Article | Published:

Syntrophic growth with direct interspecies electron transfer between pili-free Geobacter species

The ISME Journalvolume 12pages21422151 (2018) | Download Citation


Direct interspecies electron transfer (DIET) may prevail in microbial communities that show methanogenesis and anaerobic methane oxidation and can be an electron source to support anaerobic photosynthesis. Previous mutagenic studies on cocultures of defined Geobacter species indicate that both conductive pili and extracellular cytochromes are essential for DIET. However, the actual functional role of the pili in DIET is uncertain, as the pilus mutation strategy used in these studies affected the extracellular cytochrome profile. Here we repressed the function of pili by deleting the pilus polymerization motor PilB in both Geobacter species. The PilB mutation inhibited the pilus assembly but did not alter the pattern of extracellular cytochromes. We report that the two pilus-free Geobacter species can form aggregates and grow syntrophically with DIET. The results demonstrate that the Gmet_2896 cytochrome of Geobacter metallireducens plays a key role in DIET and that conductive pili are not necessary to facilitate DIET in cocultures of Geobacter species, and they suggest cytochromes by themselves can meditate DIET, deepening the understanding of DIET.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1.

    Summers ZM, Fogarty HE, Leang C, Franks AE, Malvankar NS, Lovley DR. Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria. Science. 2010;330:1413–5.

  2. 2.

    Lovley DR. Syntrophy goes electric: Direct interspecies electron transfer. Annu Rev Microbiol. 2017;71:643–64.

  3. 3.

    Morita M,Malvankar NS,Franks AE,Summers ZM,Giloteaux L,Rotaru AE, et al. Potential for direct interspecies electron transfer in methanogenic wastewater digester aggregates. mBio. 2011;2:e00159-11

  4. 4.

    Krukenberg V, Harding K, Richter M, Glöckner FO, Gruber-Vodicka HR, Adam B, et al. Candidatus Desulfofervidus auxilii, a hydrogenotrophic sulfate-reducing bacterium involved in the thermophilic anaerobic oxidation of methane. Environ Microbiol. 2016;18:3073–91.

  5. 5.

    McGlynn SE, Chadwick GL, Kempes CP, Orphan VJ. Single cell activity reveals direct electron transfer in methanotrophic consortia. Nature. 2015;526:531–5.

  6. 6.

    Wegener G, Krukenberg V, Riedel D, Tegetmeyer HE, Boetius A. Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria. Nature. 2015;526:587–90.

  7. 7.

    Ha PT, Lindemann SR, Shi L, Dohnalkova AC, Fredrickson JK, Madigan MT, et al. Syntrophic anaerobic photosynthesis via direct interspecies electron transfer. Nat Commun. 2017;8:13924.

  8. 8.

    Shrestha PM, Rotaru A-E, Summers ZM, Shrestha M, Liu F, Lovley DR. Transcriptomic and genetic analysis of direct interspecies electron transfer. Appl Environ Microbiol. 2013b;79:2397–404.

  9. 9.

    Shrestha PM, Rotaru A-E. Plugging in or going wireless: strategies for interspecies electron transfer. Front Microbiol. 2014;5:237.

  10. 10.

    Shrestha PM, Malvankar NS, Werner JJ, Franks AE, Elena-Rotaru A, Shrestha M, et al. Correlation between microbial community and granule conductivity in anaerobic bioreactors for brewery wastewater treatment. Bioresour Technol. 2014;174:306–10.

  11. 11.

    Holmes DE,Shrestha PM,Walker DJF,Dang Y,Nevin KP,Woodard TL, et al. Metatranscriptomic evidence for direct interspecies electron transfer between Geobacter and Methanothrix species in methanogenic rice paddy soils. Appl Environ Microbiol. 2017;83:e00223-17

  12. 12.

    Butler JE, Young ND, Lovley DR. Evolution of electron transfer out of the cell: comparative genomics of six Geobacter genomes. BMC Genom. 2010;11:40.

  13. 13.

    Meyerdierks A, Kube M, Lombardot T, Knittel K, Bauer M, Glӧckner FO, et al. Insights into the genomes of archaea mediating the anaerobic oxidation of methane. Environ Microbiol. 2005;7:1937–51.

  14. 14.

    Walker DJF, Adhikari RY, Holmes DE, Ward JE, Woodard TL, Nevin KP, et al. Electrically conductive pili from pilin genes of phylogenetically diverse microorganisms. ISME J. 2018;12:48–58.

  15. 15.

