Article | Published:

Deposition rates of viruses and bacteria above the atmospheric boundary layer

The ISME Journalvolume 12pages11541162 (2018) | Download Citation


Aerosolization of soil-dust and organic aggregates in sea spray facilitates the long-range transport of bacteria, and likely viruses across the free atmosphere. Although long-distance transport occurs, there are many uncertainties associated with their deposition rates. Here, we demonstrate that even in pristine environments, above the atmospheric boundary layer, the downward flux of viruses ranged from 0.26 × 109 to >7 × 109 m−2 per day. These deposition rates were 9–461 times greater than the rates for bacteria, which ranged from 0.3 × 107 to >8 × 107 m−2 per day. The highest relative deposition rates for viruses were associated with atmospheric transport from marine rather than terrestrial sources. Deposition rates of bacteria were significantly higher during rain events and Saharan dust intrusions, whereas, rainfall did not significantly influence virus deposition. Virus deposition rates were positively correlated with organic aerosols <0.7 μm, whereas, bacteria were primarily associated with organic aerosols >0.7 μm, implying that viruses could have longer residence times in the atmosphere and, consequently, will be dispersed further. These results provide an explanation for enigmatic observations that viruses with very high genetic identity can be found in very distant and different environments.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1.

    Suttle CA. Viruses in the sea. Nature. 2005;437:356–61.

  2. 2.

    Weinbauer MG. Ecology of prokaryotic viruses. FEMS Microbiol Rev. 2004;28:127–81.

  3. 3.

    Breitbart M. Marine viruses: truth or dare. Ann Rev Mar Sci. 2012;4:425–48.

  4. 4.

    Short CM, Suttle CA. Nearly identical bacteriophage structural gene sequences are widely distributed in both marine and freshwater environments. Appl Environ Microbiol. 2005;71:480–6.

  5. 5.

    Breibart M, Rohwer F. Here a virus, there a virus, everywhere the same virus? Trends Microbiol. 2005;13:278–84.

  6. 6.

    Hammond GW, Raddatz RL, Gelskey DE. Impact of atmospheric dispersion and transport of viral aerosols on the epidemiology of influenza. Rev Infect Dis. 1989;11:494–7.

  7. 7.

    Sharoni S, Trainic M, Schatz D, Lehahn Y, Flores MJ, Bidle KD, et al. Infection of phytoplankton by aerosolized marine viruses. Proc Natl Acad Sci USA. 2015;112:6643–7.

  8. 8.

    Whon TW, Kim M-S, Roh SW, Shin N-R, Lee H-W, Bae J-W. Metagenomic characterization of airborne viral DNA diversity in the near-surface atmosphere. J Virol. 2012;86:8221–31.

  9. 9.

    Bowers RM, Lauber CL, Wiedinmyer C, Hamady M, Hallar AG, Fall R, et al. Characterization of airborne microbial communities at a high-elevation site and their potential to act as atmospheric ice nuclei. Appl Environ Microbiol. 2009;75:5121–30.

  10. 10.

    Morales-Baquero R, Pérez-Martínez C. Saharan versus local influence on atmospheric aerosol deposition in the southern Iberian Peninsula: significance for N and P inputs. Global Biogeochem Cycles. 2016;30:501–13.

  11. 11.

    Aller JY, Kuznetsova MR, Jahns CJ, Kemp PF. The sea surface microlayer as a source of viral and bacterial enrichment in marine aerosols. J Aerosol Sci. 2005;30:801–12.

  12. 12.

    Yamaguchi N, Ichijo T, Sakotani A, Baba T, Nasu M. Global dispersion of bacterial cells on Asian dust. Sci Rep. 2012;2:525.

  13. 13.

    Burrows SM, Butler T, Jöckel P, Tost H, Kerkweg A, Pöschl U, et al. Bacteria in the global atmosphere Part 2: modeling of emissions and transport between different ecosystems. Atmos Chem Phys. 2009;9:9281–97.

  14. 14.

    Polymenakou PA, Mandalakis M, Stephanou EG, Tselepides A. Particle size distribution of airborne microorganisms and pathogens during an intense African dust event in the eastern Mediterranean. Environ Health Perspect. 2008;116:292–6.

  15. 15.

    Prospero JM, Ginoux P, Torres O, Nicholson SE, Gill TE. Environmental characterization of global sources of atmospheric soil dust identified with the NIMBUS 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product. Rev Geophys. 2002;40:1002.

  16. 16.

    DeLeon-Rodríguez N, Lathem TL, Rodríguez-R LM, Barazesh JM, Anderson BE, Beyersdorf AJ, et al. Microbiome of the upper troposphere: species composition and prevalence, effects of tropical storms, and atmospheric implications. Proc Natl Acad Sci USA. 2013;110:2575–80.

