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Abstract
Experimental studies of microbial communities routinely reveal that they have multiple stable states. While each of these
states is generally resilient, certain perturbations such as antibiotics, probiotics, and diet shifts, result in transitions to other
states. Can we reliably both predict such stable states as well as direct and control transitions between them? Here we present
a new conceptual model—inspired by the stable marriage problem in game theory and economics—in which microbial
communities naturally exhibit multiple stable states, each state with a different species’ abundance profile. Our model’s core
ingredient is that microbes utilize nutrients one at a time while competing with each other. Using only two ranked tables, one
with microbes’ nutrient preferences and one with their competitive abilities, we can determine all possible stable states
as well as predict inter-state transitions, triggered by the removal or addition of a specific nutrient or microbe. Further, using
an example of seven Bacteroides species common to the human gut utilizing nine polysaccharides, we predict that mutual
complementarity in nutrient preferences enables these species to coexist at high abundances.

Introduction

One of the major goals of microbiome research is to
achieve a mechanistic understanding of the structure,
function, and dynamics of microbial communities [1, 2].
The recent rapid proliferation of metagenomics and other
-omics data has promoted correlation-based, large-scale
statistical analyses of these ecosystems [3]. One common
property revealed by these studies is that communities
can often exist in multiple or alternative stable states,
distinguished from each other by differences in the

abundance profiles of surviving species. Examples of this
include the human gut microbiome [4, 5], bioreactors [6],
and soil communities [7]. Moreover, external perturba-
tions—such as the temporary introduction (or removal) of
nutrients (or microbes)—can trigger transitions between
these stable states. This is often the basis for the effect of
prebiotics and probiotics on the gut microbiome [8, 9] and
disturbances in bioreactors or other engineered environ-
ments [10]. However, our ability to predict stable states as
well as direct and control their transitions remains limited.
Developing a deeper conceptual understanding of com-
munity structure, we believe, is an important step towards
such an endeavor.

Ever since pioneering theoretical work by MacArthur
and Tilman [11, 12], resource competition has been a
promising approach to modeling stable states in microbial
communities. Following ref. [11], contemporary models
of microbial communities typically assume that microbes
simultaneously co-utilize several substitutable nutrients
as sources of carbon and energy [13–18]. However, as
first described by Monod [19], many microbes tend
to utilize these nutrients in a specific sequential order.
When exposed to a mixed medium containing multiple
nutrients, microbes begin to grow by first utilizing
their most preferred one. Upon the exhaustion of this
nutrient, and after a period of stasis known as the lag
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phase, they undergo a diauxic shift and resume growth
using the next available nutrient down in their hier-
archy [19]. This continues until all consumable nutrients
in the medium that the microbe could grow on are
exhausted.

Recent work by Martens and collaborators [20–22]
has established that many species in Bacteroides
(the most prevalent genus in the human gut microbiome
[23, 24]) exhibit this kind of preferential nutrient utili-
zation—with respect to polysaccharides present in a
typical diet [25]. Interestingly, even species such as
B. ovatus and B. thetaiotaomicron—which are closely
related evolutionarily—display rather different poly-
saccharide preference hierarchies [22]. Similar results
have also been demonstrated for Bifidobacterium species
[26]. In addition, many of these species are simulta-
neously present in the gut at high abundances. This
is in spite of their similar nutrient utilization capabilities
[21, 27] that should have promoted competition and
mutual exclusion [28]. This apparent “habitat filtering”—
where potential metabolic competitors are frequently
detected together at high abundances—remains a puz-
zling observation.

Describing community dynamics where microbes
utilize nutrients one at a time can be approached either
via mechanistic or conceptual models. To develop
mechanistic models, however, the main obstacle is that
they rely on the knowledge of a large number of quanti-
tative parameters, e.g., growth curves of individual
microbes, kinetic rates of adsorption, and release of small
molecules, etc. The vast majority of these parameters are
hard to measure and are currently unknown. This further
necessitates the need for conceptual models with a much
more coarse-grained description of interactions between
microbes and nutrients. In particular, the first question
that such models need to deal with concerns “matching”:
how do complex communities divide resources among
their constituent microbes?

In this study we present a new conceptual modeling
approach that provides mechanistic insights into several
phenomena in microbial communities, specifically: the
existence of multiple stable states and inter-state transi-
tions, as well as restructuring and resilience of these
states. Our model is inspired by a decades-old economics
work: the stable marriage or stable allocation problem,
developed by Gale and Shapley in the 1960s [29] and
awarded the Nobel prize in economics in 2012. We also
apply this approach to predict patterns in polysaccharide
utilization preferences of seven Bacteroides species
residing in the human gut. We believe that our model can
help bridge the gap between statistical analyses based on
metagenomic data and a detailed predictive description of
community dynamics.

