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Abstract
The advent of high-throughput ‘omics approaches coupled with computational analyses to reconstruct individual genomes
from metagenomes provides a basis for species-resolved functional studies. Here, a mutual information approach was
applied to build a gene association network of a commensal consortium, in which a unicellular cyanobacterium
Thermosynechococcus elongatus BP1 supported the heterotrophic growth of Meiothermus ruber strain A. Specifically, we
used the context likelihood of relatedness (CLR) algorithm to generate a gene association network from 25 transcriptomic
datasets representing distinct growth conditions. The resulting interspecies network revealed a number of linkages between
genes in each species. While many of the linkages were supported by the existing knowledge of phototroph-heterotroph
interactions and the metabolism of these two species several new interactions were inferred as well. These include linkages
between amino acid synthesis and uptake genes, as well as carbohydrate and vitamin metabolism, terpenoid metabolism and
cell adhesion genes. Further topological examination and functional analysis of specific gene associations suggested that the
interactions are likely to center around the exchange of energetically costly metabolites between T. elongatus and M. ruber.
Both the approach and conclusions derived from this work are widely applicable to microbial communities for identification
of the interactions between species and characterization of community functioning as a whole.

Introduction

In nature, microbial species exist in complex communities,
which feature cell-cell communication, coordination of

metabolism, and division of labor across community
members [1–5]. As individual behaviors of neighboring
cells cascade into a cumulative response, understanding the
community structure-function relationship rests on deli-
neating interspecies interactions. While studies have used
species co-occurrence to infer potential connectivity
between organisms [6–8], coexistence of organisms does
not provide specific evidence of their interactions, as the
latter requires information at the phenotypic and functional
level. Because community responses often appear idiosyn-
cratic and involve multi-level regulatory mechanisms,
obtaining a molecular-scale resolution requires an appro-
priate computational and experimental framework capable
of integrating quantitative ‘omics data derived from a
variety of different experimental conditions. While it is
difficult to apply this approach to microbial communities in
nature, technological developments in high-throughput
cultivation and analysis [9, 10] make such approaches
tractable in the laboratory by using constructed microbial
consortia. One such approach involves modeling metabolic
interactions between bacterial species. Genome-scale
metabolic network-based flux balance analysis (FBA) [11]
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enables predicting flux distributions and metabolite
exchanges and within and across species, which can serve
as ab initio hypotheses for experimental validation [12, 13].
Reliable prediction of FBA requires the reconstruction of
high-quality metabolic networks, which is a challenging
task requiring an iterative process of network refinement
and validation [14]. Instead of quantitative FBA,
which requires high accuracy in stoichiometry, one may
alternatively analyze topological metabolic networks to
understand cross-species metabolic interactions [15]. This
analysis, described as ‘reverse ecology’ in the literature
[16], can infer some key elements of the ecological inter-
actions among species and populations from genomic-based
data.

Following the reverse ecology approach, we sought to
use a high-throughput method that can facilitate mining
and identification of interspecies molecular events in
microbial communities from meta-omics data. Building
on previous success with mutual information (MI)
methods to characterize regulatory responses in single
species [17–19], we tested the applicability of the Context
Likelihood of Relatedness (CLR) algorithm [20] to
reconstruct multi-organism gene-association network
from transcriptomic data and predict interactions between
organisms from coordinated changes in gene expression.
Networks made using MI are able to link genes that are
co-expressed across a range of conditions based on the
information that one can gather about one gene (variable)
compared to another. Networks based on MI that link co-
expressed genes can therefore also link genes with similar
or coordinated functions [21], allowing prediction of gene
function [22]. We previously demonstrated that this
method is especially useful for linking genes in biological
systems where genomic context is ineffective due to the
localization of functionally and structurally related genes
at disparate genome locations [18, 23]. We hypothesized
that network-based MI analysis would identify genes that
are functionally linked (e.g., involved in division of labor
or exchange of nutrients) but are found in separate
organisms and are thus physically separated. Network
inference can aid in grouping these genes and high-
lighting possible points of interaction between organisms
in microbial communities. Previous studies have exam-
ined gene co-expression networks of cyanobacterial spe-
cies but did not infer links across species as we do here
[24]. Other studies that have created networks that link
genes across species have focused on host/pathogen
interactions [25, 26]. However, the studies presented here
differ in that many of the interactions we describe are
likely complementary in nature and lead to beneficial
interactions between each species, in contrast to an
infection system where interactions are usually not ben-
eficial to either organism.

