Unforeseen swimming and gliding mode of an insect gut symbiont, Burkholderia sp. RPE64, with wrapping of the flagella around its cell body

  • The ISME Journalvolume 12pages838848 (2018)
  • doi:10.1038/s41396-017-0010-z
  • Download Citation


A bean bug symbiont, Burkholderia sp. RPE64, selectively colonizes the gut crypts by flagella-mediated motility: however, the mechanism for this colonization remains unclear. Here, to obtain clues to this mechanism, we characterized the swimming motility of the Burkholderia symbiont under an advanced optical microscope. High-speed imaging of cells enabled the detection of turn events with up to 5-ms temporal resolution, indicating that cells showed reversal motions (θ ~ 180°) with rapid changes in speed by a factor of 3.6. Remarkably, staining of the flagellar filaments with a fluorescent dye Cy3 revealed that the flagellar filaments wrap around the cell body with a motion like that of a ribbon streamer in rhythmic gymnastics. A motility assay with total internal reflection fluorescence microscopy revealed that the left-handed flagellum wound around the cell body and propelled it forward by its clockwise rotation. We also detected periodic-fluorescent signals of flagella on the glass surface, suggesting that flagella possibly contacted the solid surface directly and produced a gliding-like motion driven by flagellar rotation. Finally, the wrapping motion was also observed in a symbiotic bacterium of the bobtail squid, Aliivibrio fischeri, suggesting that this motility mode may contribute to migration on the mucus-filled narrow passage connecting to the symbiotic organ.

  • Subscribe to The ISME Journal for full access:



Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.


  1. 1

    Berg HC. The rotary motor of bacterial flagella. Annu Rev Biochem 2003;72:19–54.

  2. 2

    Turner L, Ryu WS, Berg HC. Real-time imaging of fluorescent flagellar filaments. J Bacteriol 2000;182:2793–801.

  3. 3

    Berg HC, Brown DA. Chemotaxis in Escherichia coli analysed by three-dimensional tracking. Nature 1972;239:500–4.

  4. 4

    Son K, Guasto JS, Stocker R. Bacteria can exploit a flagellar buckling instability to change direction. Nat Phys 2013;9:494–8.

  5. 5

    Xie L, Altindal T, Chattopadhyay S, Wu XL. Bacterial flagellum as a propeller and as a rudder for efficient chemotaxis. Proc Natl Acad Sci USA 2011;108:2246–51.

  6. 6

    Armitage JP, Schmitt R. Bacterial chemotaxis: Rhodobacter sphaeroides and Sinorhizobium meliloti—variations on a theme? Microbiology 1997;143(Pt 12):3671–82.

  7. 7

    Scharf B. Real-time imaging of fluorescent flagellar filaments of Rhizobium lupini H13-3: flagellar rotation and pH-induced polymorphic transitions. J Bacteriol 2002;184:5979–86.

  8. 8

    Chaban B, Hughes HV, Beeby M. The flagellum in bacterial pathogens: for motility and a whole lot more. Semin Cell Dev Biol 2015;46:91–103.

  9. 9

    Nyholm SV, Mcfall-Ngai MJ. The winnowing: establishing the squid-vibrio symbiosis. Nat Rev Microbiol 2004;2:632–42.

  10. 10

    Takeshita K, Kikuchi Y. Riptortus pedestris and Burkholderia symbiont: an ideal model system for insect-microbe symbiotic associations. Res Microbiol 2017;168:175–87.

  11. 11

    Ohbayashi T, Takeshita K, Kitagawa W, Nikoh N, Koga R, Meng XY, et al. Insect’s intestinal organ for symbiont sorting. Proc Natl Acad Sci USA 2015;112:E5179–88.

  12. 12

    Kinosita Y, Nakane D, Sugawa M, Masaike T, Mizutani K, Miyata M, et al. Unitary step of gliding machinery in Mycoplasma mobile. Proc Natl Acad Sci USA 2014;111:8601–6.

  13. 13

    Kinosita Y, Uchida N, Nakane D, Nishizaka T. Direct observation of rotation and steps of the archaellum in the swimming halophilic archaeon Halobacterium salinarum. Nat Microbiol 2016;1:16148.

  14. 14

    Ping L, Birkenbeil J, Monajembashi S. Swimming behavior of the monotrichous bacterium Pseudomonas fluorescens SBW25. FEMS Microbiol Ecol 2013;86:36–44.

  15. 15

    Theves M, Taktikos J, Zaburdaev V, Stark H, Beta C. A bacterial swimmer with two alternating speeds of propagation. Biophys J 2013;105:1915–24.

  16. 16

    Kamiya R, Hotani H, Asakura S. Polymorphic transition in bacterial flagella. Symp Soc Exp Biol 1982;35:53–76.

  17. 17

    Lai SK, Wang YY, Wirtz D, Hanes J. Micro- and macrorheology of mucus. Adv Drug Deliv Rev 2009;61:86–100.

  18. 18

    Chen X, Berg HC. Torque-speed relationship of the flagellar rotary motor of Escherichia coli. Biophys J 2000;78:1036–41.

  19. 19

    Magariyama Y, Sugiyama S, Kudo S. Bacterial swimming speed and rotation rate of bundled flagella. FEMS Microbiol Lett 2001;199:125–9.

  20. 20

    Berg HC, Turner L. Movement of microorganisms in viscous environments. Nature 1979;278:349–51.

  21. 21

    Darnton NC, Berg HC. Force-extension measurements on bacterial flagella: triggering polymorphic transformations. Biophys J 2007;92:2230–6.

  22. 22

    Nakane D, Sato K, Wada H, Mcbride MJ, Nakayama K. Helical flow of surface protein required for bacterial gliding motility. Proc Natl Acad Sci USA 2013;110:11145–50.