Results

A model of microbial community dynamics inspired
by the stable marriage problem

The traditional formulation of the stable marriage problem
(SMP) is the following: N men and N women have to be
matched pairwise in N “marriages”. Every person has
associated with them a preference list of all members of the
opposite sex, ranked from their most preferred marriage
partner (rank 1) to their least preferred one (rank N). A
matching is “stable” if it has no “blocking pairs”, i.e., it has
no man–woman pair (who are not currently married to each
other) who would both prefer each other to their current
marriage partners. One can show that stability with respect
to blocking pairs is sufficient to ensure stability with respect
to a coalition of any size [30]. Gale and Shapley proved [29]
that there is always at least one such stable matching, and
introduced a “men-proposing” algorithm to find it.
According to this algorithm every man first proposes to his
top choice partner. If a woman receives more than one
proposal, she temporarily accepts the most suited partner
according to her preference list and rejects the others. Men
rejected during the first round propose to their second
choice and so on. If a woman later on receives a proposal
that is better than her current partner, she accepts it and
releases her previous choice. One can prove that the state
achieved at the end of this men-proposing procedure is
stable [30]. In general there are many different stable states
for a given set of preference lists (on average (N/e)logN for
random lists but occasionally exponentially many more).
When the set of men and women have unequal sizes, the
number of pairs in any matching is given by the size of the
smaller set. Furthermore, in all stable states, the partners left
without spouses are always the same [30]. Another version
of the problem is one with unacceptable partners (partial
lists). In this case, one can show that the number of pairs in
a stable matching is generally smaller than the number of
men and women. As in the previous case, the same set of
partners are left without spouses in every stable state [30].
The SMP still remains a field of active mathematical
research. In particular, some of the recent work addresses
various aspects and extensions of the original problem,
such as the notion of “universal beauty” and correlations
in preference lists [31], scaling behaviors [32], partial
information [33], three-dimensional preferences and agents
[34], and versions with ties in preference lists [35].

In our application of this problem to microbial commu-
nities, a set of “marriages” constitutes a one-to-one pairing
between microbial species and substitutable nutrients.
Consider a set of microbes capable of utilizing the same set
of fully substitutable nutrients (e.g., carbon/energy sources).
A more general case when each microbe could utilize only
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a subset of all available nutrients (incomplete ranked lists)
is discussed later on in our study. The central assumption
in our model is that every microbe consumes these
nutrients in a diauxic (or more generally polyauxic) fashion,
i.e., one nutrient after another in a specific sequential order.
This order is encoded in microbe’s transcriptional reg-
ulatory network combined with diverse post-transcriptional
mechanisms of catabolite repression [36, 37]. Detailed
kinetic modeling of catabolite repression in even one
organism (E. coli) is rather complicated and involves
up to 63 state variables connected up to 473 kinetic para-
meters, most of which are not known experimentally [38].
The advantage of the SMP-based approach is that it
depends only on the ranked microbial preferences toward
nutrients, thus bypassing the need for precise measurements
of such kinetic parameters. These ranked preferences ran-
ging from 1 (the most preferred nutrient, such as glucose for
E. coli) to N (the least preferred one) are illustrated in
Fig. 1a and may be different even between closely related
microbial species [22].

If two or more microbes attempt to simultaneously
consume the same nutrient, we refer to this event as com-
petition, whose outcome is determined by the relative
competitive abilities of the respective microbes. In our
model, the competitive ability of a microbe on a given
nutrient is in direct proportion to the rate at which it uptakes
this nutrient from the medium. Thus the microbe with the
largest uptake rate would drive that nutrient to the lowest
extracellular concentration, thereby preventing other
microbes from growing on it [12]. The SMP approach
requires only the knowledge of a ranked table of microbial

competitive abilities ranging from 1 (the most competitive
microbe for a particular nutrient) to M (the least competitive
out of M microbes) (see Fig. 1b for an illustration). Com-
petitive abilities of microbes may in general be different for
different nutrients.

The final outcome of a competition of microbes for
nutrients is a stable state in which no microbe can switch to
a more preferred nutrient and simultaneously win the
competition with another microbe that is currently utilizing
it. The microbial ecosystem will persist in this stable state
until it is externally perturbed (e.g., by removal or addition
of either microbes or nutrients). Note that our definition of a
stable state corresponds exactly to that in the original for-
mulation of the stable marriage problem.

Inspired by the classical diauxic (or polyauxic) growth
experiments [19] we assume that microbes are constantly
scouting the environment for more preferred nutrients.
However, the diauxic shift down to the next nutrient
requires the currently consumed (more preferred) nutrient to
either be completely exhausted or at least to fall below a
certain concentration threshold. In what follows, we ignore
the kinetics of this switching behavior including the lag
phase. The natural microbial ecosystems relevant to our
model may have rather complex dynamical behaviors
including long transients, oscillations, and even chaos [39–
42]. However, these lie beyond the scope of the SMP-based
approach. Microbial preferences towards nutrients typically
follow the order of maximal growth rates reached when
they are present in a high concentration [43]. Using this as a
general rule of thumb, we assume that a microbial species’
stable-state abundance systematically decreases as it shifts

Fig. 1 Ranked interaction tables encode microbes’ nutrient preferences
and competitive abilities. Two ranked tables with each microbe’s
preferences towards nutrients (a) and their competitive abilities with
respect to each particular nutrient (b) fully define our model. We
illustrate them using two microbial species, M1 and M2, represented
correspondingly by dark and light circles, and three nutrients, N1, N2,
and N3. Both species can use all three nutrients. a Microbial nutrient

preferences: the dark species prefers nutrient N1 the most (rank 1 in the
table above), N2 next (rank 2), and N3 the least (rank 3), while the
yellow species prefers nutrients in the order: N3 > N1 >N2. b Microbial
competitive abilities: the dark species (rank 1) can displace the light
species (rank 2) in a competition for utilizing the nutrient N2, but will
be displaced by the light species when competing for nutrients N1 and
N3
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down its nutrient preference list. The exact procedure by
which we assign abundances to species in a stable state is
described in Methods: Studying complementarity through
different ranked interaction tables.