To test the applicability of network-based MI analysis for
identification of putative inter-species interactions, we car-
ried out a transcriptional gene co-expression network
reconstruction using data from a model phototroph-
heterotroph binary system, previously developed and char-
acterized in our laboratory [27], which consisted of a uni-
cellular cyanobacterium Thermosynechococcus elongatus
strain BP1 (hereafter, T. elongatus) and a Gram-positive
chemoheterotrophic bacterium Meiothermus ruber strain A
(hereafter,M. ruber). Building on the results of our previous
study, which identified clusters of co-expressed genes in
both organisms as a function of light and O2 availability
[27], we expanded the transcriptomic dataset to 20 addi-
tional conditions (Supplemental Table 1) This enabled us to
apply a network-based analysis which allowed to us link
pairs of genes across species based on MI scores. This
approach can provide far more detailed information
regarding correlations in gene expression across species and
identify individual genes that show statistically significant
co-expression, thus allowing for a greater dissection of
instances of metabolite exchange and coordination across
species. An additional study was carried out by our group
on this dataset performing genome-scale metabolic network
modeling of T. elongatus-M. ruber binary consortium [28].
Their main goal was to evaluate various alternative
approaches of data-model integration for community
metabolic network reconstruction. Nevertheless, they pre-
dicted transfer of organic nitrogen and carbon sources (such
as amino acids and vitamins) by T. elongatus to M. ruber.
This commensal provider-consumer relationship predicted
by the FBA was aligned with experimental understanding,
but the details in the predicted fluxes and exchanged
metabolites lack full accuracy. While further network
refinement through a labor-intensive manual curation would
lead to improved predictions, the difficulty arises in
obtaining key data required for model validation such as
metabolite exchanges across the two species.

As an alternative approach to examine interactions and
exchanges that were not covered by the previous FBA
study, we used the high-throughput approach described here
to determine where specific genes of T. elongatus and M.
ruber are coordinated. The resulting gene co-expression
network provides a high level view of both intra- and inter-
species regulatory interactions and allows identification of a
significant number of cross-species links. This approach
identified several links between amino acid synthesis,
transport, vitamin metabolism and nitrogen metabolism
genes. Gene linkages suggest the transfer of amino acids
from T. elongatus to M. ruber and that these amino acids
may be a source of organic nitrogen for M. ruber.
B12 synthesis and scavenging genes were linked in T.
elongatus and M. ruber, respectively and the position of
certain uncharacterized genes of M. ruber in the network
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suggests their role in sugar or amino acid metabolism for
this heterotroph. The resulting network is reflective of
specific interaction mechanisms which can be inferred
based on the functional identities of the interconnected
genes. Ability to infer interactions in defined co-culture
systems demonstrates that this approach could be applied to
more complex communities including diverse environ-
mental systems or even microbiomes of the human body.

Materials and methods

Experimental design and cultivation conditions

The batch and continuous cultivation of axenic T. elongatus
in cultures was carried out using modified BG-11 medium
as described previously [29]. For the cultivation of axenic
M. ruber the BG-11 medium was supplemented with 1%
yeast extract. Turbidostat co-cultivation of both species in
photobioreactors [9] was carried out at a steady state with a
5.5 L working volume of modified BG-11 agitated at
250RPM and held at a constant 52°C, pH 7.5, incident
irradiance of 1995 µmol photons m−2 s−1 and sparged at 4 L
min−1 with N2 gas supplemented to 1% with CO2. The
relative abundance of T. elongatus and M. ruber at this
steady state was 90.2 ± 2.0 and 9.1 ± 1.5% cell-counts,
respectively.

To construct a gene association network, we generated a
large RNA-seq dataset from 25 distinct culturing conditions
that examined M. ruber and T. elongatus. These conditions
were all obtained by deriving inoculum from the steady
state photobioreactor for batch assays or by transitioning the
photobioreactor to new steady states. Specifics of the 25
growth conditions used in this study are shown in Supple-
mental Table 1. Five of the conditions used (Conditions
21–25) involved transitioning the photobioreactor to new
steady states and were generated in a previous study
examining T. elongatus/M. ruber growth, details on the
conditions can be found in that study [27]. Briefly, we
examined the response to three incident irradiance levels
197, 1190, and 1995 µmol photons m−2 s−1 and the
response to three partial pressures of O2, 0, 0.3, and 0.59. A
subset of these conditions, (conditions 22–25 in Supple-
mental Table 1) were examined with two biological repli-
cates. To generate the remaining 20 conditions, 400 mL of
co-culture cell suspension was harvested from the steady
state photobioreactor for batch analysis. Cells were col-
lected by centrifugation, 8000 r.p.m. for 4 min and washed
twice in 10 ml of the media corresponding to the specific
batch ‘perturbation’ to be performed and resuspended in
200 ml of that media. If the perturbation did not involve a
change in media (i.e., temperature or irradiance) then the
pellet was washed and incubated in the media used for the

‘Standard’ condition, see Supplemental Table 1. Cultures
were incubated under each respective perturbation condition
for 4 h before harvesting by centrifugation as above.
Supernatants were removed and cell pellets were flash fro-
zen in liquid N2 and stored at −80 °C.

