, Labrenz M, Jürgens K. Diversity and abundance of “Pelagibacterales” (SAR11) in the Baltic Sea salinity gradient. Syst Appl Microbiol. 2014;37:601–4.

  78. 78.

    Logares R, Bråte J, Heinrich F, Shalchian-Tabrizi K, Bertilsson S. Infrequent transitions between saline and fresh waters in one of the most abundant microbial lineages (SAR11). Mole Biol Evol. 2010;27:347–57.

  79. 79.

    Lovejoy C, Galand PE, Kirchman DL. Picoplankton diversity in the Arctic Ocean and surrounding seas. Mar Biodiv. 2011;41:5–12.

  80. 80.

    Koh EY, Cowie ROM, Simpson AM, O’Toole R, Ryan KG. The origin of cyanobacteria in Antarctic sea ice: marine or freshwater? Environ Microbiol Rep. 2012;4:479–83.

  81. 81.

    Hauptmann AL, Stibal M, Bœlum J, Sicheritz-Pontén T, Brunak S, Bowman JS, et al. Bacterial diversity in snow on North Pole ice floes. Extremophiles. 2014;18:945–51.

  82. 82.

    Jungblut AD, Lovejoy C, Vincent WF. Global distribution of cyanobacterial ecotypes in the cold biosphere. ISME J. 2010;4:191–202.

  83. 83.

    Cottrell MT, Kirchman DL. Photoheterotrophic microbes in the Arctic Ocean in summer and winter. Appl Environ Microbiol. 2009;75:4958–66.

  84. 84.

    Gradinger R, Ikävalko J. Organism incorporation into newly forming Arctic sea ice in the Greenland Sea. J Plankton Res. 1998;20:871–86.

  85. 85.

    Huang S, Wilhelm SW, Harvey HR, Taylor K, Jiao N, Chen F. Novel lineages of Prochlorococcus and Synechococcus in the global oceans. ISME J. 2012;6:285–97.

  86. 86.

    Nelson RJ, Ashjian CJ, Bluhm BA, Conlan KE, Gradinger RR, Grebmeier JM, et al. Biodiversity and biogeography of the lower trophic taxa of the Pacific Arctic region: sensitivities to climate change. In: Grebmeier JM, Maslowski W, editors. The Pacific Arctic Region: Ecosystem Status and Trends in a Rapidly Changing Environment. Dordrecht: Springer Science+Business Media; 2014. p. 269–336.

  87. 87.

    Waleron M, Waleron K, Vincent WF, Wilmotte A. Allochthonous inputs of riverine picocyanobacteria to coastal waters in the Arctic Ocean. FEMS Microbiol Ecol. 2007;59:356–65.

  88. 88.

    Díez B, Bergman B, Pedrós-Alió C, Antó M, Snoeijs P. High cyanobacterial nifH gene diversity in Arctic seawater and sea ice brine. Environ Microbiol Rep. 2012;4:360–6.

  89. 89.

    Sul WJ, Oliver TA, Ducklow HW, Amaral-Zettler LA, Sogin ML. Marine bacteria exhibit a bipolar distribution. PNAS. 2013;110:2342–7.

  90. 90.

    Vreeland RH, Litchfield CD, Martin EL, Elliot E. Halomonas elongata, a new genus and species of extremely salt-tolerant bacteria. Int J Syst Bacteriol. 1980;30:485–95.

  91. 91.

    Celussi M, Balestra C, Fabbro C, Crevatin E, Cataletto B, Fonda Umani S, et al. Organic-matter degradative potential of Halomonas glaciei isolated from frazil ice in the Ross Sea (Antarctica). FEMS Microbiol Ecol. 2008;65:504–12.

  92. 92.

    Li WKW. From cytometry to macroecology: a quarter century quest in microbial oceanography. Aquat Microb Ecol. 2009;57:239–51.

  93. 93.

    Kang I, Lee K, Yang SJ, Choi A, Kang D, Lee YK, et al. Genome sequence of “Candidatus Aquiluna” sp. Strain IMCC13023, a marine member of the Actinobacteria isolated from an Arctic fjord. J Bacteriol. 2012;194:3550–1.

