Article

Coordinated gene expression between Trichodesmium and its microbiome over day–night cycles in the North Pacific Subtropical Gyre

Received:
Revised:
Accepted:
Published online:

Abstract

Trichodesmium is a widespread, N2 fixing marine cyanobacterium that drives inputs of newly fixed nitrogen and carbon into the oligotrophic ecosystems where it occurs. Colonies of Trichodesmium ubiquitously occur with heterotrophic bacteria that make up a diverse microbiome, and interactions within this Trichodesmium holobiont could influence the fate of fixed carbon and nitrogen. Metatranscriptome sequencing was performed on Trichodesmium colonies collected during high-frequency Lagrangian sampling in the North Pacific Subtropical Gyre (NPSG) to identify possible interactions between the Trichodesmium host and microbiome over day–night cycles. Here we show significantly coordinated patterns of gene expression between host and microbiome, many of which had significant day–night periodicity. The functions of the co-expressed genes suggested a suite of interactions within the holobiont linked to key resources including nitrogen, carbon, and iron. Evidence of microbiome reliance on Trichodesmium-derived vitamin B12 was also detected in co-expression patterns, highlighting a dependency that could shape holobiont community structure. Collectively, these patterns of expression suggest that biotic interactions could influence colony cycling of resources like nitrogen and vitamin B12, and decouple activities, like N2 fixation, from typical abiotic drivers of Trichodesmium physiological ecology.

  • Subscribe to The ISME Journal for full access:

    $547

    Subscribe

Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.

References

  1. 1.

    Bergman B, Sandh G, Lin S, Larsson J, Carpenter EJ. Trichodesmium—a widespread marine cyanobacterium with unusual nitrogen fixation properties. FEMS Microbiol Rev. 2013;37:286–2.

  2. 2.

    Sohm JA, Webb EA, Capone DG. Emerging patterns of marine nitrogen fixation. Nat Rev Microbiol. 2011;9:499–8.

  3. 3.

    Falkowski PG, Barber RT, Smetacek V. Biogeochemical controls and feedbacks on ocean primary production. Science. 1998;281:200–6.

  4. 4.

    Zehr JP. Nitrogen fixation by marine cyanobacteria. Trends Microbiol. 2011;19:162–73.

  5. 5.

    Moran MA, Kujawinski EB, Stubbins A, Fatland R, Aluwihare LI, Buchan A, et al. Deciphering ocean carbon in a changing world. Proc Natl Acad Sci USA. 2016;113:3143–51.

  6. 6.

    Brussaard CPD, Bidle KD, Pedrós-alió C, Legrand C. The interactive microbial ocean. Nat Microbiol. 2016;2:1–2.

  7. 7.

    Aylward FO, Eppley JM, Smith JM, Chavez FP, Scholin CA, DeLong EF. Microbial community transcriptional networks are conserved in three domains at ocean basin scales. Proc Natl Acad Sci USA. 2015;112:5443–48.

  8. 8.

    Ottesen EA, Young CR, Gifford SM, Eppley JM, Marin R, Schuster SC, et al. Multispecies diel transcriptional oscillations in open ocean heterotrophic bacterial assemblages. Science. 2014;345:207–12.

  9. 9.

    Wilson ST, Aylward FO, Ribalet F, Barone B, Casey JR, Connell PE. et al. Coordinated regulation of growth, activity and transcription in natural populations of the unicellular nitrogen-fixing cyanobacterium Crocosphaera. Nat Microbiol. 2017;2:1–9. https://doi.org/10.1038/nmicrobiol.2017.118.

  10. 10.

    Paerl HW, Bebout BM, Prufert LE. Bacterial associations with marine Oscillatoria sp. (Trichodesmium sp.) populations: ecophysiological implications. J Phycol. 1989;25:773–84.

  11. 11.

    Frischkorn KR, Rouco M, Van Mooy BAS, Dyhrman ST. Epibionts dominate metabolic functional potential of Trichodesmium colonies from the oligotrophic ocean. ISME J. 2017;11:2090–101.

  12. 12.

    Gradoville MR, Crump BC, Letelier RM, Church MJ, White AE. Microbiome of Trichodesmium colonies from the North Pacific Subtropical Gyre. Front Microbiol. 2017;8:1–16. https://doi.org/10.3389/fmicb.2017.01122.