Metatranscriptome sequencing and quantitation

RNA was extracted using the SV Total RNA Isolation
System (Promega, Madison, WI) followed by genomic
DNA removal and purification using the TURBO DNA-free
kit (Life Technologies, Carlsbad, CA). The integrity of the
RNA samples was assessed on an Agilent 2100 Bioanalyzer
and only RNA samples with an RNA Integrity Number
between 7 and 10 were used for library construction. cDNA
libraries were synthesized using the Ovation Universal
RNA seq system (NuGEN, San Carlos, CA), which also
included targeted rRNA depletion using specific InDA-C
probes designed to recognize both 16 S and 23 S rRNA
from both T. elongatus and M. ruber. The constructed
cDNA libraries were examined using the Agilent 2100
Bioanalyzer to confirm proper size and construction and
were sequenced on an Illumina NextSeq 500 using 75 bp
single end reads. Reads from all samples were aligned to the
genomes of Thermosynechococcus elongatus BP-1 (NCBI:
NC_004113) and Meiothermus ruber strain A (NCBI:
NZ_JXOP01000000.1) using the Burrows Wheeler Aligner
(BWA) with the default settings [30]. Gene counts were
determined using HT-seq [31] and were normalized with
DESeq2 [32]. Gene counts were normalized in a species-
specific manner to ensure that changes in abundance under
select conditions in one organism will not skew the tran-
script levels. We obtained an average of 58,741,485
(±13,108,960) reads per sample with multiplexing on the
NextSeq. On average 32,514,216 (±8,673,206) aligned to T.
elongatus and 1,125,333 (±425,756) aligned to M. ruber
(Supplemental Table 2). This corresponds to 27-fold cov-
erage of the M. ruber genome and 940-fold coverage of T.
elongates, with this substantial difference in coverage due
to low cell density of M. ruber in the co-culture. All RNA-
seq fastq files were analyzed with FastQC. No adapter
sequences were found in the reads and the quality of all
basepair positions in all reads never dropped below a Phred
score of 28.

Construction of gene co-expression network

After the data normalization described above, genes with a
count of zero in all conditions were removed from the data
set leaving a total of 2633 and 2214 genes from the M.
ruber and T. elongatus datasets, respectively. Biological
replicates for a subset of conditions were averaged by mean.
Networks were then inferred from the expression data using
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CLR [20] along with resampling methods previously
described [18]. Briefly, the CLR program computes the
mutual information between all gene pairs in the dataset.
Mutual information is a measure of the mutual dependence
between two variables and is the amount of information in
bits needed for one variable to predict the behavior of the
other. Once a mutual information matrix is calculated, CLR
computes the Z-scores of all gene pairs, which is defined as
a number of standard deviations the mutual information
score of gene x and gene y is above the average mutual
information scores of all gene pairs including either gene x
or gene y. This approach is superior to simply taking the
mutual information score as it does not highlight or dis-
criminate against genes which may have generally higher or
lower mutual information scores with all other genes,
respectively. Supplemental Table 3 shows the expression
levels and functions of all genes examined with CLR.
Unweighted gene co-expression networks were calculated
for an interspecies dataset including expression levels from
genes of both organisms, as well as individual networks of
M. ruber genes only and T. elongatus genes only all using a
Z-score of 3.0. When counting the number of edges linking
each functional pathway in M. ruber and T. elongatus we
used larger cross-species network of 7303 edges using a Z-
score cutoff of 2.5. When comparing degree values for
genes in networks of two different sizes a normalized
degree value was used that divided each degree value by the
total number of nodes in that network. In the case of
interspecies networks degree values for nodes representing
M. ruber genes were divided by total number of nodes
representing M. ruber genes only, not the total number of
nodes in the network, the same is true for degree values of
nodes representing T. elongatus genes. We next used
Pearson correlation coefficient to assign a positive or
negative value to the correlation of the genes that were
found to have edges by CLR. We chose to use CLR to
determine edges, rather than Pearson, as mutual information
is able to identify edges that may be missed by correlation
coefficient, such as those between a gene changing its
expression exponentially and one changing is expression
linearly. CLR was also ranked higher than Pearson corre-
lation coefficient in a test of accuracy in a previous study
[33]. However, CLR does not report whether an edge results
from positive or negative correlation of the gene pair while
Pearson does. For these reasons CLR was used to determine
edges and Pearson correlation coefficient data was used to
determine positive and negative correlation for those edges
already identified by CLR. Viewing of networks and
determination of centrality measurements were done using
Cytoscape [34]. A force-directed layout was used for all
networks. Functional enrichment on certain gene groups
was also carried out using Fisher’s exact test and annotation
data obtained from KEGG.

Results and discussion

Topological features of the co-culture
transcriptional network reveal functional inter-
species linkages

The applicability of the CLR approach for community
network reconstruction was tested using the T. elongatus-M.
ruber binary culture previously developed by our group
[27]. This photoautotroph-heterotroph association is based
on a commensal relationship, in which M. ruber is depen-
dent on T. elongatus for the production of organic carbon,
reduced nitrogen sources and vitamin B12. Previous studies
suggested that the cyanobacterium responds to co-
cultivation under varying irradiance and O2 levels through
changes in the expression level of core genes involved in
photosynthesis, carbon uptake/fixation, vitamin biosynth-
esis and scavenging of reactive oxygen [27]. To identify the
putative interactions and pathways leading to the exchange
of metabolites and coordination of metabolism between T.
elongatus and M. ruber, we reconstructed and analyzed a
binary culture network built from transcriptomic data col-
lected during co-cultivation of both organisms under
25 separate conditions (Supplemental Tables 1, 2). The
edges within the network were then cross-referenced with
Pearson correlation coefficient data to determine whether
gene pairs in the network were positively or negatively
correlated in their expression (Fig. 1). Pearson correlation
was only used to determine the direction of the correlation,
the magnitudes of Pearson correlation were not used.