  94. 94.

    Hahn MW. Description of seven candidate species affiliated with the phylum Actinobacteria, representing planktonic freshwater bacteria. Int J Syst Evol Microbiol. 2009;59:112–7.

  95. 95.

    Boeuf D, Cottrell MT, Kirchman DL, Lebaron P, Jeanthon C. Summer community structure of aerobic anoxygenic phototrophic bacteria in the western Arctic Ocean. FEMS Microbiol Ecol. 2013;85:417–32.

  96. 96.

    Simu K, Hagström Å. Oligotrophic bacterioplankton with a novel single-cell life strategy. Appl Environ Microbiol. 2004;70:2445–51.

  97. 97.

    Moreno-Pino M, De la Iglesia R, Valdivia N, Henríquez-Castilo C, Galán A, Díez B, Trefault N. Variation in coastal Antarctic microbial community composition at sub-mesoscale: spatial distance or environmental filtering? FEMS Microbiol Ecol. 2016;92:fiw088.

  98. 98.

    Bosi E, Fondi M, Orlandini V, Perrin E, Maida I, de Pascale D, et al. The pangenome of (Antarctic) Pseudoalteromonas bacteria: evolutionary and functional insights. BMC Genomics. 2017;18:93.

  99. 99.

    Qin Q, Xie B, Yu Y, Shu Y, Rong J, Zhang Y, et al. Comparative genomics of the marine bacterial genus Glaciecola reveals the high degree of genomic diversity and genomic characteristic for cold adaptation. Environ Microbiol. 2014;16:1642–53.

  100. 100.

    Klippel B, Lochner A, Bruce DC, Davenport KW, Detter C, Goodwin LA, et al. Complete genome sequence of the marine cellulose- and xylan-degrading bacterium Glaciecola sp. strain 4H-3–7+YE-5. J Bacteriol. 2011;193:4547–8.

  101. 101.

    Norman L, Thomas DN, Stedmon CA, Granskog MA, Papadimitriou S, Krapp RH, et al. The characteristics of dissolved organic matter (DOM) and chromophoric dissolved organic matter (CDOM) in Antarctic sea ice. Deep Sea Res II. 2011;58:1075–91.

  102. 102.

    Gawor J, Grzesiak J, Sasin-Kurowska J, Borsuk P, Gromadka R, Górniak D, et al. Evidence of adaptation, niche separation and microevolution within the genus Polaromonas on Arctic and Antarctic glacial surfaces. Extremophiles. 2016;20:403–13.

  103. 103.

    Sharma AK, Zhaxybayeva O, Papke RT, Doolittle WF. Actinorhodopsins: proteorhodopsin-like gene sequences found predominantly in non-marine environments. Environ Microbiol. 2008;10:1039–56.

  104. 104.

    Pinhassi J, DeLong EF, Béjà O, González JM, Pedrós-Alió C. Marine bacterial and archaeal ion-pumping rhodopsins: genetic diversity, physiology, and ecology. Microbiol Mol Biol Rev. 2016;80:929–54.

  105. 105.

    Darcy JL, Lynch RC, King AJ, Robeson MS, Schmidt SK. Global distribution of Polaromonas phylotypes - evidence for a highly successful dispersal capacity. PLoS ONE. 2011;6:e23742.

  106. 106.

    Cangelosi GA, Meschke JS. Dead or alive: molecular assessment of microbial viability. Appl Environ Microbiol. 2014;80:5884–91.

  107. 107.

    Kunin V, Engelbrektson A, Ochman H, Hugenjoltz P. Wrinkles in the rare biosphere: pyrosequencing errors can lead to artificial inflation of diversity estimates. Environ Microbiol. 2010;12:118–23.

  108. 108.

    Matias MG, Combe M, Barbera C, Mouquet N. Ecological strategies shape the insurance potential of biodiversity. Front Microbiol. 2013;3:431.

  109. 109.