Community restructuring following external
perturbations

We first consider a simple case in which two microbial
species (M1: grey and M2: light in Fig. 2) utilize two
nutrients (N1 and N2). The preferences of microbes for these
nutrients are complementary to each other: M1 prefers N1 to
N2, while M2 prefers N2 to N1. The competitive abilities of
microbes are opposite to their preferences. As shown in
Fig. 2 M2 wins over M1 in a competition for N1, while M1

wins over M2 in a competition for N2. There are two pos-
sible states of this ecosystem characterized by nutrients: the
state A (Fig. 2), where M1 is consuming N1 while M2 is
consuming N2, and the state B, where M1 is consuming N2,
while M2 is consuming N1. One can easily check that both
states are stable in the SMP sense. That is to say, no
microbe could switch to a nutrient it prefers more than the
one it currently utilizes and simultaneously win the battle
with another microbe which is its current consumer. The
state A is the one obtained by the “microbe-proposing”
algorithm. It naturally emerges whenever the current set of
microbes is introduced to the system when all nutrients are

supplied at a high influx. In this case, microbes following
the sequence of diauxic shifts end up in this state and
remain there until perturbed by addition of other microbes
or nutrients, or (possibly transient) removal of the existing
ones. The stable states in our model satisfy the criteria for
alternative states of an ecosystem proposed in ref. [44].

In what follows we investigate the stability of stable
states in the example illustrated in Fig. 2, with respect to
two types of perturbation: the introduction of a probiotic
(another microbe M3 shown in dark in Fig. 2a) and a pre-
biotic (a transient nutrient N3 in Fig. 2b).

In the case of the probiotic, the community starts at the
state A—a natural endpoint of diauxic shifts. A new
microbe M3 (probiotic) is introduced to the community and
initially displaces M2 in the competition for its preferred
nutrient, N2. As a result, M2 switches over to its next pre-
ferred nutrient (N1) and outcompetes M1, which was con-
suming it. M1 now also switches to its second preferred
nutrient N2 and competitively displaces the “invader” M3.
M3 switches to its second nutrient N1 but loses the com-
petition with M2 and ultimately disappears from the system.
Thus, in spite of its temporary success, the microbe M3 fails
to establish itself in the community. Note, however, that the
result of its transient residence was a restructuring of the
community from one stable state (A) to another (B). While
the initial state A was “microbe-optimal” (i.e., both
microbes consumed their most preferred nutrients in any of

Fig. 2 Community restructuring following external perturbations. Two
ranked tables of microbes’ nutrient utilization preferences and com-
petitive abilities are shown on top of each panel. Colored circles
represent different microbial species M1, M2, M3. The size of each
circle corresponds to the rank of a nutrients microbe currently utilizes
—bigger sizes correspond to better ranks and thus larger populations.
Different nutrients are labeled N1, N2, N3. Oblique dashed lines indi-
cate transient states for microbial competition. a The introduction of a
new probiotic microbe, dark species (M3), causes grey (M1) and light

(M2) species to enter into a competition with the invader. The
dynamics of the stable marriage model results in a community
restructuring to the state B, such that the grey (M1) and light (M2)
species shift their currently utilized nutrients to their second choices.
The invading dark species (M3) fails to establish itself and disappears
from the system. b A transient addition of a prebiotic nutrient, N3,
restructures the community from state B back to state A, in which each
microbe once again uses its most preferred nutrient
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the stable states), the transient competitive interactions due
to a new microbe pushed the community to a less microbe-
optimal stable state, B.

In the other illustrative case the community starts in the
stable state B, driven there, e.g., by consumption of a pro-
biotic microbe (Fig. 2a). A new nutrient N3 (prebiotic) is
transiently added to the diet. The microbe M2 prefers N3 to
its currently consumed nutrient (N1) and switches to con-
sume it. The N1 is now available without competition, so
microbe M1 switches to use it as it stands higher than its
currently consumed nutrient (N2) in M1’s preference hier-
archy. After some time the prebiotic N3 is removed from the
diet. The microbe M1 now switches to N2 (its second pre-
ferred choice after N3). Thus the community undergoes a
restructuring again, this time from microbe-pessimal state B
to microbe-optimal A.

These examples illustrate the following general rule: the
introduction of microbes and nutrients pushes the commu-
nity structure in two opposite directions. Specifically,
invading microbes increase competition for nutrients and
generally result in a community restructuring towards a

stable state that is less growth-optimal for microbes. Even
short-lived introduction of extra nutrients, on the other
hand, relieves this competition and restores the community
towards stable states in which microbes use more preferred
nutrients.

Multiple stable states and the network of transitions
between them

In general, the number of stable states increases with the
number of microbes and nutrients in the community. In
Fig. 3 we show an example of a community where seven
microbial species compete for seven distinct nutrients, all of
which they can utilize. For the particular set of microbial
nutrient preferences and competitive abilities shown as
ranked tables in Fig. 3a, there are a total of five stable states
labeled S1 through S5.