The reconstructed network of 4408 (2344M. ruber and
2064 T. elongatus) genes was inferred using a Z-score cut-
off of 3.0 and contained 38,778 edges, of which 1396
(3.6%) were interspecies edges that connected genes in both
organisms (Supplemental Fig. 1). As edges between species
point to transcriptional-level coordination of cellular func-
tions and, possibly, metabolite exchange between the
organisms, we next created a subnetwork consisting only of
edges that connected genes from both T. elongatus and M.
ruber (Supplemental Fig. 1). Using all of the 1396 edges
delineated from the cross-species subnetwork, we assigned
each edge a positive or negative value based on its Pearson
correlation coefficient with the corresponding node (i.e.,
gene) pair. This resulted in 743 positive edges (i.e., the
expression of the gene pairs comprising these edges has a
positive correlation) and 653 negative edges, (i.e., the
expression of the gene pairs comprising these edges has a
negative correlation) (Supplemental Table 4). We also
inferred networks consisting of T. elongatus genes only and
M. ruber genes only also using a Z-score cutoff of 3.0
(Supplemental Fig. 2).

To elucidate the linkages between network topological
features and gene functionality, we next calculated the
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degree value (i.e., the number of connecting edges per
node) of all genes in the inter-species network and grouped
them into functional categories. We next compared the
average degree value of a particular functional category in
the cross-species subnetwork (based on the average degree
values of genes within that function) with the degree value
of that same functional category in a single-species net-
work. We chose to use degree as it has been used in several
previous studies as a metric of centrality with success [35–
37]. As previous studies have shown that genes of high
degree and centrality are those that are particularly impor-
tant to bacterial metabolism [38–40], we reasoned that an
increase in the degree value among genes in the cross-
species subnetwork suggests that a particular function is
essential to cross-species metabolism (Fig. 2a). M. ruber
functions with increased degree values in the cross-species
subnetwork included cell motility and surface adherence
functions, as well as amino acids, defense systems, reg-
ulation of gene expression, and terpenoid/polyketide meta-
bolism. Notably, many of these functions overlapped with
T. elongatus, where increased degree values in the cross-
species subnetwork also included defense and invasion

response functions, as well as nitrogen, glycan and terpe-
noid/polyketides metabolism genes.

M. ruber genes displaying increased degree values offer
some interesting biological insight into microbial co-culture
dependencies. For instance, our previous studies [27, 41]
collected confocal micrographs that qualitatively showed
tight physical associations between cyanobacteria and het-
erotrophs. While this related result does not directly account
for the importance of cell adhesion in M. ruber, combined
with results we see here, that cell adherence genes occupy
central positions in a cross-species subnetwork, it does
supply corroborating evidence that heterotrophic cells are
likely more successful at scavenging carbon, nitrogen, O2,
exopolymers and released organic substrates when physi-
cally attached to their cyanobacterial partners. Similarly, the
increased M. ruber degree values for amino acid metabo-
lism are likely related to the fact that heterotrophic cells
cannot assimilate inorganic nitrogen in this experiment and
rely on proteins, peptides or direct amino acid exchanges
from T. elongatus. The relevance for terpenoid/polyketide
metabolism—shared between both species—was less
intuitive and suggested the possibility of as yet unexplored

RNA-Seq Data
(25 condi�ons)

Network 1 Network 2

Network 500

.

.

.

Incident Networks Pearson Correla�on Coefficient

Consensus Network with Posi�ve and 
Nega�ve Edges

Fig. 1 Methodology of Cross-Species Network. Both T. elongatus and
M. ruber were cultured under 25 different environmental conditions
and RNA-seq data was collected. Transcriptomic data was used to
build 500 incident networks with random removals of 20% of the data
for each incident network. These 500 incident networks were then

combined into a single consensus network that averaged mutual
information scores for all gene pairs. Transcriptomic data was also
used to generate a Pearson correlation coefficient dataset. Both data
types were combined to assign positive (orange) or negative (blue)
values to the edges in the CLR network
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interactions between these two species. One interpretation
relates to the fact that many of the experimental conditions
were performed under high incident irradiance (up to 1995
µmol photons m−2 s−1) which likely presented an environ-
mental stimulus for expressing photoprotective pigments
such as carotenoids that relate to the broad functional class
of terpenoid/polyketide metabolism. At the same time, M.
ruber is known to produce a number of carotenoids [42].
The synthesis of related molecules from T. elongatus and
M. ruber may lead to specific exchanges centered on these
metabolites and to a central position for genes involved in
this synthesis in a cross-species network. The increase in
centrality for glycan related genes in both T. elongatus and
M. ruber is also of interest. Other studies have found a role
for surface glycans in cyanobacteria in recognizing sym-
biotic partners [43, 44]. While these studies have been

mainly limited to interactions of cyanobacteria and plants,
the central position of glycans here may suggest that these
molecules have a role in the recognition of other kinds of
partners, such as M. ruber.

