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Abstract
The mechanisms by which obesity increases cancer risk are unclear, but some lines of evidence suggest that gut microbial
communities (GMC) may contribute to chronic inflammation in obese individuals through raised systemic levels of
lipopolysaccharides (LPS). We evaluated associations of the GMC in stool with plasma LPS-binding protein (LBP, a
measure of LPS) and C-reactive protein (CRP) concentrations in 110 premenopausal women in the United States. Diet was
assessed using 3-day food records and GMCs were evaluated using pyrosequencing of the 16S rRNA gene. OTUs were
identified at 97% sequence similarity. Taxonomic classification and functional genes were imputed from 16S rRNA genes,
and alpha and beta diversity were assessed using the Shannon index and MRPP, respectively. Multivariable linear regression
analysis was used to assess the relation between LBP, specific bacterial genera identified with indicator species analysis, and
CRP. Dietary fat intake, particularly saturated fat, and CRP were positively associated with increased LBP. GMC beta
diversity, but not alpha diversity, was statistically significantly different between groups using unweighted Unifrac. Several
taxa, particularly those in the Clostridia class, were more prevalent in women with low LBP, while Bacteroides were more
prevalent in those with high LBP. Genes associated with gram-negative cell wall material synthesis were also associated
with LBP and CRP. In contrast, Phascolarctobacterium was associated with lower concentrations of LBP and CRP. We
found distinct differences between tertiles of LBP regarding the diversity and composition of the microbiome, as well as
differences in functional genes that potentially activate LBP.

Introduction

Current evidence suggests a possible role of gut microbiota
in the pathogenesis of obesity and its concomitant diseases,
including several cancers [1–3]. Obesity, especially adip-
osity, is associated with systemic microinflammation (i.e.,
chronic low-grade inflammation) [1]. Furthermore, adipo-
cytes and macrophages infiltrating visceral adipose tissue in

obese individuals are a source of circulating pro-
inflammatory cytokines, such as TNF-α, IL-1, and IL-6
[1, 4, 5]. More recently, research has suggested that an
alteration in gut microbial communities (GMC) escalates
systemic microinflammation, at least in obese individuals
[6].

Lipopolysaccharide (LPS), a cell wall component of
gram-negative bacteria, has been identified as an underlying
factor of obesity-driven low-grade inflammation [7].
Lipopolysaccharide-binding protein (LBP), a protein that
binds to LPS and transfers LPS monomers to CD14, is
driven by circulating concentrations of LPS [8]. Exposure to
LPS induces an increase of LBP production in the liver
within 15–30 min [9], with a maximum serum level
occurring after 24–48 h [10]. The LPS-LBP-CD14-MD2
complex elicits a pro-inflammatory response by Toll-like
receptor 4 (TLR4)-mediated NF-κB activation [11], and, as
such, circulating levels of LBP have been found to be
associated with systemic inflammation [12]. C-reactive
protein (CRP), a biomarker of inflammation, is associated
with increased LPS [13].
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Recent studies have shown that LBP, a marker of LPS
exposure, is associated with high-fat diets and obesity [7,
14–17]; however, relatively few studies have examined
whether LBP levels vary by GMC distribution and adip-
osity. Previous reports have shown a strong association
between concentrations of circulating LBP, obesity-
associated metabolic disturbances, and increased inflam-
matory signaling [7, 18, 19]. Moreover, LPS-driven
inflammation may play a role in the pathogenesis of sev-
eral adverse outcomes, including inflammatory bowel dis-
ease [20–22] and cancer [23, 24]. Nonetheless, the interplay
between obesity, GMC, LBP, and inflammation has yet to
be elucidated. The goal of the proposed study was to
examine whether GMC varies by LBP concentrations,
whether there are specific genera associated with varying
levels of LBP, and whether these genera are associated with
inflammation, as measured by CRP concentrations.

