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Abstract

Gut microbiota composition depends on many factors, although the impact of environmental pollution is largely unknown.
We used amplicon sequencing of bacterial 16S rRNA genes to quantify whether anthropogenic radionuclides at Chernobyl
(Ukraine) impact the gut microbiome of the bank vole Myodes glareolus. Exposure to elevated levels of environmental
radionuclides had no detectable effect on the gut community richness but was associated with an almost two-fold increase in
the Firmicutes:Bacteroidetes ratio. Animals inhabiting uncontaminated areas had remarkably similar gut communities
irrespective of their proximity to the nuclear power plant. Hence, samples could be classified to high-radiation or low-
radiation sites based solely on microbial community with >90% accuracy. Radiation-associated bacteria had distinct inferred
functional profiles, including pathways involved in degradation, assimilation and transport of carbohydrates, xenobiotics
biodegradation, and DNA repair. Our results suggest that exposure to environmental radionuclides significantly alters

vertebrate gut microbiota.

Introduction

Our understanding of the factors that shape gut microbiome
is dominated by studies of humans [1] or laboratory animals
[2]. In contrast, the processes that determine the composi-
tion of gut microbiomes in wildlife are poorly known
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but include, for example, host diet (in wild mice, [3])
and habitat quality (in primates, [4]). Whether persistent
pollutants impact the gut microbiomes of wildlife in their
natural habitat is not known, although exposure to various
chemicals, heavy metals [5], or ionizing radiation [6]
can change the gut microbiota composition of laboratory
rodents.

Pollution by radionuclides is a potential source of gen-
otoxicity to humans and wildlife [7]. Animals inhabiting the
Chernobyl Exclusion Zone (CEZ) provide the best-studied
model of the biological impact of exposure to
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environmental radionuclides [8]. Detrimental effects of a
chronic exposure to radiation on wildlife include elevated
DNA damage [7] and upregulation of DNA repair genes
[9], increased oxidative stress [10], and an increase in
mutation rate [11]. Any yet, little is known about the effects
of environmental radiation on microorganisms. While some
bacteria from the CEZ have a capacity for adaptation to
environmental radioactivity [12, 13], other studies reported
a decline in diversity with increased radiation exposure
[14]. However, no study has quantified the impact of
exposure to environmental radiation on host-associated gut
microbial communities in wild animals.

Methods and results

To quantify whether exposure to environmental radiation
impacts the gut microbial community of a wild rodent, the
bank vole Myodes glareolus, we sequenced the V4 region
of the 16S rRNA genes from the gut microbiota of 137 bank
voles (Supplementary Table 1). Bank voles were sampled
from three study areas that differed in the levels of envir-
onmental radiation, and represented two treatments: (1) high
(CH n =63, mean = 30.1 uSv/h) and (2) low (CL n =43,
mean = (0.25 uSv/h and KL »n =31, mean = 0.33 uSv/h)
radiation contamination (Supplementary Figure 1, see
detailed descriptions of the methods and results in the Sup-
plementary Information). Neither community richness nor
evenness differed significantly (P >0.05) between samples
grouped by study area (all pairwise comparisons of CH, CL,
and KL) or were affected by host sex (Supplementary
Figure 2, Supplementary Table 2). Significant (P = 0.001)
differences in beta diversity (Fig. 1d, Supplementary Fig-
ure 3) were observed between CH and both CL and KL, but
not due to effects of sex, a contamination by sex interaction,
or due to variation in bank vole body mass, head width (a
proxy for age), or gravidity status (for females) (Supple-
mentary Table 3).

Radiation, but not individual level predictors such as sex,
body mass, or head width (a proxy for age), was identified
as a significant predictor of the abundance of Bacteroidetes
(P =0.0001), Firmicutes (P <0.0001), and Proteobacteria
(P =0.001) (Supplementary Table 4). Notably, we found an
almost two-fold, significant (P <0.001) decrease in the ratio
of Firmicutes to Bacteroidetes (F:B) sequences from 1.7 in
the radioactively contaminated CH area to <0.9 in the
uncontaminated areas CL (F:B=0.87) and KL (F:B=
0.78) (Fig. 1a, b, Supplementary Tables 5 and 6). This
pattern was apparent across replicate sites (Supplementary
Figure 4) and taxonomic levels (Fig. lc, Supplementary
Table 6) in each treatment, indicating that the F:B ratio in
bank vole guts is associated with the level of environmental
radiation.
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These trends were also verified beyond the phylum
level in independent predictions by using a combination of
partial least squares (PLS) regression and balances [15]
(Supplementary Information). The area-based balance could
differentiate between the CH and the CL/KL areas (AUC =
0.957, F-statistic =204.7, P=9.18 x 107>°), with a mean
cross-validation prediction accuracy of 0.917 (Fig. 2a, b,
Supplementary Tables 7 and 8). This pattern was robust,
even when the analysis was limited to 10 samples per study
area (Supplementary Table 8). Using the radiation-based
balance, we could predict radiation levels (Pearson’s
r=-0.766, P=1.46x10"?") (Supplementary Figure 5,
Supplementary Tables 9 and 10, see Supplementary Infor-
mation for results).