The network topology was also mined for biological
insight by quantifying betweenness as a measure of cen-
trality in addition to degree (Fig. 2b). Nearly all of the
functions for both species that we found to be increased
using degree as a centrality measure were also found to be
increased when using betweenness. Notably, we also found
that cell adherence genes of M. ruber showed increased
centrality in a cross-species network compared to the single-
organism network pointing at a potential role of cell–cell
interactions in the co-culture. Similar changes in between-
ness were displayed by the terpenoid and glycan genes of T.
elongatus in a cross-species network compared to the same
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elongatus (filled green bars) genes in the cross-species network.
Degree values are shown on the y-axis and are normalized to the total
nodes in the network. b Same as a but using betweenness as a measure
of centrality rather than degree
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genes in a T. elongatus-only network thus underscoring the
essential role of pigment and cell wall biosynthesis in
photosynthetic metabolism. There were also differences
when using betweenness compared to degree. Certain
functions that were not of higher centrality in the cross-
species network by degree were higher by betweenness.
These include energy metabolism (both species), fatty acids
and lipids (T. elongatus), extrachromosomal functions (both
species), as well as transcription, translation and transport
(both species). While betweenness and degree are both
measures of centrality they can point to different aspects of
interspecies regulation. Genes of high degree in the cross-
species network are those that are connected to a large
number of genes from the opposite species. The position of
these genes as hubs means that they are likely strongly
involved with a single process in the opposite species,
having edges with several genes in the same proximity
within the network. Other studies have also shown that
networks are particularly sensitive to the removal of such
genes, biological networks tend to be robust against per-
turbation but removal of hub genes of high degree can have
a major impact on network topology [45, 46]. Therefore,
those processes that have the highest degree value increases
in the cross-species network are those that are especially
important to co-cultivation. In the case of M. ruber these
include both adherence genes and defense/invasion

responsive genes, in the case of T. elongatus they include
amine metabolism and glycan metabolism genes. M. ruber
is completely dependent on T. elongatus for several meta-
bolites so it is biological intuitive that adherence genes,
which allow M. ruber to physical associate with T. elon-
gatus cells, their source of nitrogen and carbon, are of cri-
tical importance. In the same way, M. ruber respiration
reduces the partial pressure of O2, thus increasing T. elon-
gatus’ selectivity of CO2 during growth. Therefore, genes of
T. elongatus that promote the growth of M. ruber, glycan
and amine genes providing needed carbon and nitrogen, are
of high degree.

In contrast genes of high betweenness occupy positions
linking two larger groups of genes suggesting that they act
to link multiple processes in the opposite species, having
edges with two distinct clusters which may be enriched for
different processes. While several of the processes that had
high degree also had high betweenness in the cross-species
network there were certain functions that only had high
betweenness values suggesting their centrality is mainly a
result of linking two larger groups of genes in the opposite
species. For M. ruber this includes energy metabolism and
transcription/translation. For T. elongatus this includes
fatty acids and terpenoids/polyketides among others.
Genes in these groups may act to link distinct groups of
genes in the opposite species and thus may be part of

Fig. 3 Number of edges between functions of T. elongatus and M.
ruber. a A network with a Z-score cutoff of 2.5 was used to increase
total edges and gain a more detailed view of interactions. The number
of positive edges for each function in T. elongatus (x-axis) and M.

ruber (y-axis) is indicated, darker colors indicate more edges. Meio
refers to M. ruber and BP1 to T. elongatus. b Identical to a but
showing negative edges for each function in T. elongatus (x-axis) and
M. ruber (y-axis), darker colors indicate more edges
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exchanges of metabolites or possibly division of labor
processes.

We next looked in more detail at which particular func-
tions were linked in the cross-species network and whether
these linkages came from positive or negative edges, as
determined by Pearson correlation coefficient. A large
number of edges linked transport and translation genes of M.
ruber and T. elongatus and for ease of viewing these have
been grouped into separate figures (Supplemental Figs. 3, 4).
Most of these edges centered on ribosomal proteins of M.
ruber having positive and negative edges with a number of
functions of T. elongatus suggesting that growth of M. ruber
(ribosomal proteins being a proxy for growth) is linked to
metabolic activity of T. elongatus. Of the remaining edges,

functional enrichment of M. ruber and T. elongatus network
nodes revealed that amino acid metabolism genes of M.
ruber had a large number of positive cross-species edges
with T. elongatus energy metabolism and intracellular traf-
ficking functions (Fig. 3a). A similar correlation pattern was
also observed, although to a lesser extent, for the nucleic acid
metabolism genes of M. ruber which had a higher number of
positive edges with energy metabolism and prosthetic/
cofactor biosynthesis genes of the cyanobacterium. For T.
elongatus, the highest number of positive interspecies edges
was observed for energy metabolism genes which were
linked to the amino acid metabolism, energy metabolism,
nucleic acid metabolism and regulatory functions of M.
ruber. Among negative edges (Fig. 3b), M. ruber amino acid