Methods

Study participants

Participants were from the Equol, Breast and Bone (EBB)
study, which was designed to evaluate the relationship
between bacterial metabolic phenotypes, diet, and other
exposures, and biomarkers of sex steroid hormone status,
has been previously described [25]. Briefly, participants in
the EBB study were recruited from the Group Health
Cooperative (GHC), a large mixed-model health care sys-
tem in Washington State. Women were eligible if they were
premenopausal, aged 40–45 years, and had received a
screening mammogram at GHC prior to recruitment.
Women were ineligible to participate if they were allergic to
soy beans or soy protein; had been diagnosed with Crohn’s
disease or ulcerative colitis or had any part of their colon
removed; had been diagnosed with breast cancer; were
pregnant or planning to become pregnant; had a hyster-
ectomy or any part of their ovaries removed; were peri-
menopausal (skipped ≥1 periods in the previous 12 months,
or had irregular bleeding patterns); were currently using
hormone therapy or oral contraceptive, had used them for
≥1 month in the past 12 months, or had used them in the
6 months before their screening mammogram; were cur-
rently taking antibiotics or had taken them for ≥1 month in
the previous 12 months; or had ever taken tamoxifen or
were currently taking raloxifene, bisphosphonates, or oral
steroids.

After obtaining informed consent, EBB participants were
mailed a health and demographics questionnaire and a
physical activity questionnaire, to be completed prior to
their clinic visit. At the clinic visit, weight and height were
measured as well as body fat distribution (adiposity %),

which was assessed using dual energy X-ray absorptiometry
(DXA; Hologic Delphi, Hologic Inc.). Participants also
provided a 12 h fasting blood sample at the clinic visit. All
samples were processed within 1 h of collection, aliquoted
into 1.8-ml tubes, and stored at –70 °C. Date, time of col-
lection, and time since last meal were recorded. Stool
sample collection was optional. Study participants were
asked to place a sample in RNAlater and samples were
stored at −80 °C when received by the lab, as previously
described [26, 27]. Additionally, all participants were asked
to complete a 3-day food record (3DFR) within 2 weeks of
the clinic visit.

A total of 1407 women were identified as potential
participants from the Group Health Breast Cancer Screening
Program. Of these women, 367 (26%) were found to be
ineligible, 691 (49%) refused participation, and 146 (10%)
were not able to be interviewed or scheduled for a clinic
visit. Of the 203 EBB study participants, 110 completed a
health questionnaire, provided stool and blood samples, and
had body fat % measured from a DXA scan.

Biological specimens

LBP concentrations were measured in plasma using a
commercial ELISA kit (Cell Sciences Inc): samples were
diluted 1:1000 and the assay was conducted per kit protocol
with a standard curve of 5–50 ng/mL. Serum CRP was
measured using CRP Ultra Wide Range reagent (Genzyme
Diagnostics) on a Roche Cobas Mira chemistry analyzer
and read at 570 nm. Samples were run in duplicate, and the
mean duplicate intra-assay coefficients of variation (CV)
were: 4.7% for LBP and 4.1% for CRP. A blinded and
pooled plasma sample was included in each batch to track
plate-to-plate variation. The inter-batch CV was 12.5% for
LBP and the assay was conducted on once-thawed samples.

Microbiome bioinformatics analysis

DNA extraction and 16S rRNA gene sequencing methods
used on EBB samples have been previously described [26].
Briefly, DNA was extracted from stool that had been stored
in RNAlater. The V1–V3 region of the 16S rRNA gene was
amplified and sequenced using 454 pyrosequencing primers
27f and 519r. Sequences were compiled and processed
using QIIME (v.1.8) [28]. Sequences were removed if they
were <200 bp or >700 bp, had homopolymers >6 bp, more
than one mismatch to the forward primer, more than one
mismatch to the barcode, or more than six ambiguous bases.
Sequences were truncated with a quality score sliding
window of size 50 bp using a threshold of 25. Initial
operational taxonomic unit (OTU) generation, wherein
microorganisms were grouped by DNA sequence similarity
of a specific taxonomic marker gene, was done using
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UCLUST in QIIME at 97% similarity [29]. The OTU
table was filtered using the QIIME script filter_otus_-
from_otu_table.py with --min_count_fraction set to 0.00005
as recommended in Navas-Molina et al. [30]. An additional
filtering step set entries in the OTU table to zero if the
number of observations was less than 10 per sample, per
OTU. Additional OTU entries were filtered out if they were
detected as chimeras using QIIME’s identify_chimer-
ic_seqs.py script with method blast_fragments. Sequences
were aligned to the Silva 16S rRNA gene reference align-
ment using the NAST algorithm [31]. Sequences that did
not align to the appropriate 16S rRNA gene region were
removed. The sequences were classified using MOTHUR’s
naive Bayesian Classifier trained against the SILVA data-
base (release 111) clustered at the 97% similarity level [32].
Classified sequences were assigned to phylum and genus-
level phylotypes to characterize the community structure.
Rarefaction was performed as uneven sampling depth biases
alpha (within-person) and beta (between-person) diversity
estimates. Two participants were dropped after OTUs were
rarefied to 1578 sequences per sample.