As understood in the context of the original SMP [30],
the stable states can be arranged hierarchically in the order
of decreasing microbe-optimality quantified by the average
rank of nutrients consumed by microbes in a particular state.

Fig. 3 Multiple stable states and the network of transitions between
them. Two ranked tables of microbes’ nutrient utilization preferences
and competitive abilities are shown on the left. a The list of all stable
states (labeled S1 through S5) in the model. In each stable state, every
microbe (colored circles with tails; sizes indicative of how preferred
the consumed nutrient in a state is) exclusively consumes one nutrient
(labeled N1 through N7). b The “microbe-optimality” of stable states S1
S5 (lower is better for microbes) quantified by the rank of the con-
sumed nutrient averaged over all microbes. Microbe-optimality can be
improved by transiently removing microbes and deteriorated by tran-
siently removing nutrients. c, d The stable states are connected via
“restructuring networks”. The community in the model gradually
restructures from S1 towards S5 by transient nutrient removal (for

details, see the Results section) and from S5 back towards S1 by
transient microbe removal. In this restructuring network, a pair of
stable states is connected by a directed link, if the community can
transition between these states via transient removal of just one
nutrient (removed nutrient and directionality are shown in c) or of a
single microbe (removed microbe and directionality are shown in d). e
Average number of stable states for communities with different
numbers of microbes (M, x-axis) and nutrients (N, y-axis) and rando-
mized interaction tables. (Inset, top) For (M, N)= (50, 50), we show
the distribution of the number of steady states (in orange) for 1000
random interaction tables. The distribution has a pronounced peak and
an exponential tail
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Since rank 1 corresponds to the most preferred nutrient,
while rank N corresponds to the least preferred one, lower
values for this optimality measure correspond to more
microbe-preferred states. The labels of the states S1–S5 were
arranged in the order of decreasing microbe-optimality, i.e.,
increasing the average rank of consumed nutrients (Fig. 3b).
Thus the state S1 is the most optimal for microbes (corre-
sponding to the stable state generated by the’microbe-pro-
posing’ Gale–Shapley algorithm in the SMP), while the
state S5 is the least optimal one. The average rank of con-
sumed nutrients in S1 is equal to 1.7 which means that even
in this state, not every microbe gets its most preferred
nutrient. This should be compared to its value ~2.9 in the
state S5, where a typical microbe gets its third choice among
nutrients.

As described in the Methods section, the transitions
between stable states of the SMP can be realized by tran-
siently breaking a “marriage”, i.e., disrupting a microbe-
nutrient pair. Figure 3b shows that the removal of nutrients
from a diet (starvation) generally drives the community
further away from the microbe-optimal state (S1). Indeed, in
this case (akin to the probiotic case shown in Fig. 2a)
microbes need to compete more for the remaining nutrients.
Removing a specific subset of microbes (e.g., by antibiotics)
has the opposite result: the surviving microbes have fewer
competitive interactions for nutrients and hence each one of
them would get a better (or same) ranked nutrient according
to its preference list. Thus, somewhat counterintuitively,
transient introduction of antibiotics might shift a community
towards a more microbe-optimal state with larger overall
biomass, which can be experimentally verified.

As known from the SMP results, the transitions between
stable states could be triggered only by the removal of a
very specific subset of nutrients or microbes. These states
can thus be arranged in a “community restructuring net-
work” shown in Fig. 3c, d. The transition along a given
edge of this network leading further away from the microbe-
optimal state could be triggered by a transient removal
of a specific single nutrient (Fig. 3c). The transition in the
opposite direction (towards a microbe-optimal state) is
triggered by the transient removal of a specific single
microbial species (Fig. 3d). Removal of a nutrient leaves
the microbe that was utilizing it temporarily without its
source of energy. This microbe will then engage in com-
petition with other microbes for the remaining nutrients.
This results in a cascade of shifts where microbes begin
to utilize less-preferred nutrients, as prescribed by the
Gale–Shapley algorithm. If the removed nutrient is rein-
troduced soon after its removal, the community will return
back to its original state, contributing to the community’s
resilience. In the opposite case, if the nutrient’s absence
lasts very long, one of the microbial species left without
a nutrient will go extinct. However, there is a specific

intermediate regime where the nutrient is reintroduced at
just the right time for its microbial consumer in the new
stable state to have recently switched towards it. In this
case, such a transient nutrient removal results in a com-
munity restructuring from a stable state to another one but
less microbe-optimal. A similar restructuring is possible
when a microbial species is transiently removed from the
community (e.g., by a narrow-spectrum antibiotic) so the
nutrient it utilized before the removal is now open for
competition from other microbes. If this microbe is rein-
troduced later at just the right time, the community can
restructure towards another stable state which is more
microbe-optimal.

These examples (as well as their counterparts in which
microbes or nutrients were added to the community as
discussed in the previous section and illustrated in Fig. 2)
demonstrate that these stable states are relatively resilient
with respect to many transient perturbations. Such resilience
is exhibited at two different levels. First, not all perturba-
tions result in community restructuring. Those perturbations
that do arrange the stable states in a hierarchical “commu-
nity restructuring network” are shown in Fig. 3c. For any-
two adjacent stable states in this network, there is just
one specific nutrient and one specific microbe that
can be removed to trigger a transition between them.
Transient removal of other nutrients or microbes is shown
as self-loops in Fig. 3c, d), since these events return the
community back to the original stable state. Second, even
when this carefully selected nutrient or microbe is removed,
it must be reintroduced within a specific time interval
(not too soon and not too late) to result in a successful
restructuring.