Fig. 4 Specific edges between nitrogen metabolism and unknown
genes of M. ruber and T. elongatus. a Ammonium transporters of M.
ruber (amt) show negative edges to amino acid synthesis genes of T.
elongatus (green circles) while M. ruber peptide transporters had
positive edges to amino acid synthesis genes of T. elongatus. b

Uncharacterized genes of M. ruber (red circles) show a large number
of edges indicating positive correlation (direct edges, orange lines) and
negative correlation (inverse edges, blue lines). Many of these edges
are to the same T. elongatus genes
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metabolism genes represented by far the largest group that
displayed negative correlations with T. elongatus genes in the
cross-species network. Notably, the highest number of T.
elongatus negative edges was also found across amino acid
metabolism, as well as co-cofactor biosynthesis genes, which
likely points at the uptake of these excreted cyanobacterial
metabolites by the heterotroph. Negative correlations were
also found for intracellular trafficking genes of both organ-
isms as well energy metabolism and carbohydrate transport
genes of M. ruber further pointing at the metabolic depen-
dence of the heterotroph on the organic carbon excretion by
the cyanobacterium.

Gene-level resolution allows identification of
putative interaction mechanisms

To identify the specific pathways driving the co-culture
growth, we next examined the specific genes of T. elon-
gatus and M. ruber genes that were connected by edges in
the inter-species network. As our primary objective was to
validate the applicability of transcriptional context-based
networks to delineate interactions between community
members, we focused on metabolite cross-feeding that we
had previously predicted to underlie the commensal growth
of the T. elongatus-M. ruber co-culture [27]. Consistent
with the experimental constraints, the co-culture network
contained a number of edges that linked genes that are
likely to participate in the exchange of reduced vitamins,
nitrogen species and organic carbon compounds.

Vitamin B12 is an important cofactor which, among
other functions [47], is required for methionine synthesis.
Since M. ruber is auxotrophic for B12, an exogenous sup-
ply of this co-factor is required for growth, which during co-
cultivation can be provided by the B12 prototroph T.
elongatus [27]. Notably, genes encoding putative
B12 scavenging proteins in M. ruber (btuF;
SY28_RS12145) were inversely correlated to B12 bio-
synthesis genes in T. elongatus (cobQ, tll1716. When
plotting the expression profile across conditions for btuF
and cobQ, a clear negative relationship can be observed
based on Pearson correlation coefficient of −0.65 (Sup-
plemental Fig. 5). B12 exchange appeared to also affect
other metabolic functions in each species. Specifically, the
M. ruber metH gene (SY28_RS08890) which encodes
methionine synthase, a B12-dependent enzyme, also had a
large number of edges with T. elongatus genes. Of 14
edges, 8 were negative and linked to T. elongatus genes
involved in fatty acid synthesis (for example, fabI, accD,
tll1693, tlr1643), while the positive edges connected to two
putative transporters (tll1329, tlr1438) though the specific
molecule they may transport is unknown.

Given the inability of M. ruber to carry out assimilatory
nitrate reduction, the organism is dependent on T. elongatus

for a source of reduced nitrogen when only NaNO3
− is used

as the sole nitrogen source [27]. Collective evidence from
this study suggests that amino acids or small peptides could
be acting as an organic nitrogen source that is being
transferred from T. elongatus to M. ruber. First, amino acid
and nitrogen metabolism genes of both T. elongatus and M.
ruber show higher degree values in the cross-species net-
work compared to axenic M. ruber or T. elongatus networks
(Fig. 2a), in addition four of six edges between amino acid
metabolism genes in M. ruber and T. elongatus are negative
edges. Negative edges between similar metabolism pro-
cesses suggests that one species carries out the process, the
resulting metabolites are shared and the partner species has
no need to carry out the same process and thus down-
regulates genes involved in that process. This is also
apparent with the large number of amino acid synthesis
genes of M. ruber having negative edges with amino acid
synthesis genes of T. elongatus (Fig. 3b).