Analysis of GMC functional profiles

Profiling phylogenetic marker genes, such as the 16S rRNA
gene (as outlined above), are needed to understand the
distribution of microbial communities, but does not provide
direct evidence of a GMC’s functional capabilities. We used
PICRUSt [33] to predict the metagenomic contribution of
genes whose products may influence LBP activation
namely, LPS biosynthesis and lipoteichoic acid (LTA)
biosynthesis (a marker of gram-positive bacteria) in our
study population. PICRUSt has been utilized previously to
describe differences in potential function within human
samples and positively corresponds to actual metagenomic
and metabolic comparisons [33].

Statistical analysis

Differences in baseline characteristics (age, education,
dietary variables, physical activity, body fat, and CRP) were
calculated using ANOVA. Diversity of the microbial com-
munity within an individual (alpha diversity) was calculated
from OTUs (at 3% divergence) using the Shannon index.
Differences in phylum, functional genes, and Shannon
index values between tertiles of LBP were calculated using
ANOVA. Beta diversity estimates that represent the simi-
larity (or difference) in organismal composition between
subjects were based on weighted and unweighted UniFrac
distance matrices [34]. Unweighted UniFrac estimates the
presence or absence of OTUs between individuals while
weighted UniFrac is a quantitative measure based on rela-
tive abundance of OTUs between individuals. Given that

these metrics may be viewed as complementary approaches
that explore different aspects of how communities vary
between individuals, both weighted and unweighted Unifrac
matrices were used in the analysis.

Multiple response permutation procedure (MRPP) [35]
was conducted to test whether the GMC composition dif-
fered between tertiles of LBP. MRPP was performed with
1000 permutations on weighted and unweighted UniFrac
distance matrices. Differences in the GMC by tertiles of
LBP concentration were visualized by NMS ordination
plots.

Indicator species analysis (ISA) [36] complemented
MRPP by assigning significant indicator values to bacteria
taxa (at the genera level) that were indicative of community
structure separation between LBP tertiles. To adjust for
differences in per-subject sampling frequency, P values
were averaged over 1000 bootstrap iterations with even per-
subject sampling frequency. Bootstrapped P values were
adjusted for FDR using the Benjamini and Hochberg (B–H)
method [37] based on the total number of taxa after
excluding those that represented <1% average relative
abundance.

The Kruskal Wallis (K–W) tests were used to assess
whether phyla and abundance of functional genes (lipopo-
lysaccharide biosynthesis and LTA synthesis) differed by
tertile of LBP.

To test the association between LBP and inflammation, a
binary CRP value was created to represent CRP con-
centrations >1 mg/L vs. ≤1 mg/L. The cutoff value of 1 mg/
L was based on clinical guidelines [38] and previous studies
[39]. Unconditional logistic regression was used to compute
odds ratios (ORs) and 95% confidence intervals (CIs) for
the relationship between LBP, the exposure variable, and
CRP, the outcome variable. Additional adjustment for a
priori confounders (smoking status and age) was performed
in the multivariable model.

Additionally, regression models adjusting for smoking
status and age were run to test the association between taxa
identified in the ISA analysis (categorized into tertiles) and
circulating CRP (dichotomized as (>1 mg/L and ≤1 mg/L).
Rare taxa, those that were present in less than half the
population, were not included in the analysis.

All reported P values are two-sided, and a P value <0.05
was considered statistically significant. All analyses were
carried out using STATA 14 (StataCorp, College Station,
TX), QIIME [40], R version 3.3.1 (http://www.r-project.
org), vegan [41], ggplot2 [42], and labdsv [43].

Results

Characteristics of the study population and macronutrient
intakes by tertiles of LBP concentrations are shown in
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Table 1. No substantial differences in ethnicity, education,
smoking history, age, and dietary fiber intake were observed
across tertiles. CRP was statistically significantly different
between tertiles of LBP (P= 0.002), with higher tertiles
corresponding to higher CRP values. Compared to those in
the lowest tertile, those in the highest tertile of LBP had a
higher total fat intake, saturated fat intake, and % body fat,
although these differences were not statistically significant.