    Cologgi DL, Lampa-Pastirk S, Speers AM, Kelly SD, Reguera G. Extracellular reduction of uranium via Geobacter conductive pili as a protective cellular mechanism. Proc Natl Acad Sci USA. 2011;108:15248–52.

  16. 16.

    Steidl RJ, Lampa-Pastirk S, Reguera G. Mechanistic stratification in electroactive biofilms of Geobacter sulfurreducens mediated by pilus nanowires. Nat Commun. 2016;7:12217.

  17. 17.

    Rotaru A-E, Shrestha PM, Liu F, Shrestha M, Shrestha D, Embree M, et al. A new model for electron flow during anaerobic digestion: Direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane. Energy Environ Sci. 2014;7:408–15.

  18. 18.

    McCallum M, Tammam S, Khan A, Burrows LL, Howell PL. The molecular mechanism of the type IVa pilus motors. Nat Commun. 2017;8:15091.

  19. 19.

    Lovley DR, Phillips EJP. Novel mode of microbial energy metabolism: Organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl Environ Microbiol. 1988;54:1472–80.

  20. 20.

    Rotaru A-E, Shrestha PM, Liu F, Ueki T, Nevin K, Summers ZM, et al. Interspecies electron transfer via hydrogen and formate rather than direct electrical connections in cocultures of Pelobacter carbinolicus and Geobacter sulfurreducens. Appl Environ Microbiol. 2012;78:7645–51.

  21. 21.

    Tremblay P-L, Aklujkar M, Leang C, Nevin KP, Lovley D. A genetic system for Geobacter metallireducens: role of the flagellin and pilin in the reduction of Fe(III) oxide. Environ Microbiol Rep. 2012;4:82–8.

  22. 22.

    Coppi MV, Leang C, Sandler SJ, Lovley DR. Development of a genetic system for Geobacter sulfurreducens. Appl Environ Microbiol. 2001;67:3180–7.

  23. 23.

    Richter LV, Sandler SJ, Weis RM. Two isoforms of Geobacter sulfurreducens PilA have distinct roles in pilus biogenesis, cytochrome localization, extracellular electron transfer, and biofilm formation. J Bacteriol. 2012;194:2551–63.

  24. 24.

    Mehta T, Coppi MV, Childers SE, Lovley DR. Outer membrane c-type cytochromes required for Fe(III) and Mn(IV) oxide reduction in Geobacter sulfurreducens. Appl Environ Microbiol. 2005;71:8634–41.

  25. 25.

    Smith JA, Lovley DR, Tremblay P-L. Outer cell surface components essential for Fe(III) oxide reduction by Geobacter metallireducens. Appl Environ Microbiol. 2012;79:901–7.

  26. 26.

    Liu X, Tremblay P-L, Malvankar NS, Nevin KP, Lovley DR, Vargas M. A Geobacter sulfurreducens strain expressing Pseudomonas aeruginosa type IV pili localizes OmcS on pili but is deficient in Fe(III) oxide reduction and current production. Appl Environ Microbiol. 2014a;80:1219–24.

  27. 27.

    Thomas PE, Ryan D, Levin W. An improved staining procedure for the detection of the peroxidase activity of cytochrome P-450 on sodium dodecyl sulfate polyacrylamide gels. Anal Biochem. 1976;75:168–76.

  28. 28.

    Reguera G, McCarthy KD, Mehta T, Nicoll JS, Tuominen MT, Lovley DR. Extracellular electron transfer via microbial nanowires. Nature. 2005;435:1098–101.

  29. 29.

    Liu F, Rotaru A-E, Shrestha PM, Malvankar NS, Nevin KP, Lovley DR. Magnetite compensates for the lack of a pilin-associated c-type cytochrome in extracellular electron exchange. Environ Microbiol. 2015;17:648–55.

  30. 30.

    Coppi MV, O’Neil RA, Lovley DR. Identification of an uptake hydrogenase required for hydrogen-dependent reduction of Fe(III) and other electron acceptors by Geobacter sulfurreducens. J Bacteriol. 2004;186:3022–8.

  31. 31.

    Ueki T, Lovley DR. Genome-wide gene regulation of biosynthesis and energy generation by a novel transcriptional repressor in Geobacter species. Nucleic Acids Res. 2010;38:810–21.

  32. 32.

    Shrestha PM, Rotaru A-E, Aklujkar M, Liu F, Shrestha M, Summers ZM, et al. Syntrophic growth with direct interspecies electron transfer as the primary mechanism for energy exchange. Environ Microbiol Rep. 2013a;5:904–10.