The average number of stable states for different com-
binations of numbers of microbes, M, and nutrients, N, are
shown as a grid in Fig. 3e. The distribution of the number of
stable states for different (random) realizations of microbe
preference lists and competitive abilities for M=N= 50
is shown in the orange histogram in the inset to Fig. 3e.
Further, supplementary figure S3 shows: (1) how the
number of stable states decreases when the correlation
among preference lists increases (Figs. S3(C)–(E)); and
(2) how the average number of stable states increases with
increasing M or N (figure S3(A)).

Complementary prioritization of nutrients as a
mechanism for robust many-species coexistence

The human gut microbiome provides a fertile testing ground
for our model. Indeed, as discussed in the introduction,
many gut microbes are known to utilize nutrients sequen-
tially. Moreover, recent reports indicate that multiple Bac-
teroides species have been regularly observed at high
abundances simultaneously, in spite of a strong overlap in
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their metabolic capabilities [27]. This overlap is visualized
in Fig. 4a, where we show a network connecting each of
seven abundant species in the human gut (Bacteriodes
fragilis, B. ovatus, B.vulgatus, B.caccae, B. cellulosilyticus,
B. thetaiotaomicron, and a recently reclassified member of
the Bacteroidetes phylum Parabacteroides distasonis) with
a subset of nine polysaccharides (starch, mucin, galactan,
pectin, arabinogalactan, hemicellulose, cellulose, hyalur-
onan, and chondroitin sulfate) they are capable of utilizing
as energy sources (data from ref. [45], see the Methods
section for details). For the sake of brevity, in what follows
we refer to this set as Bacteroides species. What strategies
by these microbes would allow their “robust” co-occurrence
in the human gut, i.e., long-term, stable coexistence at high
abundances?

The SMP provides a natural framework in which to look
for such strategies. Indeed, by supplementing the utilization
network shown in Fig. 4a with a specific set of ranked
nutrient preferences and competitive abilities of all partici-
pating microbial species, our model can predict which
species will survive, how many stable states the corre-
sponding community can be in, and what kind of abundance
profiles they will achieve in these states. The latter could be
approximated by the inverse of the rank of the consumed

nutrient for every surviving microbe in a particular stable
state. Indeed, microbes utilizing their preferred (low rank)
nutrient are expected to reach high abundances. It stands to
reason that in order to simultaneously achieve high abun-
dances, these species have to successfully partition the set
of nutrients among themselves. In the presence of a strong
metabolic overlap this requires microbes to have evolved a
mutually complementary set of nutrient preferences.

We quantify the complementarity of microbes’ top pre-
ferences by calculating the number of competing pairs of
microbes that have the same most preferred nutrient. This
number can vary between 0 (for perfect complementarity;
Fig. 4b (top case)), to around 6 (for random preferences;
Fig. 4b (middle case)) and ultimately up to 11 (for maximal
conflict in these lists; Fig. 4b (bottom case)). The maximal
conflict case assumes the strongest possible similarity of the
entire preference lists of different microbes (see Methods
for details).

We tested 1000 preference lists from each of these three
categories (complementary, random, and maximal conflict)
and calculated the average microbial abundances in each
case (see box plots in Fig. 4c). As expected, the average
abundance is the highest in the case of complementarity,
lower for random preferences, and lower still for maximal

Fig. 4 Complementary polysaccharide prioritization allows robust
coexistence in gut Bacteroides species. a The polysaccharide utiliza-
tion network of Bacteroides species in the human gut (data taken from
ref. [45]). The character labels represent nine different poly-
saccharides: S starch, M mucin, G galactan, P pectin, A arabinoga-
lactan, HC hemicellulose, C cellulose, H hyaluronan, CS chondroitin
sulfate (CS)—known to be frequently present in human diets (legend
in the box on the left), whereas the colored circles represent seven
different Bacteroides species routinely found in human gut micro-
biome: Bacteriodes fragilis, B. ovatus, B.vulgatus, B.caccae,
B. cellulosilyticus, B. thetaiotaomicron, Parabacteroides distasonis.
Undirected links between microbes and polysaccharides indicate a
species’ ability to metabolize that polysaccharide. b Examples of
microbial nutrient preferences (the most preferred nutrient of each of
the microbes) are sorted into three categories: complementary (top)

where microbes’ top preferred nutrients (#1) are all distinct from each
other; random (middle) preferences where all ranked lists are randomly
generated; and maximal conflict (bottom) which represents the
maximum intersection between the sets of top (#1) and second (#2)
preferred nutrients of different microbes. c For 1000 randomly
sampled microbial preferences from each category, we simulated the
stable marriage model to compute the expected per species microbial
abundances (Methods section: Studying complementarity through
different ranked interaction tables) for each case as box plots. The box
plots quantify the distribution of average microbial abundance
assumed to be inversely proportional to the rank of utilized nutrient.
The average abundance is the largest in the case of complementary
nutrient choices. All differences between distributions of abundances
in each category are highly statistically significant according to the
Kolmogorov–Smirnov test with a P-value threshold of 0.01
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conflict. Moreover, communities with complementary pre-
ferences show a higher number of stable states (see fig-
ure S2(B) for Bacteroides and figure S3(C)–(E) for a more
general result for the communities in our model).