Bacteria were distributed across phyla: Actinobacteria
(0.2%), Bacteroidetes (30.4%), Cyanobacteria (0.03%),
Firmicutes (67.7%), Lentispharae (0.06%), Proteobacteria
(1.2%), and Tenericutes (0.4%), and Verrucomicrobia

(0.03%) (Table 2). Firmicutes decreased while Bacter-
oidetes increased with LBP concentration although these
differences were not statistically significant. Additionally,
the relative abundance of Actinobacteria was statistically
significantly different between the three LBP groups (P=
0.03). Moreover, imputed genes for LPS biosynthesis were
statistically significantly different by tertiles of LBP (tertile
1: 254.8, tertile 2: 287.6, tertile 3: 339; P< 0.0001).
However, genes in the LTA biosynthesis pathway were not
statistically significantly different between groups.

The bacterial alpha diversity measured by the Shannon
index was not significantly different between tertiles of

Table 1 Selected baseline characteristics of EBB participants by LBP tertile

Tertile 1
(0–14.9 µg/
mL)

Tertile 2
(15.0–22.1 µg/mL)

Tertile 3
(22.4–94.7 µg/mL)

P for difference
between groups*

n= 36 n= 37 n= 37

Age, years 42.34 (1.3) 42.54 (1.4) 42.33 (1.4) 0.82

Ethnicity 0.17

White 34 (97.1%) 30 (83.3%) 34 (94.4%)

Asian 0 (0.0%) 3 (8.3%) 1 (2.8%)

Other 1 (2.9%) 3 (8.3%) 1 (2.8%)

Education 0.54

≤12 years 0 (0.0%) 3 (9.1%) 2 (6.3%)

13–15 years 9 (27.3%) 6 (18.2%) 10 (31.3%)

16 years 10 (30.3%) 10 (30.3%) 10 (31.3%)

17+ years 14 (42.4%) 14 (42.4%) 10 (31.3%)

Energy intake (kcal/
day)

1899 (343) 1,871 (446) 2,020 (437) 0.27

Protein (g/day) 78.3 (19.2) 76.4 (17.7) 79.1 (18.8) 0.82

Carbohydrate (g/day) 231.5 (62.6) 228.1 (64.9) 239.9 (61.7) 0.71

Total fat (g/day) 71.9 (18.0) 71.7 (22.3) 81.2 (24.9) 0.11

% Energy from fat 34.4 (8.3) 34.2 (6.1) 35.5 (6.6) 0.73

Saturated fat (g/day) 24.4 (7.9) 25.4 (3.8) 29.0 (10.8) 0.10

Dietary fiber (g/day) 21.1 (7.9) 19.3 (7.3) 21.1 (8.2) 0.54

Soluble fiber (g/day) 5.3 (2.0) 5.0 (2.1) 5.6 (2.4) 0.72

Insoluble fiber (g/day) 15.6 (6.1) 14.1 (5.5) 15.3 (6.4) 0.66

Alcohol (g/day) 8.3 (12.3) 7.2 (10.5) 8.8 (13.4) 0.49

History of smoking 0.88

Yes 12 (34.3%) 11 (30.6%) 13 (36.1%)

No 23 (65.7%) 25 (69.4%) 23 (63.9%)

Physical activity
(METS/year)

79.52 (44.9) 105.06 (67.01) 95.92 (73.87) 0.63

Percent body fat
(tertiles)

0.18

0 (<29.4%) 15 (45.5%) 12 (36.4%) 7 (21.9%)

1 (29.5–37.3%) 11 (33.3%) 8 (24.2%) 12 (37.5%)

2 (>37.3%) 7 (21.2%) 13 (39.4%) 13 (40.6%)

CRP (mg/L) 0.95 (1.4) 1.4 (2.26) 2.9 (3.8) 0.002

*P value calculated using ANOVA
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plasma LBP (tertile 1: 4.58; tertile 2: 4.46; tertile 3: 4.66,
ANOVA, F= 0.3356, n= 110, P= 0.71; Table 2). Beta
diversity was significantly different between tertiles of LBP
using unweighted Unifrac (MRPP; A= 0.005, P= 0.027,
1000 permutations), but no difference between tertiles of
LBP was observed using weighted Unifrac (MRPP; A=
0.0002919, P= 0.20; 1000 permutations; figure not
included).