  13. 13.

    Lee MD, Walworth NG, Mcparland EL, Fu F, Mincer TJ, Levine NM, et al. The Trichodesmium consortium: conserved heterotrophic co-occurrence and genomic signatures of potential interactions. ISME J. 2017;11:1813–24.

  14. 14.

    Rouco M, Haley ST, Dyhrman ST. Microbial diversity within the Trichodesmium holobiont. Environ Microbiol. 2016;18:5151–60.

  15. 15.

    Hmelo L, Van Mooy B, Mincer T. Characterization of bacterial epibionts on the cyanobacterium Trichodesmium. Aquat Microb Ecol. 2012;67:1–14.

  16. 16.

    Van Mooy BAS, Hmelo LR, Sofen LE, Campagna SR, May AL, Dyhrman ST, et al. Quorum sensing control of phosphorus acquisition in Trichodesmium consortia. ISME J. 2012;6:422–429.

  17. 17.

    Hewson I, Poretsky RS, Dyhrman ST, Zielinski B, White AE, Tripp HJ, et al. Microbial community gene expression within colonies of the diazotroph, Trichodesmium, from the Southwest Pacific Ocean. ISME J. 2009;3:1286–300.

  18. 18.

    Brown CT, Sheneman LS, Camille CM, Rosenthal JH, Adina C. khmer-protocols documentation. 2013. https://khmer-protocols.readthedocs.io/en/latest/mrnaseq/index.html

  19. 19.

    Alexander H, Rouco M, Haley ST, Wilson ST, Karl DM, Dyhrman ST. Functional group-specific traits drive phytoplankton dynamics in the oligotrophic ocean. Proc Natl Acad Sci USA. 2015;112:E5972–79.

  20. 20.

    Frischkorn KR, Harke MJ, Gobler CJ, Dyhrman ST. De novo assembly of Aureococcus anophagefferens transcriptomes reveals diverse responses to the low nutrient and low light conditions present during blooms. Front Microbiol. 2014;5:1–16.

  21. 21.

    Li W, Godzik A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics. 2006;22:1658–59.

  22. 22.

    Varaljay VA, Howard EC, Sun S, Moran MA. Deep sequencing of a dimethylsulfoniopropionate-degrading gene (dmdA) by using PCR primer pairs designed on the basis of marine metagenomic data. Appl Environ Microbiol. 2010;76:609–17.

  23. 23.

    Hyatt D, Chen G-L, Locascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinform. 2010;11:1–11. https://doi.org/10.1186/1471-2105-11-119.

  24. 24.

    Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2015;12:59–60.

  25. 25.

    Huson DH, El Hadidi M, Ruscheweyh H, Huson DH, Meta S. Improved metagenome analysis using MEGAN5. 2013. http://ab.inf.uni-tuebingen.de/software/megan5/

  26. 26.

    Suzek BE, Huang H, McGarvey P, Mazumder R, Wu CH. UniRef: comprehensive and non-redundant UniProt reference clusters. Bioinformatics. 2007;23:1282–88.

  27. 27.

    Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 2011;12:1–16. https://doi.org/10.1186/1471-2105-12-323.

  28. 28.

    Bertrand EM, McCrow JP, Moustafa A, Zheng H, McQuaid JB, Delmont TO, et al. Phytoplankton–bacterial interactions mediate micronutrient colimitation at the coastal Antarctic sea ice edge. Proc Natl Acad Sci USA. 2015;112:9938–43.

  29. 29.

    Thaben PF, Westermark PO. Detecting rhythms in time series with RAIN. J Biol Rhythms. 2014;29:391–400.

  30. 30.

    Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010;11:R106 https://doi.org/10.1186/gb-2010-11-10-r1062010-11-10-r106.

  31. 31.

    Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B. 1995;57:289–300.

  32. 32.

    Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinforma. 2008;9:1–13. https://doi.org/10.1186/1471-2105-9-559.

  33. 33.

    Berthelot H, Bonnet S, Camps M, Grosso O. Assessment of the dinitrogen released as ammonium and dissolved organic nitrogen by unicellular and filamentous marine diazotrophic cyanobacteria grown in culture. Front Mar Sci. 2015;2:1–14.

  34. 34.