We used PICRUSt [16] to make functional predictions of
bank vole gut microbiota. Analyses using both PLS and
Kruskal-Wallis identified core bacterial functions strongly
associated with the study area (CH vs. CL/KL) (Fig. 2c,
Supplementary Table 11). The striking similarity in the
functional profiles of the uncontaminated areas, despite their
spatial separation (Supplementary Figure 1) and potential
habitat differences, and the contrast between the unconta-
minated and contaminated areas reinforces the relevance of
radioactivity on gut microbial community function.

Discussion

Exposure to anthropogenic radionuclide contamination
presents diverse risks to living organisms [7], but its effects
on gut microbiota are unknown. Our analysis of the gut
microbiota of a wild vertebrate exposed to environmental
radiation uncover major changes to the gut microbiome
composition and inferred functional profiles.

Extensive inter-individual variation in gut microbiota
profiles (Fig. 1d) is a typical feature of host heterogeneity in
factors such as age, genotype [17], sex, and diet [3]. While
the use of diverse sampling locations will likely add noise, it
is an essential part of our experimental design that the
treatment (radiation) effect is observed outside one specific
location such as the Red Forest (one of the most con-
taminated sites in the CEZ) [18]. No other potential pre-
dictors (e.g. body mass, age, sex) of gut bacterial abundance
were found, in contrast to the general effect of radiation
exposure (Supplementary Tables 3 and 4).

The CEZ presents a mosaic of radionuclides deposition,
where contaminated and uncontaminated areas can be
separated by ~1.5km [19]. Bank voles may move up to
1 km within a breeding season [20], and thus individuals
from uncontaminated areas within the CEZ (CL), but not
individuals in the area around Kyiv (KL), have the oppor-
tunity to be exposed to radionuclides prior to capture [9];
with this in mind, the differences in gut microbiota



Environmental radiation alters the gut microbiome of the bank vole Myodes glareolus 2803
a Bacteroidetes Firmicutes Proteobacteria b
5
100y ——(——— 100 15
24
©
oy 7y s 12 =
L 75 & 75 ) 8
©
8 8 8 b
c c c o3
@ o] g 9 5
2 2 2 I
S5 50 S5 50 3 8
el 2 2 a
© [ © B2
o 0 o 6 £
2 2 2 (3}
-~ -~ -~ ‘=
K| k) 3 €
o 25 o 25 ] i
[ 4 ¥ 3 *
0 0 0 0 : ,
CH CL KL CH CL KL CH CL KL CH CL KL
c d
100
Actinobacteria H Coriobacteriales
Actinomycetales
Bacteroidetes H Bacteroidales 04
Flavobacteriales A
T Cyanobacteria |:| Ys2 ; °
N Deferril Dc fer A ® &
g [ cemetiales 0.2 " ® A 4 Host sex
< . Lactobacillales
§ Firmicutes [T Clostidiales 3 ®,A 0 C N ., : :/::‘e
E [~ Erysipelotrichales g A P
— & L]
g 50 [ Rickettsiales < A A ® Stidyiarea
L S A ®, ® ® CH
B Burkholderiales O 00 ° A Ll A 4 &
s [ | Nirosomonadales & % °e A o % » cL
7] = A A O L
) P ia |0 onal e A ek
Campylobacterales A ] 2A® [
[ | Enterobacteriales : Ay % A
25 [ Pasteureliales oata A lf& o A
o -02 »A ° % A
Spirochaetes DSpwrcchae\ales A AA f‘
[] Anaeroplasmatales
Tenericutes : Mycoplasmatales
L |RF39
0
CH CL KL -0.25 0.00 0.25 0.50
PCOA1(12.8%)

Fig. 1 Radiation-associated differences in bank vole gut microbiota
community composition and beta diversity. a Relative abundances of
three major bacterial phyla and b Firmicutes to Bacteroidetes ratio
(F:B) in the gut microbiota of bank voles inhabiting areas that differ in
levels of environmental radiation. Asterisks indicate significant dif-
ferences among areas contaminated (CH) and uncontaminated (CL)
with radionuclides within the Chernobyl Exclusion Zone and an
uncontaminated area near Kyiv (KL), Ukraine (Bonferroni-corrected
Kruskal-Wallis test). ***P <0.001. ¢ Mean relative abundance of

composition between CH and CL, and the similarity
between CL and KL, are striking. The implication is that the
gut microbial community responds rapidly and at a small
scale to host habitat, consistent with laboratory experiments
that show how external stimuli can drive changes in gut
microbiome within a few days [5, 21].