Further evidence can be found in the ammonium trans-
porter (amt; SY28_RS01750) of M. ruber, which had both
negative and positive edges with several T. elongatus genes
(Fig. 4a). Genes with negative edges included, among
others, three amino acid metabolism genes (aguA, aguB,
thrCII; tlr0111, tlr0112, tlr0982) and a sulfur metabolism
gene (sir; tlr0339). Genes with positive edges were mainly
unknown in function though a cytochrome C gene (coxC;
tll2009) was positively associated with ammonium trans-
port. In addition, there were three peptide transporter genes
in M. ruber that had positive edges with amino acid
synthesis genes of T. elongatus (Fig. 4a). The fact that only
negative edges exist between the ammonium transporter of
M. ruber and amino acid metabolism genes of T. elongatus
suggest that an organic nitrogen source in the form of amino
acids is being provided by T. elongatus and it is less
energetically favorable for M. ruber to assimilate ammonia
to synthesize amino acids under these conditions. This is
further supported by the presence of positive edges between
peptide transporters of M. ruber and amino acid synthesis
genes of T. elongatus (Fig. 4a). As these nitrogen sources
are being produced by T. elongatus, M. ruber upregulates
genes involved in their transport and assimilation. In addi-
tion to this data specific edges existed that crossed species
for genes coding for proteins that synthesize energetically
costly amino acids with branched side chains such as
tryptophan and phenylalanine. These include pheA2
(SY28_RS10870) and trpE (SY28_RS04715) in M. ruber
and aroE (tll0590) in T. elongatus. Finally, two of the
peptide transporters in M. ruber that have edges with T.
elongatus genes (SY28_RS06075 and dppC;
SY28_RS10470) are expressed at lower levels (1.5 and 2.3-
fold, respectively) when an alternative nitrogen source,
NH4, is present in one of the experimental conditions used
to generate the network.
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We also observed that two uncharacterized genes of M.
ruber (SY28_RS04830, SY28_RS05160) each had several
edges with T. elongatus genes (27 and 17, respectively); in
several instances, both of these genes had edges to the same
T. elongatus genes (Fig. 4b). When examining these 37 T.
elongatus genes that had an edge with one or both of the
uncharacterized M. ruber genes, carbohydrate and amino
acid metabolism functions were significantly enriched (p-
value of 0.006 and 0.012, respectively) as were terpenoid
metabolism functions (p-value < 0.015) (Supplemental
Table 5). While the role of theseM. ruber genes is unknown,
their position in the network suggests their importance to
cross species interactions, likely centering on sugar or amino
acid metabolism or transport. This notion is also supported
by the increase in relative expression levels of these genes
(compared to the mean across all conditions) when M. ruber
was cultured with exogenous carbon sources (i.e., glucose
and lactate, data not shown). Under the majority of experi-
mental conditions, no exogenously added organic carbon was
available for M. ruber and carbon must be obtained from T.
elongatus. The annotated function of these M. ruber genes is
unknown, though SY28_RS05160 does contain the
DUF4900 domain. The linking of these M. ruber genes with
T. elongatus carbon genes combined with the larger number
of negative (compared to positive) edges linking carbohy-
drate processes ofM. ruber with energy metabolism genes of
T. elongatus (Fig. 3) can begin to reveal how carbon sources
are shared between these species. Organic carbon is only
produced by T. elongatus as CO2 is the only carbon source
added to the co-culture. M. ruber can gain access to this
organic carbon either through uptake after death and cell lysis
of T. elongatus or through collection from excreted carbon
sources from living T. elongatus, possibly aided by the tight
physical association seen with M. ruber to T. elongatus cells.
The ultimate collection strategy is likely a combination of
both but the tight coordination between energy metabolism
genes of T. elongatus and carbohydrate genes of M. ruber
suggest thatM. ruber has access to a not insignificant amount
of carbon excreted by still living and metabolically active T.
elongatus.

While functional gene association and correlative lin-
kages within the inter-species CLR network are reflective of
specific interactions, they can also point to mechanisms of
co-regulation and/or co-acclimation to growth in the pre-
sence of a partner. In particular, this is reflected in the large
diversity of T. elongatus genes with high degree values in
the cross-species network. For instance, T. elongatus pho-
tosystem genes also had a large number of negative edges
with energy metabolism genes of M. ruber, specifically
NADH dehydrogenase genes (nuoG, ndh, nuoD, nuoC;
SY28_RS08610, SY28_RS13475, SY28_RS13910,
SY28_RS13915) and positive edges with ribosomal protein
genes (rplM, rplE; SY28_RS06500, SY28_RS06635).

Network analysis of M. ruber and T. elongatus also
allowed us to further the outcomes of our previous study
[27], which identified instances of metabolic cross-talk and
coordination between the species from clusters of co-
expressed genes. For instance, while sugar synthesis genes
of T. elongatus were generally co-clustered with carbon
uptake and metabolism genes of M. ruber, the network
analysis identified gene-specific linkages (rather than
broad clusters of genes) between these two organisms
(Fig. 4b) which included uncharacterized genes of M.
ruber (SY28_RS04830 and SY28_RS05160) that have a
number of links to sugar synthesis genes of T. elongatus.
The network linkages also point to a putative role for these
M. ruber genes in sugar synthesis or uptake (collecting
sugars after they have been synthesized by T. elongatus), a
new observation as currently there is nothing known
regarding the function of these proteins. Furthermore,
while the clustering analysis grouped T. elongatus
B12 synthesis with M. ruber B12 scavenging genes [27],
the network analysis identified a specific edge between
cobQ of T. elongatus and btuF of M. ruber. The network
approach also allowed us to link metH from M. ruber with
several T. elongatus genes of various functions (pglS,
petL, accD, fabI, tnpA_ISTel2, ycf50, mrcB, era), pointing
to potentially new interactions among these organisms
driven by B12 metabolism. Finally, network inference
allowed us to identify gene-specific interactions facilitat-
ing the exchange of organic nitrogen in the co-culture. As
M. ruber lacks the ability to use nitrate and depends on T.
elongatus to provide fixed organic nitrogen, the nitrogen
and amino acid metabolism genes of M. ruber were found
in same clusters as amino acid synthesis genes of T.
elongatus. Network analysis not only identified edges
between specific genes and pathways but also provided
specific hypotheses regarding the metabolic co-regulation
between the cyanobacterium and the heterotroph. Specifi-
cally, the negative correlation of ammonium uptake genes
of M. ruber (amt, SY28_RS01750) with amino acid
synthesis genes of T. elongatus (aguA, aguB, thrCII) seen
in the current study suggested that amino acids may be a
source of organic nitrogen for M. ruber.