    Wannicke N, Koch BP, Voss M. Release of fixed N2 and C as dissolved compounds by Trichodesmium erythraeum and Nodularia spumigena under the influence of high light and high nutrient (P). Aquat Microb Ecol. 2009;57:175–89.

  35. 35.

    Glibert PM, Bronk DA. Release of dissolved organic nitrogen by marine diazotrophic cyanobacteria, Trichodesmium spp. Appl Environ Microbiol. 1994;60:3996–4000.

  36. 36.

    Mulholland MR, Bernhardt PW, Heil CA, Bronk DA, Neil JMO, Boneillo G, et al. Nitrogen fixation and release of fixed nitrogen by Trichodesmium spp. in the Gulf of Mexico. Limnol Oceanogr. 2006;51:1762–76.

  37. 37.

    Mulholland MR, Bronk DA, Capone DG. Dinitrogen fixation and release of ammonium and dissolved organic nitrogen by Trichodesmium. Aquat Microb Ecol. 2004;37:85–94.

  38. 38.

    Janausch IG, Zientz E, Tran QH, Kro A. C4-dicarboxylate carriers and sensors in bacteria. Biochim Biophys Acta. 2002;1553:39–56.

  39. 39.

    Capone DG, Burns JA, Montoya JP, Subramaniam A, Mahaffey C, Gunderson T. et al. Nitrogen fixation by Trichodesmium spp.: an important source of new nitrogen to the tropical and subtropical North Atlantic Ocean. Glob Biogeochem Cycles. 2005;19:GB2024. https://doi.org/10.1029/2004GB002331.

  40. 40.

    McGillicuddy DJ. Do Trichodesmium spp. populations in the North Atlantic export most of the nitrogen they fix? Glob Biogeochem Cycles. 2014;28:103–14.

  41. 41.

    Saito MA, Bertrand EM, Dutkiewicz S, Bulygin VV, Moran DM, Monteiro FM, et al. Iron conservation by reduction of metalloenzyme inventories in the marine diazotroph Crocosphaera watsonii. Proc Natl Acad Sci USA. 2011;108:2184–89.

  42. 42.

    Erdner DL, Anderson DM. Ferredoxin and flavodoxin as biochemical indicators of iron limitation during open-ocean iron enrichment. Limnol Oceanogr. 1999;44:1609–15.

  43. 43.

    Liu W, Karavolos MH, Bulmer DM, Allaoui A, Demarco R, Hormaeche CE, et al. Role of the universal stress protein UspA of Salmonella in growth arrest, stress and virulence. Microb Pathog. 2007;42:2–10.

  44. 44.

    Nachin L, Nannmark U, Nyström T, Nystro T. Differential roles of the universal stress proteins of Escherichia coli in oxidative stress resistance, adhesion, and motility. J Bacteriol. 2005;187:6265–72.

  45. 45.

    Spungin D, Pfreundt U, Berthelot H, Bonnet S, AlRoumi D, Natale F, et al. Mechanisms of Trichodesmium bloom demise within the New Caledonian Lagoon during the VAHINE mesocosm experiment. Biogeoscience. 2016;13:4187–203.

  46. 46.

    Cárdenas A, Neave MJ, Haroon MF, Pogoreutz C, Rädecker N, Wild C. et al. Excess labile carbon promotes the expression of virulence factors in coral reef bacterioplankton. ISME J. 2017;00:1–18. https://doi.org/10.1038/ismej.2017.142.

  47. 47.

    Sañudo-Wilhelmy SA, Gómez-Consarnau L, Suffridge C, Webb EA. The role of B vitamins in marine biogeochemistry. Annu Rev Mar Sci. 2014;6:339–67.

  48. 48.

    Warren MJ, Raux E, Schubert HL, Escalante-Semerena JC. The biosynthesis of adenosylcobalamin (vitamin B12). Nat Prod Rep. 2002;19:390–12.

  49. 49.

    Helliwell KE, Lawrence AD, Holzer A, Scanlan DJ, Warren MJ, Smith AG, et al. Cyanobacteria and eukaryotic algae use different chemical variants of vitamin B12. Curr Biol. 2016;26:999–08.

  50. 50.

    Bonnet S, Webb EA, Panzeca C, Karl DM, Capone DG, Sañudo-Wilhelmy SA. Vitamin B12 excretion by cultures of the marine cyanobacteria Crocosphaera and Synechococcus. Limnol Oceanogr. 2010;55:1959–64.