Changes in the gut community composition might
reflect bacterial radiosensitivity. Interestingly, some mem-
bers of the Desulfovibrionaceae can tolerate high radiation
levels (CH) and have a potential for bioremediation of
radionuclides [22], raising the possibility that it has a
detoxifying role in the bank vole gut. It is not known
whether the comparatively low and chronic dose of radio-
nuclides (~2-10 mGy/d) that wildlife experience within
the CEZ [23] could impose differential mortality within the

bacterial taxa at order level in the bank vole gut microbiota. Unas-
signed taxa (<2.3%) are not shown. d PCoA on Bray—Curtis dissim-
ilarity distances between bank vole gut microbiota profiles among the
three study areas. Each point represents a single sample, shape indi-
cates host sex, colored according to study area: CH, red (n = 63); CL,
blue (n =43); KL, green (n = 31). Ellipses represent a 95% CI around
the cluster centroid. Clustering significance by treatment group was
determined by adonis, P <0.001

gut bacterial community. However, enrichment of DNA
repair pathways (Fig. 2c, Supplementary Table 11) in
contaminated areas implies an increased effort to repair
bacterial DNA associated with elevated levels of environ-
mental radiation.

Selection for a more distinct gut microbiota in radio-
actively contaminated areas primarily reflects a replacement
of Bacteroidetes by Firmicutes. In a broad context, the F:B
ratio within the gut is affected by diet [2, 17] and is asso-
ciated with bacterial metabolic potential [24]. Bank voles
have a catholic diet that includes seeds, leaves, roots,
grasses, fruit and fungi and, occasionally, insects, and other
invertebrates [25]. Gut communities dominated by Bacter-
oidetes can exploit various dietary substrates [26] and thus,
could allow efficient use of diverse foods, indicating the
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Fig. 2 Balance Trees analysis and PICRUSt functional predictions for
the bank vole gut microbiota. Partial least squares (PLS) balance
analysis of a area-differentiated OTUs (shown are the proportions in
the two groups of the top 10 OTUs in each group based on PLS score)
and b classification of samples to study areas based on OTU compo-
sition. ¢ Heat map of the KEGG level-3 functional pathways that
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significantly differed between contaminated (CH) and both unconta-
minated areas (CL and KL). Pathway counts were normalized as
implemented in superheat v0.1.0 R package, abundance of each
pathway is indicated by a gradient of color from red (low abundance)
to blue (high abundance). Full lists of pathways associated with
radiation exposure can be found in Supplementary Table 11
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likely adaptive state in nature. Firmicutes tend to metabolize
otherwise indigestible resistant starch (Clostridiales, Lac-
tobacillales) and plant cell wall glycans (Ruminococcaceae,
Lachnospiraceae) [26]. Bank voles inhabiting radioactively
contaminated areas (CH) thus exhibit an apparent dietary
shift, which is also supported by the inferred metabolic
functions (Fig. 2c, Supplementary Table 11). There are no
detailed biodiversity surveys of the CEZ and surrounding
areas, but a change in diet associated with environmental
radioactivity might reflect the reduced abundance of
arthropods in the more contaminated areas within the CEZ
[27]. Alternatively, bank voles inhabiting CH areas might
actively increase the amount of plant-based foods to pro-
duce more of the end products of fermentation of dietary
fiber (short-chain fatty acids, SCFAs) [28].

SCFAs can confer additional benefits to the host beyond
energy harvest by acting as physiological and immune
regulators [26, 29]. Gut bacteria that produce butyrate may
protect against genotoxins as this SCFA affects DNA repair
systems and antioxidant levels [30] and can reduce oxida-
tive stress that is widely associated with animals inhabiting
contaminated areas within the CEZ [10]. Butyrate is pro-
duced by many Firmicutes, specifically members of the
Clostridiales, Ruminococcaceae and Lachnospiraceae [31],
that are significantly more abundant in CH, but is rarely
associated with the SCFA profiles of Bacteroidetes [26].
Enrichment of Firmicutes (Fig. la, b, Supplementary
Table 6) thus is a plausible method of mitigating effects
of elevated oxidative stress concomitant with inhabiting an
area contaminated by radionuclides. This hypothesis war-
rants further studies that could quantify SCFAs profiles and
thoroughly assess host diet.

In conclusion, bank voles exposed to anthropogenic
environmental radiation experience substantial changes in
the composition of their gut microbiota and major changes
in bacterial function. Gut microbial composition can facil-
itate adaptation [32], and might be an important component
of mounting an effective response to conditions within the
CEZ. The positive and negative adaptive and health con-
sequences of changes to wildlife gut microbiota remain to
be quantified.
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