Using indicator species analysis (ISA), we found that 16
bacterial OTUs were associated with LBP. Of these, 14
phylotypes were “indicators” of low levels of LBP con-
centrations, and two were indicators for the highest tertile of
LBP (Table 3). Uncultured Christensenellaceae and
unclassified Ruminococcaceae showed the highest indicator
values for low LBP, while Bacteroides was the strongest
indicator for high LBP.

In the unadjusted model, LBP was statistically sig-
nificantly associated with CRP > 1 mg/L (Ptrend= 0.02) and
the OR among those in the third tertile for LBP (22.2–94.7
µg/mL) was statistically significantly higher than that in the
lowest tertile (OR= 2.98; 95% CI= 1.14–7.80). However,
in the adjusted model, there was no observed association
among those in the highest (third) LBP quartile (OR= 2.09;
95% CI= 0.76–5.80) and the test for trend was not statis-
tically significant (Ptrend= 0.15). In both the crude and the
adjusted model, the association between Bacteroides and

CRP >1 mg/L increased across tertiles of Bacteroides, with
a non-statistically significant trend observed across the three
groups (Ptrend= 0.08).

Compared to no Phascolarctobacterium present (first
tertile), high levels of Phascolarctobacterium (third tertile)
were statistically significantly associated with CRP ≤ 1 mg/
L (OR= 0.30, 95% CI: 0.11–0.81); with a monotonic trend
observed across the three groups (Ptrend= 0.02) in the
adjusted model (Table 4). For the remaining genera, overall
bacteria levels were not statistically significantly associated
with CRP >1 mg/L in either the crude or the multivariable
adjusted models.

Discussion

Microbial mechanisms have been linked to inflammation
that may be associated with increased risk for cancer
and other chronic diseases. One such pathway is through
dietary-related shifts in the gut microbiome linked to
activation of the innate immune response. In this cross-
sectional study, we found distinct differences in the
diversity, and composition of the stool microbiome and
some potential functional pathways for synthesis of
cell wall material in gram-negative and gram-positive
bacteria between tertiles of LBP. Furthermore, study
results showed that differences in bacterial genera that
potentially activate LBP were associated with increased
inflammation.

Diets, particularly high-fat diets, may contribute to the
microbiome–inflammation relationship [44, 45]. In this
study of premenopausal women, we found a non-
statistically significant positive association between
increasing tertiles of circulating LBP and dietary fat intake.
Mechanisms associated with a higher systemic LPS load
and increased LBP response include (1) increased translo-
cation of LPS via chylomicron uptake and/or (2) increased
intestinal permeability associated with diet [6, 46, 47]. A
cross-sectional study of healthy men aged 45–64 years,
observed that fat intake was significantly associated with
increased endotoxin load [48] while other studies have
found that high fat/high carbohydrate foods increase LPS
load, thus suggesting that diet may influence circulating
levels of LPS concentrations [7, 49, 50].

Changes in diet leading to changes in inflammation have
been associated with shifts in microbial community struc-
ture [51, 52]. Our results extend these findings by showing
that the overall composition and functional genes associated
with gram-negative cell wall synthesis were associated with
higher levels of LBP. We found that the overall gut
microbiome composition in individuals with higher circu-
lating concentrations of LBP was different from those with
lower levels using unweighted Unifrac, but these findings

Table 2 GMC distribution of EBB participants by LBP tertile

Tertile 1 Tertile 2 Tertile 3 P for
difference
between
groupsa

n= 36 n= 37 n= 37

Phylum (%)

Actinobacteria 0.1 0.22 0.27 0.03

Bacteroidetes 34.6 27.0 29.6 0.14

Cyanobacteria 0.0 0.07 0.005 0.36

Firmicutes 63.8 70.9 68.3 0.16

Lentispharae 0.05 0.08 0.04 0.98

Proteobacteria 1.2 1.2 1.2 0.51

Tenericutes 0.2 0.6 0.5 0.25

Verrucomicrobia 0.02 0.03 0.03 0.77

Other 0.007 0.0 0.004 0.36

Functional genes

Lipopolysaccharide
synthesis

254.8 287.6 339.0 <0.0001

LTA synthesis 210 290.7 305.2 0.08

Alpha diversity

Shannon index 4.58 4.46 4.66 0.71*

aBased on K–W test

*P value calculated using ANOVA
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were not observed using weighted Unifrac. The discrepancy
in results suggest that there may be differences in rarer taxa
between tertiles of LBP, as unweighted Unifrac is sensitive
to rarer taxa while weighted Unifrac is less influenced by
these taxa [53].