    Alonso-Sáez L, Sánchez O, Gasol JM, Balagué V, Pedrós-Alió C. Winter-to-summer changes in the composition and single-cell activity of near-surface Arctic prokaryotes. Environ Microbiol. 2008;10:2444–54.

  110. 110.

    Lennon JT, Jones SE. Microbial seed banks: the ecological and evolutionary implications of dormancy. Nat Rev. 2011;9:119–30.

  111. 111.

    Barberán A, Bates ST, Casamayor EO, Fierer N. Using network analysis to explore co-occurrence patterns in soil microbial communities. ISME J. 2012;6:343–51.

  112. 112.

    Bar-Massada A. Complex relationships between species niches and environmental heterogeneity affect species co-occurrence patterns in modelled and real communities. Proc R Soc B. 2015;282:20150927.

  113. 113.

    Zelezniak A, Andrejev S, Ponomarova O, Mende DR, Bork P, Patil KR. Metabolic dependencies drive species co-occurrence in diverse microbial communities. PNAS. 2015;112:6449–54.

  114. 114.

    Agler MT, Ruhe J, Kroll S, Morhenn C, Kim ST, Weigel D, et al. Microbial hub taxa link host and abiotic factors to plant microbiome variation. PLoS Biol. 2016;14:e1002352.

  115. 115.

    Comte J, Lovejoy C, Crevecoeur S, Vincent WF. Co-occurrence patterns in aquatic bacterial communities across changing permafrost landscapes. Biogeoscienes. 2016;13:175–90.

  116. 116.

    Verdugo J, Damm E, Snoeijs P, Díez B, Farías L. Climate relevant trace gases (N2O and CH4) in the Eurasian Basin (Arctic Ocean). Deep Sea Res I. 2016;117:84–94.

  117. 117.

    Eyice Ö, Namura M, Chen Y, Mead A, Samavedam S, Schäfer H. SIP metagenomics identifies uncultivated Methylophilaceae as dimethylsulphide degrading bacteria in soil and lake sediment. ISME J. 2015;9:2336–48.

  118. 118.

    Loch TP, Faisal M. Emerging flavobacterial infections in fish: a review. J Adv Res. 2015;6:283–300.

  119. 119.

    David C, Lange B, Krumpen T, Schaafsma F, van Franeker JA, Flores H. Under-ice distribution of polar cod Boreogadus saida in the Central Arctic Ocean and their association with sea-ice habitat properties. Polar Biol. 2016;39:981–94.

  120. 120.

    Jakobsson, M., Mayer, L., Coakley B, Dowdeswell JA, Forbes S, et al. (2012). The International Bathymetric Chart of the Arctic Ocean (IBCAO) Version 3.0. Geophysical Research Letters 39:L12609.

  121. 121.

    PAME. Large Marine Ecosystems (LMEs) of theArctic area: Revision of the Arctic LME map 15th of May 2013. 2nd edn. Akureyri, Iceland: PAME International Secretariat; 2013. p. 19.

Download references

Acknowledgements

We warmly thank the Swedish Polar Research Secretariat (www.polar.se) and the crew of RV Oden for their assistance with sampling and further help with practical matters before and during the LOMROG III cruise. We thank Lars Cresten Lund-Hansen and Brian K. Sorrell for drilling holes in the ice and Brenda Riquelme for laboratory assistance. This work was supported by grants from the Swedish research foundations VR (SWEDARCTIC 2011-2015), FORMAS (2012-1459) and the Carl Trygger Foundation for Scientific Research to PSL. Analyses and travels of BD and LF were supported by grants from the Chilean research foundations CONICYT (FONDAP 15110009 and DPI20140044 to BD, Postdoctorado 2014 N° 3140422 to BFG) and INACH (15-10 to BD, FP_03-13 to BFG, MT_01-12 to CS), CONICYT (Master Program) to CS, FONDECYT (1120719) to LF, and PFB-023 and ICM P05-002 to PM. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Correspondence to Beatriz Díez.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Supplementary materials and methods

Supplementary tables (Tables S1-S5)

Supplementary figures (Figures S1-S4)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6