Perfect complementary between the top preferences of
seven microbes would require careful orchestration over
evolutionary times. However, these choices are encoded in
regulation of specific polysaccharides utilization loci
(PULs) controlled by microbial transcription regulatory
networks and have been shown to be quite flexible [27].
Thus the complementarity of top nutrients choices required
for robust coexistence of Bacteroides species in the human
gut is entirely plausible and, indeed, has been in part
reported in ref. [22].

Discussion

In the results presented above, we describe a conceptual
model of microbial competition for sequentially utilized
nutrients. This model can exhibit rich behaviors such as
dynamic restructuring and multiple stable states connected
by a hierarchical transition network. All of this complexity
is encoded in just two ranked tables: one with microbial
nutrient preferences and the other with their competitive
abilities for different nutrients. The competitive interactions
summarized in these tables are just starting to be explored
experimentally. In fact, the first experimental results rele-
vant to communities within the human gut have already
been reported [22, 26]. Specifically, these results demon-
strate the preferences and competitive abilities of two
Bacteroides species for nine particular polysaccharides.

In the absence of experimentally determined preferences,
the naive expectation would be to use randomized nutrient
preferences and competitive abilities. However, as shown in
Fig. 4, the results for random preference tables qualitatively
disagree with experimental observations of robust coex-
istence of multiple species (e.g., Bacteroides in human gut)
competing for the same set of nutrients. Our model shows
that complementarity in nutrient preferences of different
microbes facilitates such coexistence. This is consistent
with experimental studies reporting that frequently co-
occurring microbial species tend to have complementary
nutrient preferences [22, 26, 46].

Complementary nutrient preferences may also explain
the prevalence of habitat filtering in many naturally occur-
ring microbial communities [15, 47–49], i.e., the observa-
tion that many metabolically overlapping species stably
coexist with each other. This apparently paradoxical
observation is unsurprising in the light of our results
assuming that nutrient preferences of these species co-
evolved to be (at least partially) complementary to
each other.

One factor complicating the (co-)evolution of nutrient
complementarity is that certain nutrients tend to be uni-
versally prized by all microbes. This is true for simple, easy-
to-digest metabolites with high-energy content (e.g., simple
sugars) where evidence suggests the existence of a common
preference order [50]. However, the order of microbial
preferences for more complex, harder-to-digest nutrients
such as polysaccharides is known to be much more flexible
[22, 26].

Correlations or complementarity in the preference lists of
different microbial species (correlations of Type A) dis-
cussed above are just one out of three types of correlations
possible in our model. The remaining two correlations
are: Type B—Correlations in competitive abilities of dif-
ferent microbes; and Type C—Correlations between each
microbe’s nutrient preferences and competitive abilities
for the same nutrient. Strong positive correlations of type B
imply the existence of “super bugs” good at utilizing every
resource. Conversely, negative type B correlations may
arise due to tradeoffs in each microbe’s competitive abilities
for different nutrients [17]. For type C only the positive
correlations are biologically plausible. Indeed, one might
expect microbes to have higher-than-average competitive
abilities for those nutrients that they prefer to consume first.

Positive correlations of all three types reduce the number
of stable states, ultimately resulting in a unique stable state
for fully correlated lists (see figure S3, panels (C) to (E)
for correlations of types A, B and C respectively). Sup-
plementary Fig. S3 explores the model with correlated lists
by plotting the number of stable states as a function of
correlation strength.

An evolutionary variant of the stable marriage model
allows one to answer questions related to metabolic spe-
cialization of microbes. These questions include: How
many nutrients a given microbe should have the capacity of
using? That is to say, how many distinct nutrient utilizing
metabolic pathways should be encoded in its genome? How
do different microbes make a choice between being broad
generalists and narrow specialists? In our analysis we
see examples of both among Bacteroides species (Fig. 4a).
The common wisdom is that in stable environments, char-
acterized by a reliable influx of the same set of nutrients,
microbes tend to become narrow specialists. However, this
strategy would not fare well for microbes trying to survive
in strongly fluctuating environments, where each microbe
needs to be able to switch between multiple nutrients until
it finds one currently present in the environment. An intri-
guing possibility is that the evolutionary trajectory of each
species may be shaped by its partners in the SMP. That is
to say, given its microbial partners, there is no need for a
microbe to retain metabolic pathways utilizing nutrients
which it never gets to use in any of the “stable marriages”.
Over evolutionary time, such unused pathways would be
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dropped from its genome. At the same time, microbes
would tend to improve their competitive abilities for the
remaining nutrients, which in turn could possibly reinforce
the initial set of stable states in the ecosystem. Hence the
stable states in the marriage model may leave their footprint
on the genomic content of co-evolved microbial species.
More technically, in this case the set of nutrients each
microbe could utilize would coincide with its “reduced
Gale-Shapley preference list” (see ref. [30] for definitions).

Our model assumes one-at-a-time sequential consump-
tion of all nutrients by all microbes. However, real-life
microbes are known to combine sequential consumption
and co-utilization of different nutrients depending on the
topology of their catabolic pathways [51]. We can poten-
tially incorporate co-utilization of nutrients to our model
as a “many-to-many” matching rules [30] combined
with ties in the ranked lists [35]. The number and nature
of stable states in such models remain to be explored in a
future study.