Further analysis revealed that several taxa, particularly
those found in the gram-positive Clostridia class, may be
more prevalent with low levels of LBP while Bacteroides
may be more prevalent with high levels of LBP. In the
lowest tertile, the highest indicator value belonged to the
gram-positive Christensenellaceae genus, which has been
found to be more abundant in lean individuals [54]. Animal
models have also shown that transplantation of Chris-
tensenellaceae into germ-free mice protected against weight
gain [55]. Christensenellaceae, one of the most heritable
members of the microbiome, has also been inversely asso-
ciated with obesity in other animal and human studies [56,
57]. Thus, findings suggest that the association between
LBP and obesity, may, in part, be driven by the genera (or
lack thereof) associated with higher LBP concentrations.
Alternatively, the highest indicator value in the highest
tertile of LBP was Bacteroides, a gram-negative genus
which has been associated with both obesity and inflam-
matory bowel disease in previous studies [58, 59]. Taken
together, these findings point to an association between
increased levels of bacteria associated with obesity and
inflammation, and increased levels of circulating LBP,
supporting the hypothesis that changes in dietary patterns
may lead to shifts in the gut microbiome, subsequently
leading to obesity and inflammation.

In addition to differences in genera present by LBP, we
also observed functional differences in GMC that may be
associated with LBP concentrations. LPS biosynthesis,
based on pathway genes identified in KEGG, was statisti-
cally significantly different by tertiles of LBP. These find-
ings support the hypothesis that the GMC associated
with chronic low-grade inflammation may, in part, be
driven by gene differences, which can be detected as
differences circulating LBP. Alternatively, we did not
observe any differences in LTA synthesis genes across LBP
tertiles. While previous studies have shown that activation
of cellular responses by LTA, a cell wall component of
gram-positive bacteria, is enhanced by LBP [60, 61], no
previous studies have examined the association between
LTA genes and circulating LBP levels; current study results
suggest that the functional potential of genes-related LTA
synthesis is not associated with those responsible for LPS
synthesis.

The LPS-LBP-CD14-MD2 complex elicits a pro-
inflammatory response by TLR4-mediated NF-κB activa-
tion [11], and, as such, circulating levels of LBP have been
found to be associated with systemic inflammation [12].
CRP, a biomarker of inflammation, has also been shown to
be associated with increased LPS [13]. Consistent with
previous studies that have observed an association between
LBP and inflammation [14, 62], our study showed that LBP
concentrations were associated with inflammation (as
measured by CRP), but only adding covariates to the model.
Failure to observe an association in the multivariable model
may be due to mediation effects of LBP on the association

Table 3 Indicator species analysis – genus level

LBP tertile Indicator value Corrected P value*

Firmicutes.__Clostridia.__Clostridiales.__Christensenellaceae.__uncultured 1 0.5824 0.008

Firmicutes.__Clostridia.__Clostridiales.__Ruminococcaceae.Other 1 0.5619 0.008

Firmicutes.__Clostridia.__Clostridiales.__Ruminococcaceae.__uncultured 1 0.5067 0.008

Firmicutes.__Clostridia.__Clostridiales.__Ruminococcaceae.__Subdoligranulum 1 0.4519 0.04

Firmicutes.__Clostridia.__Clostridiales.__Ruminococcaceae.__Incertae_Sedis._human gut
metagenome

1 0.4494 0.04

Firmicutes.__Clostridia.__Clostridiales.__Veillonellaceae.__Phascolarctobacterium 1 0.4322 0.008

Firmicutes.__Clostridia.__Clostridiales.__Ruminococcaceae.__Ruminococcus 1 0.4032 0.04

Tenericutes.__Mollicutes.__RF9.__uncultured_bacterium.Other 1 0.3925 0.008

Bacteroidetes.__Bacteroidia.__Bacteroidales.__ Porphyromonadaceae.__Barnesiella 1 0.3711 0.01