Metabolic dependency of M. ruber on T. elongatus
revealed by gene co-expression network analysis in this
work is also well supported by the FBA results reported by
Henry et al. [28] carried out on the same dataset. However,
much like the clustering analysis above we also identify
new instances of interaction in our network study that were
absent in the FBA analysis. In an autotrophic growth
medium, for example, the FBA model predicted the T.
elongatus’ provision of amino acids such as proline, leu-
cine, histidine, and glycine, and isoleucine. The network
presented here identifies a positive edge between a branched
amino acid uptake gene of M. ruber (livF; SY28_RS00355)
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and an isoleucine synthesis gene of T. elongatus (leuC;
tlr0909). In addition, another peptide uptake gene of M.
ruber (SY28_RS06075) has a positive edge with a proline
synthesis gene of T. elongatus (proA; tlr0764). The meta-
bolic model also predicted the provision of cofactors
involved in energy generation such as NADP+ , a pre-
cursor of NAD+ (i.e., nicotinamide mononucleotide or
NMN). This gene association network presented here also
predicts several edges between NAM salvage genes of M.
ruber (pncB, nrtR, pnuC; SY28_RS02380,
SY28_RS02390, SY28_RS02375) and central metabolic
genes of T. elongatus. In addition, citrate (an intermediate in
the TCA cycle, which also contributes to energy generation,
as well as a source of organic nitrogen) was predicted by the
FBA model to be provided by T. elongatus and the gene co-
expression network identifies links between citrate meta-
bolism genes of T. elongatus (fumC, gltA; tll1534, tlr2393)
and genes of M. ruber. Finally, there were certain meta-
bolites such as vitamin B12 (i.e., cobalamin) that
are believed to be provided from T. elongatus to M. ruber,
but was not predicted by the FBA model. This gap might be
caused by incomplete reconstruction of metabolic pathways
involved in B12 synthesis and transport in the community
network model and might be resolved in principle by further
network refinement. In contrast, the gene co-expression
network analysis in this work was able to correctly predict
the B12-associated metabolism between the two species by
identifying putative B12 scavenging proteins in M. ruber to
be inversely correlated to B12 biosynthesis genes in T.
elongatus. This prediction can serve as a new observation
that can be incorporated back into metabolic network
refinement for improved FBA predictions. In addition,
neither the FBA model, nor the earlier clustering study by
Bernstein, et. al., predicted interactions between genes
synthesizing terpenoids and polyketides of either species,
while the gene co-expression network highlighted both of
these processes as highly important in a cross-species net-
work. This emphasizes that a mutual information network
approach is critical for analyzing interactions in systems
with poorly annotated metabolism and/or where genome
reconstructions are not yet available. Gene co-expression
networks can also act as crucial companion datasets to FBA
analyses as both approaches identify putative interactions
that might be missed by the other. Furthermore, the ability
to infer interactions in multi-species system demonstrates
the potential of this approach to uncover new structure-
function relationships in environmental, plant, and human
microbiomes. In that regard the ability to incorporate
dynamic data from multiple time points can significantly
expand the utility of the multi-species network approach
and provide high-level view of how interactions change as a
function of external inputs and shifts in environment
variables.

Conclusions

Microbial communities are important drivers of ecology and
understanding the interactions and coordination between
species in them is crucial to understanding ecosystems.
These studies demonstrate how network inference can be
used to highlight potential points of interaction and
exchange of nutrients between phototrophic and hetero-
trophic species growing in co-culture (Fig. 5). Specific
genes involved with carbon and nitrogen reduction and
acquisition in both species are significantly co-expressed,
identifying where these exchanges and interactions might be
taking place at the single gene level. These experiments are
among the first to build a co-expression network linking
genes across species in a phototroph-heterotroph system
and the knowledge gained will be critical not only in
understanding interactions specific to these two species but
also in building paradigms that describe fundamental
coordination of metabolism and exchange of nutrients that
are common to a large number of bacterial communities.

Availability of data and materials

All transcriptome data generated in the current study have
been deposited into GEO (Accession: GSE113134).
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