  33. 33.

    Liu F, Rotaru A-E, Shrestha PM, Malvankar NS, Nevin KP, Lovley DR. Promoting direct interspecies electron transfer with activated carbon. Energy Environ Sci. 2012;5:8982–9.

  34. 34.

    Wang L-Y, Nevin KP, Woodard TL, Mu B-Z, Lovley DR. Expanding the diet for DIET: Electron donors supporting direct interspecies electron transfer (DIET) in defined co-cultures. Front Microbiol. 2016;7:236.

  35. 35.

    Chen S, Rotaru A-E, Shrestha PM, Malvankar NS, Liu F, Fan W, et al. Promoting interspecies electron transfer with biochar. Sci Rep. 2014;4:5019.

  36. 36.

    Reguera G, Nevin KP, Nicoll JS, Covalla SF, Woodard TL, Lovley DR. Biofilm and nanowire production leads to increased current in Geobacter sulfurreducens fuel cells. Appl Environ Microbiol. 2006;72:7345–8.

  37. 37.

    Leang C, Qian X, Mester T, Lovley DR. Alignment of the c-type cytochrome OmcS along pili of Geobacter sulfurreducens. Appl Environ Microbiol. 2010;76:4080–4.

  38. 38.

    Veazey JP, Reguera G, Tessmer SH. Electronic properties of conductive pili of the metal-reducing bacterium Geobacter sulfurreducens probed by scanning tunneling microscopy. Phys Rev E Stat Nonlin Soft Matter Phys. 2011;84:060901.

  39. 39.

    Malvankar NS, Vargas M, Nevin KP, Franks AE, Leang C, Kim B-C, et al. Tunable metallic-like conductivity in microbial nanowire networks. Nat Nanotechnol. 2011;6:573.

  40. 40.

    Feliciano GT, Steidl RJ, Reguera G. Structural and functional insights into the conductive pili of Geobacter sulfurreducens revealed in molecular dynamics simulations. Phys Chem Chem Phys. 2015;17:22217–26.

  41. 41.

    Tan Y, Adhikari RY, Malvankar NS, Ward JE, Woodard TL, Nevin KP, et al. Expressing the Geobacter metallireducens PilA in Geobacter sulfurreducens yields pili with exceptional conductivity. mBio. 2017;8:e02203–16.

  42. 42.

    Snider RM, Strycharz-Glaven SM, Tsoi SD, Erickson JS, Tender LM. Long-range electron transport in Geobacter sulfurreducens biofilms is redox gradient-driven. Proc Natl Acad Sci USA. 2012;109:15467–72.

  43. 43.

    Yates MD, Golden JP, Roy J, Strycharz-Glaven SM, Tsoi S, Erickson JS, et al. Thermally activated long range electron transport in living biofilms. Phys Chem Chem Phys. 2015;17:32564–70.

  44. 44.

    Yates MD, Strycharz-Glaven SM, Golden JP, Roy J, Tsoi S, Erickson JS, et al. Measuring conductivity of living Geobacter sulfurreducens biofilms. Nat. Nano. 2016;11:910–3.

  45. 45.

    Holmes DE, Dang Y, Walker DJF, Lovley DR. The electrically conductive pili of Geobacter species are a recently evolved feature for extracellular electron transfer. Microb Genom. 2016;2:e000072.

Download references


We sincerely thank Prof. Shiming Wang of Nanjing University of Science and Technology for kindly providing plasmid pCM158, and we thank Prof. Derek Lovley of University of Massachusetts, Amherst for providing the OmcS mutant of G. sulfurreduces. We thank Prof. Xiangzhen Li for constructive criticism of the manuscript. We also thank Dr. Qianzhuo Mao and the Center for Molecular Cell and Systems Biology of Fujian Agriculture and Forestry University, respectively, for electron microscopy and laser scanning confocal microscopy. This research was supported by the National Natural Science Foundation of China, grants no. 31600089, no. 41671264 and no. 91751109.

Author information


  1. Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China

    • Xing Liu
    • , Shiyan Zhuo
    • , Christopher Rensing
    •  & Shungui Zhou


  1. Search for Xing Liu in:

  2. Search for Shiyan Zhuo in:

  3. Search for Christopher Rensing in:

  4. Search for Shungui Zhou in:

Conflict of interest

The authors declare that they have no conflict of interest.

Corresponding author

Correspondence to Shungui Zhou.

Electronic supplementary material

About this article

Publication history