Firmicutes.__Clostridia.__Clostridiales.__uncultured.__uncultured_bacterium 1 0.3529 0.008

Firmicutes.__Clostridia.__Clostridiales.__Ruminococcaceae.__Anaerotruncus 1 0.3510 0.008

Firmicutes.__Clostridia.__Clostridiales.__Ruminococcaceae.__Oscillibacter 1 0.3329 0.04

Tenericutes.__Mollicutes.__RF9.Other.Other 1 0.3056 0.01

Firmicutes.__Clostridia.__Clostridiales.__uncultured.__uncultured.Other 1 0.2102 0.04

Bacteroidetes.__Bacteroidia.__Bacteroidales.__Bacteroidaceae.__Bacteroides 3 0.4713 0.02

Bacteria.__Firmicutes.__Clostridia.__Clostridiales.__Lachnospiraceae.__Moryella 3 0.1351 0.04

*Benjamini–Hochberg corrected P value
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Table 4 Estimated odds ratios (OR) of CRP associated with the microbiome

Microbiome
measurement
(tertiles)

Range N OR OR

No adjustment Multivariate
adjusteda

LBP tertiles

1 6.8–14.9 µg/mL 36 Ref. Ref.

2 15.0–22.1 µg/mL 37 0.96 (0.35–2.61) 0.95 (0.34–2.67)

3 22.2–94.7 µg/mL 37 2.98 (1.14–7.80) 2.09 (0.76–5.80)

Ptrend 0.02 Ptrend 0.15

Bacteroidaceae_Bacteroides

1 0.009–0.117 37 Ref. Ref.

2 0.118–0.216 37 2.05 (0.78–5.45) 2.21 (0.78–6.20)

3 0.234–0.562 36 2.41 (0.91–6.41) 2.52 (0.90–7.10)

Ptrend 0.08 Ptrend 0.08

Clostridiales_Christensenellaceae_uncultured

1 0–0.004 37 Ref. Ref.

2 0.0041–0.049 37 0.80 (0.32–2.02) 0.84 (0.32–2.20)

3 0.52–0.25 36 0.74 (0.29–1.90) 0.96 (0.35–2.61)

Ptrend 0.53 Ptrend 0.92

Ruminococcacae _Ruminococcus

1 0–0.002 37 Ref. Ref.

2 0.0021–0.0125 37 0.63 (0.24–1.62) 0.70 (0.26–1.89)

3 0.0125–0.063 36 0.94 (0.37–2.37) 1.23 (0.45–3.31)

Ptrend 0.88 Ptrend 0.70

Ruminococcacae.Other

1 0.002–0.145 37 Ref. Ref.

2 0.149–0.038 37 1.31 (0.52–3.34) 1.49 (0.55–4.04)

3 0.039–0.147 36 0.89 (0.35–2.29) 0.84 (0.31–2.29)

Ptrend 0.81 Ptrend 0.76

Ruminococcaceae_Incertae Sedis_human gut metagenome

1 0–0.007 46 Ref. Ref.

2 0.0009–0.008 28 2.63 (0.99–6.97) 2.94(1.02–8.42)

3 0.0081–0.14 36 1.45 (0.58–3.64) 1.50 (0.57–3.89)

Ptrend 0.38 Ptrend 0.37

Ruminococcaceae__Oscillibacter

1 0 57 Ref. Ref.

2 0.0008–0.004 17 1.66 (0.56–4.94) 1.59 (0.50–5.01)

3 0.0041–0.41 36 0.65 (0.27–1.58) 0.54 (0.21–1.38)

Ptrend 0.41 Ptrend 0.24

Ruminococcaceae__Subdoligranulum

1 0–0.0095 37 Ref. Ref.

2 0.0096–0.021 37 1.26 (0.49–3.30) 1.31 (0.47–3.60)

3 0.022–0.14 36 1.86 (0.72–4.82) 1.92 (0.71–5.21)

Ptrend 0.20 Ptrend 0.20

Ruminococcaceae__Uncultured

1 0–0.008 37 Ref. Ref.

2 0.005–0.025 37 1.12 (0.44–2.82) 1.25 (0.47–3.35)

3 0.027–0.13 36 0.73 (0.28–1.90) 0.84 (0.31–2.31)

Ptrend 0.53 Ptrend 0.75
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between the covariates and CRP, confounding, or the small
sample size.