  23. 23

    Mariconda S, Wang Q, Harshey RM. A mechanical role for the chemotaxis system in swarming motility. Mol Microbiol 2006;60:1590–602.

  24. 24

    Bartlett TM, Bratton BP, Duvshani A, Miguel A, Sheng Y, Martin NR, et al. A Periplasmic polymer curves Vibrio cholerae and promotes pathogenesis . Cell. 2017;168:172–85e15.

  25. 25

    O’Shea TM, Deloney-Marino CR, Shibata S, Aizawa S, Wolfe AJ, VISICK KL. Magnesium promotes flagellation of Vibrio fischeri. J Bacteriol 2005;187:2058–65.

  26. 26

    Davidson SK, Stahl DA. Selective recruitment of bacteria during embryogenesis of an earthworm. ISME J 2008;2:510–8.

  27. 27

    Dulla GF, Go RA, Stahl DA, Davidson SK. Verminephrobacter eiseniae type IV pili and flagella are required to colonize earthworm nephridia. ISME J 2012;6:1166–75.

  28. 28

    Kim JK, Lee HJ, Kikuchi Y, Kitagawa W, Nikoh N, Fukatsu T, et al. Bacterial cell wall synthesis gene uppP is required for Burkholderia colonization of the Stinkbug Gut. Appl Environ Microbiol 2013a;79:4879–86.

  29. 29

    Kim JK, Park HY, Lee BL. The symbiotic role of O-antigen of Burkholderia symbiont in association with host Riptortus pedestris. Dev Comp Immunol 2016;60:202–8.

  30. 30

    Kim JK, Son DW, Kim CH, Cho JH, Marchetti R, Silipo A, et al. Insect gut symbiont susceptibility to host antimicrobial peptides caused by alteration of the bacterial cell envelope. J Biol Chem 2015;290:21042–53.

  31. 31

    Kim JK, Jang HA, Won YJ, Kikuchi Y, Han SH, Kim CH, et al. Purine biosynthesis-deficient Burkholderia mutants are incapable of symbiotic accommodation in the stinkbug. ISME J 2014;8:552–63.

  32. 32

    Kim JK, Won YJ, Nikoh N, Nakayama H, Han SH, Kikuchi Y, et al. Polyester synthesis genes associated with stress resistance are involved in an insect-bacterium symbiosis. Proc Natl Acad Sci USA 2013b;110:E2381–9.

  33. 33

    Ruby EG. Symbiotic conversations are revealed under genetic interrogation. Nat Rev Microbiol 2008;6:752–62.

  34. 34

    Visick KL, Foster J, Doino J, Mcfall-Ngai M, Ruby EG. Vibrio fischeri lux genes play an important role in colonization and development of the host light organ. J Bacteriol 2000;182:4578–86.

  35. 35

    Wang Y, Dunn AK, Wilneff J, Mcfall-Ngai MJ, Spiro S, Ruby EG. Vibrio fischeri flavohaemoglobin protects against nitric oxide during initiation of the squid-vibrio symbiosis. Mol Microbiol 2010;78:903–15.

  36. 36

    Davidson SK, Koropatnick TA, Kossmehl R, Sycuro L, Mcfall-Ngai MJ. NO means ‘yes’ in the squid-vibrio symbiosis: nitric oxide (NO) during the initial stages of a beneficial association. Cell Microbiol 2004;6:1139–51.

  37. 37

    Kuhn MJ, Schmidt FK, Eckhardt B, Thormann KM. Bacteria exploit a polymorphic instability of the flagellar filament to escape from traps. Proc Natl Acad Sci USA 2017;114:6340–5.

Download references


The authors thank R. Kamiya and T. E.F. Quax for preparing the manuscript, and T. Minamino and Y.V. Morimoto for supplying E. coli K-12 W3110. This study was supported in part by a grant from the Funding Program for Next-Generation World-Leading Researchers (no. LR033 to T.N.) from the Japan Society for the Promotion of Science, by a Grant-in-Aid for Scientific Research on Innovative Areas “Harmonized Supramolecular Motility Machinery and Its Diversity” (to T.N.) and “Fluctuation & Structure” (no.26103527 to T.N.) from the Ministry of Education, Culture, Sports, Science, and Technology of Japan, and the Ministry of Education, Culture, Sports, Science and Technology (MEXT) KAKENHI (grant number 15H05638 for Y. Kikuchi). Y. Kinosita was the recipient of a JSPS Fellowship for Japan Junior Scientists (15J12274) and Postdoctral Fellowship for Research Abroad.

Author contributions

Y Kinosita, Y Kikuchi, DN, and TN designed the research; Y. Kinosita performed the research; NM developed a framework for analyzing a reorientation event, Y Kinosita and TN constructed the optical setup and microscope; Y Kinosita, Y Kikuchi and TN wrote the paper.

Author information

Author notes

    • Yoshiaki Kinosita

    Present address: Institute for Biology II, Freiburg University, Freiburg, Germany


  1. Department of Physics, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo, 171-8588, Japan

    • Yoshiaki Kinosita
    • , Nagisa Mikami
    • , Daisuke Nakane
    •  & Takayuki Nishizaka
  2. Bioproduction Research Institute, Hokkaido Center, National Institute of Advanced Industrial Science and Technology, Sapporo, 062-8517, Japan

    • Yoshitomo Kikuchi


  1. Search for Yoshiaki Kinosita in:

  2. Search for Yoshitomo Kikuchi in:

  3. Search for Nagisa Mikami in:

  4. Search for Daisuke Nakane in:

  5. Search for Takayuki Nishizaka in:

Conflict of interest

The authors declare that they have no competing interests.

Corresponding authors

Correspondence to Yoshiaki Kinosita or Yoshitomo Kikuchi.

Electronic supplementary material