Furthermore, a key driver of diversity in real-life
microbial communities often lies in the metabolic bypro-
ducts generated by resident species. Indeed, in the presence
of metabolic byproducts the number of microbial species in
the steady state is no longer limited from above by the
number of externally provided nutrients. Recent models
[15, 52] and experiments [15, 53] demonstrate that a diverse
microbial ecosystem may be supported even by a single
externally provided nutrient. The Bacteroides species used
in our study are also known to grow on each other’s
metabolic byproducts [46]. That may be the reason why
B. thetaiotaomicron survives while losing the competition
to B. ovatus on all eight polysaccharides studied in ref. [22]
(see Fig. 4 from that reference).

The basic stable marriage model allows for a natural
multi-layered generalization involving cross-feeding
between microbial species. One starts with a single layer
composed of abundant primary nutrients, which for human
gut include polysaccharides shown in Fig. 4a. The microbes
(such as Bacteroides species in Fig. 4a) compete, or,
alternatively, complementarily utilize these nutrients and
generate the second layer of nutrients, composed of their
metabolic byproducts (or products of extracellular meta-
bolic degradation). These byproducts in turn allow for a
new set of microbes to grow and generate yet another layer
of byproducts. Furthermore, microbes from the upper layers
would normally not compete for nutrients in the layers
below them. Indeed, the concentration of nutrients is
expected to rapidly decrease with a trophic layer [52].
Hence, to maximize their growth rate, microbes would
prefer nutrients from higher trophic layers.

Microbes using nutrients one-at-a-time give rise to tree-
like food webs similar to those studied in ref. [52]. In our
case there will be multiple trees, each growing from a

single-primary nutrient. These trees would generally change
as the community switches from one stable state to another.
All the results of ref. [52] including the functional forms of
the distributions of species’ abundances and prevalences
are directly transferable to the multi-layered variant of the
stable marriage model.

Another generalization of our model is when nutrients
come in two or more distinct types, each essential for
microbial growth (e.g., carbon and nitrogen sources). An
extension of the model in this case would require a microbe
to choose one source of each type. This would correspond
to a marriage with more than two sexes. As far as we know,
these modifications of the stable marriage model have not
been developed yet, though this possibility has been
explored in works of science fiction [54, 55].

A natural way to think about the competition in the stable
marriage context is in terms of species and nutrients subject
to a constant dilution in a chemostat. Changing the dilution
rate would drive the ecosystem through different qualitative
regimes of nutrient utilization. Another possible realization
is in a periodically diluted batch culture where the system
is diluted and the nutrients are added at discrete time points
in a cyclic fashion. When thinking about such batch-fed
bioreactors, one needs to consider the possibility of tran-
sient co-utilization of the same nutrient by several microbes.
How can our model adapt to this possibility? One of the
variants of the SMP known as the hospitals/residents pro-
blem [29, 30, 56] provides a possible starting point for such
adaptation. In this problem a hospital (a nutrient in our
case) can accommodate multiple residents (microbes). A
variant of the Gale–Shapley algorithm [57 58] allows one to
find all stable states of the community. Most other mathe-
matical results of a “pure” marriage problem are also
directly transferable here with only minor modifications.

Another appealing feature of our model is that it natu-
rally incorporates higher-order interactions between micro-
bial species [59]. These interactions have recently been
brought to attention after a large number of studies showed
that pairwise interactions are not sufficient to explain
community dynamics [15, 60–62]. Further, they have been
implicated as an important factor contributing to the com-
position, stability, and diversity of ecosystems [63–66]. In
our model, community dynamics depend on ranked pre-
ferences and competitive abilities of all species in a resource
explicit manner, and cannot be simply reduced to a set of
pairwise competitive outcomes. That is to say, the outcome
of the competition between species can be rather different
depending on the presence or absence of other species. This
is reflected in different species abundance profiles in Fig. 3a
(see for instance, states S2 and S3).

To summarize, in this study we present a model inspired
by the SMP that shows and gives insights regarding
several dynamic microbial community phenomena. These
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phenomena include the observation of several stable states,
dynamics of transitions between these states, as well as how
they restructure. The stable states in our model satisfy all
three necessary criteria for alternative stable states set forth
in ref. [44]. Our model assumes that several microbes utilize
nutrients sequentially (diauxie or polyauxie). With this
assumption, all the stable states of a community are fully
determined by two ranked tables: one summarizing all
microbes’ preferred order of utilization of nutrients, and the
other their competitive ability to uptake these nutrients
relative to others microbes. Such rank tables can be inferred
from polyauxic shift experiments in which individual
microbes are grown on a rich medium with many nutrients.
Further experiments in this direction will help generate
predictions against which to test our model.

Methods

Enumerating all stable states

For any general case of preference lists in the SMP, there
exist multiple “stable states”. There are several algorithms
to enumerate all these states, though we used in our study
one that is intuitive and connects well with microbial
communities: the so-called “breakmarriage” algorithm
[30, 67]. For our problem this algorithm involves starting
from one of the stable states (e.g., microbe-optimal one)
and then successively breaking each of the microbe-nutrient
pairs by removing either a microbe or a nutrient. A transient
removal of a specific nutrient has the possibility of trig-
gering a transition of the community to another stable state
in which all microbes are worse off (or equal) in terms of
the preference rank of the nutrient they consume. These
transitions are shown as downward pointing arrows in
Fig. 3c. Conversely, a transient removal of a specific
microbe could trigger a transition to a stable state in which
all microbes are better off (or equal) in terms of the pre-
ference rank of the nutrient they consume (upward pointing
arrows in Fig. 3d). Below, we list the specific details of the
“breakmarriage” algorithm.