Phascolarctobacterium, a gram-positive bacterium in the
Negativicutes class, was associated with both low LBP
concentrations and with low CRP concentrations in our
study. Additionally, we found that LBP was associated with
a higher dietary fat intake, but not with dietary fiber or
carbohydrate intakes. Interestingly, Phascolarctobacterium
ferments carbohydrates to the short-chain fatty acid pro-
pionate [63], a bacterial metabolite that has anti-lipogenic,
cholesterol-lowering, anti-inflammatory, and anti-
carcinogenic properties [64, 65]. Propionate has been
associated with increased satiety, which may be associated
with reduced inflammation [66]. These findings comple-
ment prior studies, which have shown that Phascolarcto-
bacterium is associated with cruciferous vegetable intake
[67] and is significantly reduced in individuals with
inflammatory bowel disease [68, 69]. Thus, findings from
the current study suggest that LBP is associated with CRP,
perhaps through a decrease in gram-positive bacteria that
may be associated with reduced inflammation.

Strengths of the study include the use of a well-described
population of premenopausal women and stringent exclu-
sion criteria, which removed factors that could potentially
influence GMC (e.g., antibiotic and other medication use).
Additionally, careful assessment of diet using a 3DFR,
rather than a FFQ, reduced the potential for measurement
error due to poor recall.

Limitations of our study, beyond the sample size, are the
cross-sectional design, and lack of metagenomics data to
assess functional genes. The study design cannot measure
temporal relationships, and as such, prospective studies are
needed to assess whether changes in GMC lead to changes
in inflammation. The annotations used in KEGG suggest the
functional potential of the community, but the presence of

these genes/functions does not mean that they are biologi-
cally active (i.e., they may not be transcribed). However, in
the current study, an increase in LPS biosynthesis was
observed in conjunction with an increase in the gram-
negative genera Bacteroides, suggesting that the annota-
tions using KEGG captured the functional gene presence.
Forward primer selection may also have influenced results,
as previous study has shown that Actinobacteria and Bifi-
dobacterium abundances were underestimated when using
the 27f primer [70].

In addition, timing between diet and stool collection may
have influenced results as 3DFR were collected within
2 weeks of stool sample collection. While ideally diet and
stool samples would be collected at the same time, as
changes in dietary patterns can change microbial commu-
nities in less than a week [71], a study by Wu et al. found
that short-term dietary changes were modest and did not
impact enterotype partitioning established through long-
term dietary patterns [72]. Furthermore, while the study
presents novel findings based on ISA, independent repli-
cation is required as these associations were not established
a priori. Results may have been due to chance, given that
many taxa were examined, although p values were corrected
for multiple testing. Similarly, findings related to ISA
genera and CRP may have been due to chance, given the
exploratory nature of the analysis and subsequent number of
regression models run. Furthermore, given that the study
was conducted among premenopausal women, results may
not be generalizable to the overall population.

The current study found that the GMC differs in relation
to plasma LBP concentrations and the association between
LBP and CRP may be due to the presence of certain LPS-
producing bacteria that increase LBP concentrations. Our
findings point to an association between increased levels of
bacteria associated with obesity and inflammation, and

Table 4 (continued)

Microbiome
measurement
(tertiles)

Range N OR OR

No adjustment Multivariate
adjusteda

Veillonellaceae__Phascolarctobacterium

1 0 49 Ref. Ref.

2 0.001–0.006 25 0.69 (0.26–1.84) 0.69 (0.24–1.94)

3 0.0061–0.026 36 0.35 (0.14–0.89) 0.30 (0.11–0.81)

Ptrend 0.03 Ptrend 0.02

Porphyromonadaceae_Barnesiella

1 0 50 Ref. Ref.

2 0.001–0.0046 24 0.98 (0.37–2.64) 0.97 (0.34–2.8)

3 0.0047–0.04 36 0.69 (0.28–1.68) 0.54 (0.21–1.40)

Ptrend 0.43 Ptrend 0.22

aAdjusted for age, physical activity, and smoking history
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increased levels of circulating LBP. To our knowledge, this
is the first study to examine LBP in relation to CRP and
GMC, validation of our findings in larger, prospective stu-
dies is needed to establish temporal relationships and
whether dietary patterns lead to shifts in the gut micro-
biome, subsequently leading to obesity and inflammation.
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