  17. 17.

    Mayol E, Jiménez MA, Herndl GJ, Duarte CM, Arrieta JM. Resolving the abundance and air-sea fluxes of airborne microorganisms in the North Atlantic Ocean. Front Microbiol. 2014;5:557

  18. 18.

    Kellogg CA, Griffin DW. Aerobiology and the global transport of desert dust. Trends Ecol Evol. 2006;21:638–44.

  19. 19.

    Hervàs A, Camarero L, Reche I, Casamayor EO. Viability and potential for immigration of airborne bacteria from Africa that reach high mountain lakes in Europe. Environ Microbiol. 2009;11:1612–23.

  20. 20.

    Peter H, Hörtnagl P, Reche I, Sommaruga R. Bacterial diversity and composition during rain events with and without Saharan dust influence reaching a high mountain lake in the Alps. Environ Microbiol Rep. 2014;6:618–24.

  21. 21.

    Prospero JM, Blades E, Mathison G, Naidu RV. Interhemispheric transport of viable fungi and bacteria from Africa to the Caribbean with soil dust. Aerobiologia. 2005;21:1–19.

  22. 22.

    Després VR, Huffman JA, Burrows SM, Hoose C, Safatov AS, Buryak G, et al. Primary biological aerosol particles in the atmosphere: a review. Tellus B. 2012;64:015598.

  23. 23.

    Granados-Muñoz MJ, Navas-Guzmán F, Bravo-Aranda JA, Guerrero-Rascado JL, Lyamani H, Fernández-Gálvez J, et al. Automatic determination of the planetary boundary layer height using lidar: one-year analysis over southeastern Spain. J Geophys Res. 2012;117:D18208.

  24. 24.

    Reche I, Ortega-Retuerta E, Romera O, Pulido-Villena E, Morales-Baquero R, Casamayor EO. Effect of Saharan dust inputs on bacterial activity and community composition in Mediterranean lakes and reservoirs. Limnol Oceanogr. 2009;54:869–79.

  25. 25.

    Yang H, Li QF, Yu JZ. Comparison of two methods for the determination of water-soluble organic carbon in atmospheric particles. Atmos Environ. 2003;37:865–70.

  26. 26.

    Mladenov N, Reche I, Olmo FJ, Lyamani H, Alados-Arboledas L. Relationships between spectroscopic properties of high altitude organic aerosols and sun photometry from ground-based remote sensing. J Geophys Res Biogeosciences. 2010;115:G00F11.

  27. 27.

    Amalfitano S, Fazi S. Recovery and quantification of bacterial cells associated with streambed sediments. J Microbiol Met. 2008;75:237–43.

  28. 28.

    Gasol JM, Del Giorgio PA. Using flow cytometry for counting natural planktonic bacteria and understanding the structure of planktonic bacterial communities. Sci Mar. 2000;64:197–224.

  29. 29.

    Brussaard CPD. Optimization of procedures for counting viruses by flow cytometry. Appl Environ Microbiol. 2004;70:1506–13.

  30. 30.

    Morales-Baquero R, Pulido-Villena E, Reche I. Atmospheric inputs of phosphorus and nitrogen to the southwest Mediterranean region: biogeochemical responses of high mountain lakes. Limnol Oceanogr. 2006;51:830–837.

  31. 31.

    Morales-Baquero R, Pulido-Villena E, Reche I. Chemical signature of Saharan dust on dry and wet atmospheric deposition in the south-western Mediterranean region. Tellus B. 2013;65:18720.

  32. 32.

    Mladenov N, Sommaruga R, Morales-Baquero R, Laurion I, Camarero L, Diéguez MC. et al. Dust inputs and bacteria influence dissolved organic matter in clear alpine lakes. Nat Commun. 2011;2:405

  33. 33.

    Draxler RR, Rolph GD. HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) Model access via NOAA ARL READY website. 2014. (accessed 28 September 2017).

  34. 34.

    Stein AF, Draxler RR, Rolph GD, Stunder BJB, Cohen MD, Ngan F. NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Am Meteorol Soc. 2016;2059–77.

  35. 35.

    Bosilovich MG, Lucchesi R, Suarez M. MERRA-2: file specification. GMAO Office Note no. 9 (version 1.1), p. 73. 2016. (accessed 28 September 2017).

  36. 36.

    Bhattachan A, Reche I, D’Odorico P. Soluble ferrous iron (Fe (II)) enrichment in airborne dust. J Geophys Res Atmos. 2016;10153–60.

  37. 37.