  51. 51.

    Heal KR, Qin W, Ribalet F, Bertagnolli AD, Coyote-Maestas W, Hmelo LR, et al. Two distinct pools of B12 analogs reveal community interdependencies in the ocean. Proc Natl Acad Sci USA. 2016;114:364–69.

  52. 52.

    Hazra AB, Han AW, Mehta AP, Mok KC, Osadchiy V, Begley TP, et al. Anaerobic biosynthesis of the lower ligand of vitamin B12. Proc Natl Acad Sci USA. 2015;112:10792–97.

  53. 53.

    Taga ME, Larsen NA, Howard-Jones AR, Walsh CT, Walker GC. BluB cannibalizes flavin to form the lower ligand of vitamin B12. Nature. 2007;446:449–53.

  54. 54.

    Croft MT, Lawrence AD, Raux-deery E, Warren MJ, Smith AG. Algae acquire vitamin B12 through a symbiotic relationship with bacteria. Nature. 2005;438:90–93.

  55. 55.

    Fontanez KM, Eppley JM, Samo TJ, Karl DM, DeLong EF. Microbial community structure and function on sinking particles in the North Pacific Subtropical Gyre. Front Microbiol. 2015;6:1–14.

  56. 56.

    Hutchins DA, Walworth NG, Webb EA, Saito MA, Moran D, McIlvin MR, et al. Irreversibly increased nitrogen fixation in Trichodesmium experimentally adapted to elevated carbon dioxide. Nat Commun. 2015;6:1–7.

  57. 57.

    Riebesell U, Körtzinger A, Oschlies A. Sensitivities of marine carbon fluxes to ocean change. Proc Natl Acad Sci USA. 2009;106:20602–9.

  58. 58.

    Hutchins DA, Fu F-X, Zhang Y, Warner ME, Feng Y, Portune K, et al. CO2 control of Trichodesmium N2 fixation, photosynthesis, growth rates, and elemental ratios: implications for past, present, and future ocean biogeochemistry. Limnol Oceanogr. 2007;52:1293–304.

  59. 59.

    Ainsworth TD, Thurber RV, Gates RD. The future of coral reefs: a microbial perspective. Trends Ecol Evol. 2010;25:233–40.

  60. 60.

    Bourne DG, Morrow KM, Webster NS. Insights into the coral microbiome: underpinning the health and resilience of reef ecosystems. Annu Rev Microbiol. 2016;70:317–40.

  61. 61.

    Lesser MP, Fiore C, Slattery M, Zaneveld J. Climate change stressors destabilize the microbiome of the Caribbean barrel sponge Xestospongia muta. J Exp Mar Bio Ecol. 2016;475:11–18.

Download references

Acknowledgements

We thank the scientists who worked collaboratively on the 2015 research expedition as part of the Simons Collaboration on Ocean Processes and Ecology (SCOPE). For assistance at sea, we thank the captain and crew of the R/V Kilo Moana, and Samuel Wilson for serving as chief scientist. We also thank Frank Aylward for assistance with statistical analyses and Matthew Harke, Mónica Rouco, Katherine Heal, and Harriet Alexander for helpful discussions of the data. Finally, we thank the three anonymous reviewers whose comments and suggestions strengthened the manuscript. This research was funded by the Simons Foundation (SCOPE award ID 329108 to STD), and is a contribution of SCOPE. KRF was partially supported by a National Science Foundation Graduate Research Fellowship (DGE-16-44869).

Author contributions

KRF and STD designed the study. All authors carried out sampling. KRF performed lab work and analyzed the data. KRF and STD wrote the manuscript with input from STH.

Author information

Affiliations

  1. Department of Earth and Environmental Sciences, Columbia University, New York, NY, 10025, USA

    • Kyle R Frischkorn
    •  & Sonya T Dyhrman
  2. Lamont-Doherty Earth Observatory, Palisades, NY, 10964, USA

    • Kyle R Frischkorn
    • , Sheean T Haley
    •  & Sonya T Dyhrman

Authors

  1. Search for Kyle R Frischkorn in:

  2. Search for Sheean T Haley in:

  3. Search for Sonya T Dyhrman in:

Conflict of interest

The authors declare that they have no conflict of interest.

Corresponding author

Correspondence to Sonya T Dyhrman.

Electronic supplementary material