One starts with the microbe-optimal stable state
obtained through the Gale–Shapley algorithm [29] in which
every microbe plays the role of the active party and thus
gets the best nutrient in any stable state. In the example
illustrated in Fig. 3b, this corresponds to the state S1.
One chooses an implicit ordering of microbes (say for
convenience, in increasing order from M1 to MM for M
microbes) in which one attempts to break microbe-
nutrient pairs.

Upon breaking a pair (in our example, N5 and the teal
microbe M5), the microbe in that pair (M5) is left without a
nutrient, and therefore shifts down to (i.e., “proposes

marriage to” in the SMP jargon) the next nutrient in its
preference list (N3). If M5 is more competitive than the
current consumer of this nutrient (the dark blue microbe,
M6) with respect to the nutrient N3, it competitively dis-
places this current consumer (M6). (If not, the microbe (M5)
continues to shift down its preference hierarchy until it finds
a nutrient it can utilize.) Every time a microbe is left without
a nutrient, it continues to down-shift its nutrient preference
list and attempts to competitively displace other microbes
using these nutrients (in our example, M6 now moves to
attempt to use N5). If along this sequence, the original
nutrient whose pair was broken (N5) is “proposed” to by
another microbe (here, by M6), and if M6 can competitively
displace its original partner (M5 in our case), a “rotation” is
said to have been successfully completed and the new state
is guaranteed to be stable (here, that state is S2 shown in
Fig. 3b). If any of these steps fails, the attempted rotation is
unsuccessful and one reverts back to the previous stable
state and then attempts to break the next microbe–nutrient
pair according to our implicitly chosen order.

For any of the new stable states (say S2 described above)
found through this procedure, one repeats this procedure
using this state as the initial stable state to find even more
stable states. When all microbe-nutrient pairs in all such
obtained stable states have been attempted to be broken, the
algorithm is terminated. This procedure is guaranteed to
enumerate all possible states for a chosen set of ranked
interaction tables.

Studying complementarity through different ranked
interaction tables

We sampled a large number of possible interaction tables,
i.e., preferences towards nutrients and competitive abilities
for all gut microbes of the genus Bacteroides regularly
found at high abundances in the human gut (data taken from
ref. [45]).

In principle, there are close to 10131 such possibilities,
and it is thus not possible to sample all such tables. Instead,
we compartmentalize such interactions in three broad
categories: complementary, random, and maximal conflict.

In complementary interaction tables (see Fig. 4c (top
case)), we construct random interaction tables with the
following constraint: microbial preferences for the top
(most preferred) nutrient must be made maximally dis-
tinct, i.e., with no overlap if possible. To construct
interaction tables in this category, we begin by picking a
microbe at random and assigning it a nutrient it can utilize
at random. We then remove this nutrient as a possible
top choice for all other microbes. We then randomly pick
another microbe (without replacement) from the full set
and assign it another random nutrient. We continue this
until all microbes have been assigned a distinct most
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preferred nutrient. In case a chosen microbe has no choice
left, we discard that particular interaction scenario and
start a new one.

Random interaction tables provide a null interaction
scenario for our model (see Fig. 4c (middle case)) and are
thus used to set the naive expectation for competition and
conflict within these gut microbes. In this scenario
microbial preferences towards nutrients are selected by a
random permutation independently chosen for each of the
microbes.

In interaction tables with maximal conflict (see Fig. 4c
(bottom case)), we construct random interaction tables
with the following constraint: we attempt to maximize the
number of conflicting pairs (NCP) for the set of microbes
(see Results: Complementary prioritization as a mechanism
for robust many-species coexistence). For this, we pick a
microbe at random and then randomly pick a nutrient it
can utilize as its most preferred (top choice). For all other
microbes in our set that can utilize this nutrient, we set
it as their most preferred nutrient as well. We continue
until all microbes have been assigned a most preferred
nutrient and then randomize the rest of the interaction
tables.

In all three cases described above the competitive abil-
ities of microbes for each of the nutrients are set by a ran-
dom permutation.

Each specific pair of interaction rank tables (one for
microbial preferences and another, for their competitive
abilities) represents a possible competitive scenario in the
human gut. We construct 1000 tables for each case. We then
use the Gale–Shapley algorithm [29] to find the microbe-
optimal stable state of the possible Bacteroides community
and the breakmarriage algorithm (see Methods: Enumerat-
ing all stable states) to find the overall number of stable
states. In the microbe-optimal state, we compute the relative
rank of each microbe’s utilized nutrient in their preference
lists, i.e., the rank of the utilized nutrient relative to how
many nutrients that microbial species is known to utilize.
The inverse of this relative rank is used (in a.u.: arbitrary
units) as a predictive measure of its species abundance in
the resultant community. We repeat this procedure for all
microbes in the community and then normalize the abun-
dances of all microbes to add up to one so that the relative
abundance for each species is between 0 and 1.
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