    Aller JY, Radway JC, Kilthau WP, Bothe DW, Wilson TW, Vaillancourt RD, et al. Size-resolved characterization of the polysaccharidic and proteinaceous components of sea spray aerosol. Atmos Environ. 2017;154:331–47.

  38. 38.

    Weinbauer MG, Bettarel Y, Cattaneo R, Luef B, Maier C, Motegi C, et al. Viral ecology of organic and inorganic particles in aquatic systems: avenues for further research. Aquat Microb Ecol. 2009;57:321–41.

  39. 39.

    Ortega-Retuerta E, Passow U, Duarte CM, Reche I. Effects of ultraviolet B radiation on (not so) transparent exopolymer particles. Biogeosciences. 2009;6:3071–80.

  40. 40.

    Creamean JM, Suski KJ, Rosenfeld D, Cazorla A, DeMott PJ, Sullivan RC, et al. Dust and biological aerosols from the Sahara and Asia influence precipitation in the Western US. Science. 2013;339:1572–8.

  41. 41.

    Finke JF, Hunt BPV, Winter C, Carmack EC, Suttle CA. Nutrients and other environmental factors influence virus abundances across oxic and hypoxic marine environments. Viruses. 2017;9:152.

  42. 42.

    Wigington CH, Sonderegger D, Brussaard CPD, Buchan A, Finke JF, Fuhrman JA, et al. Re-examination of the relationship between marine virus and microbial cell abundances. Nat Microbiol. 2016;1:15024.

  43. 43.

    Parikka KJ, Le Romancer M, Wauters N, Jacquet S. Deciphering the virus-to-prokaryote ratio (VPR): insights into virus–host relationships in a variety of ecosystems. Biol Rev. 2016;92:1081–100.

  44. 44.

    Huffman JA, Treutlein B, Pöschl U. Fluorescent biological aerosol particle concentrations and size distributions measured with an ultraviolet aerodynamic particle sizer (UV-APS) in Central Europe. Atmos Chem Phys. 2010;10:3215–33.

  45. 45.

    Chow C-ET. Biogeography of viruses in the sea. Annu Rev Virol. 2015;2:41–66.

  46. 46.

    Jones SE, Lennon JT. Dormancy contributes to the maintenance of microbial diversity. Proc Natl Acad Sci USA. 2010;107:5881–6.

  47. 47.

    Fraser C, Alm EJ, Polz MF, Spratt BG, Hanage WP. The bacterial species challenge: making sense of genetic and ecological diversity. Science. 2009;323:741–6.

  48. 48.

    Martiny JBH, Bohannan BJM, Brown JH, Colwell RK, Fuhrman JA, Green JL, et al. Microbial biogeography: putting microorganisms on the map. Nat Rev Microbiol. 2006;4:102–12.

  49. 49.

    Whitaker RJ, Grogan DW, Taylor JW. Geographic barriers isolate endemic populations of hyperthermophilic archaea. Science. 2003;301:976–8.

  50. 50.

    Suttle CA. Environmental microbiology: viral diversity on the global stage. Nat Microbiol. 2016;1:16205.

Download references


We thank J. López-Ramos and R. McGrath for assistance with sample collection, preparation, and analyses. Funding was provided by Fundación BBVA (ECOSENSOR, grant number BIOCON04/009), Junta de Andalucía (AEROGLOBAL, grant number P06-RNM-01503), and Ministerio de Medio Ambiente (MICROBIOGEOGRAPHY, grant number 080/2007) and grants from the Tula Foundation, Natural Sciences and Engineering Research Council of Canada and the Canadian Foundation for Innovation. We thank NOAA Air Resources Laboratory (ARL) for the provision of the HYSPLIT transport and dispersion model and NASA for the access to MERRA-2 model. We also thank two anonymous reviewers whose comments improved this article.

Author information


  1. Departamento de Ecología and Instituto del Agua, Facultad de Ciencias, Universidad de Granada, 18071, Granada, Spain

    • Isabel Reche
    •  & Gaetano D’Orta
  2. Department of Civil, Construction, and Environmental Engineering, San Diego State University, San Diego, CA, 92182, USA

    • Natalie Mladenov
  3. Departments of Earth, Ocean and Atmospheric Sciences, Microbiology and Immunology, Botany, and Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada

    • Danielle M. Winget
    •  & Curtis A. Suttle


  1. Search for Isabel Reche in:

  2. Search for Gaetano D’Orta in:

  3. Search for Natalie Mladenov in:

  4. Search for Danielle M. Winget in:

  5. Search for Curtis A. Suttle in:

Conflict of interest

The authors declare that they have no conflict of interest.

Corresponding authors

Correspondence to Isabel Reche or Curtis A. Suttle.

Electronic supplementary material

About this article

Publication history