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Predicting physical activity intensity using raw accelerometer
signals in manual wheelchair users with spinal cord injury
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STUDY DESIGN: Cross-sectional validation study.
OBJECTIVES: The performance of previously published physical activity (PA) intensity cutoff thresholds based on proprietary
ActiGraph counts for manual wheelchair users (MWUs) with spinal cord injury (SCI) was initially evaluated using an out-of-sample
dataset of 60 individuals with SCI. Two types of PA intensity classification models based on raw accelerometer signals were
developed and evaluated.
SETTING: Research institutions in Pittsburgh PA, Birmingham AL, and Bronx NY.
METHODS: Data were collected from 60 MWUs with SCI who followed a structured activity protocol while wearing an ActiGraph
activity monitor on their dominant wrist and portable metabolic cart which measured criterion PA intensity. Data was used to assess
published models as well as develop and assess custom models using recall, specificity, precision, as well as normalized Mathew’s
correlation coefficient (nMCC).
RESULTS: All the models performed well for predicting sedentary vs non-sedentary activity, yielding an nMCC of 0.87–0.90.
However, all models demonstrated inadequate performance for predicting moderate to vigorous PA (MVPA) with an nMCC of
0.76–0.82.
CONCLUSIONS: The mean absolute deviation (MAD) cutoff threshold yielded the best performance for predicting sedentary vs
non-sedentary PA and may be used for tracking daily sedentary activity. None of the models displayed strong performance for
MVPA vs non-MVPA. Future studies should investigate combining physiological measures with accelerometry to yield better
prediction accuracies for MVPA.
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INTRODUCTION
The life span of people with spinal cord injury (SCI) continues to
increase, with a median survival time of 38 years for those being
injured between ages 25 and 34 years [1]. Research has shown that
long-term morbidity and mortality seen in the SCI population are
more likely to be caused by cardiovascular complications rather
than pulmonary and renal conditions as seen in previous decades
[2]. Obesity, lipid disorders, metabolic syndrome, and diabetes are
all common risk factors contributing to this increased prevalence of
cardiovascular issues in those with SCI [2]. Routine physical activity
(PA) can reduce the prevalence of these risk factors [3–5], with PA
guidelines for SCI recommending individuals to engage in at least
30minutes of moderate to vigorous intensity aerobic exercise
three times per week for cardiometabolic health benefits [6]. It is
also critical that individuals with SCI manage their sedentary time,
as prolonged bouts of sedentary behavior may negate the positive
benefits of PA [7]. A sedentary lifestyle has been considered as one
of SCI-specific supplementary risks for cardiometabolic disease,
with a study showing both complete and incomplete paraplegics

spending 87% of their time exhibiting sedentary behavior [8].
Hence, health promotion for people with SCI often advocates for
not only increasing moderate to vigorous PA, but also reducing
sedentary time and increasing light to moderate PA [9].
Unfortunately, people with SCI face reduced mobility levels and

limited access to PA opportunities [10, 11]. One of the strategies
often used to promote PA is self-monitoring [12]. A convenient
and accurate method of tracking daily PA intensities could support
self-monitoring of goal attainment and contribute to a more active
lifestyle. PA intensity is typically categorized as sedentary, light,
moderate, and vigorous based on metabolic equivalent of task
(METs) with one MET being the resting metabolic rate (RMR)
assumed to be 2.7 milliliters (mL) of oxygen consumed per
kilogram (kg) of body weight per minute for a person with SCI
[13]. Activities less than 1.5 METs are considered sedentary, 1.5–3
METs are light, 3–6 METs are moderate, and greater than six METs
are vigorous [14].
Tracking time spent in different PA intensities in the SCI

population has been mainly reliant on the use of self-report
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questionnaires [3, 15] such as the Physical Activity Recall
Assessment for People with SCI (PARA-SCI) [16], the Leisure-Time
Physical Activity Questionnaire for People with SCI (LTPAQ-SCI)
[17], and Physical Activity Scale for Individuals with Physical
Disabilities (PASIPD) [18]. These questionnaires take 5–45min to
complete and rely on participant recall of PA over the past
3–7 days. While these tools are inexpensive and easy to
administer, they are subjective to recall bias, cannot assess daily
PA patterns, and are limited in data collection frequency and
granularity as compared with wearable devices [12].
With the rise and availability of wearable devices over the last

decade, they are increasingly utilized to help track time spent in
different PA intensities daily. Previous studies have validated
wheelchair push counts in commercially available devices like the
Apple Watch [19], however, none have done so to validate active
or exercise minutes in these proprietary algorithms. ActiGraph
activity monitors (ActiGraph, LLC., Pensacola, FL, USA) are the most
used wearable devices in the research community [20]. They are
capable of collecting 3-axis acceleration signals in units of gravity
at a set frequency, as well as producing a proprietary variable
called ‘count’ for each accelerometer axis. The ‘counts’ from all 3
axes are used to obtain a vector magnitude count (VMC), and
several research studies have developed simple VMC cutoff
thresholds for classifying PA intensities in manual wheelchair
users (MWUs) with SCI [21–25]. For example, Learmonth [21],
McCracken [22], Veerubhotla [23], and Bourassa [24] developed a
VMC cutoff threshold for moderate to vigorous physical activity
(MVPA) of 3,644 counts min−1, 11,652 counts min−1, 11,551
counts min−1, and 100 counts s−1, respectively. Holmlund [25]
found a VMC cutoff threshold of 9,854 count min−1 and 9,415
count min−1 for motor-complete paraplegic males and females,
respectively, and 4,887 count min−1 and 4,657 count min−1 for
motor-complete tetraplegic males and females, respectively. The
large variations in these VMC cutoff thresholds could be attributed
to the differences in study participants, testing protocols,
evaluation methods used, and variations in both the firmware
used and ActiGraph model. The performance of these thresholds
for their intended population on an independent dataset is
unknown, signifying the need to assess these thresholds with a
single out-of-sample dataset.
VMC has also presented problems of its own, with studies

showing an older generation of the ActiGraph activity monitor
producing different recordings than the newer generations under
both mechanical and free-living testing situations [26]. Previous
work in MWUs has shown superior accuracy in predicting PA
energy expenditure when using raw acceleration signals rather
than VMCs [27]. Lastly, as VMC is a proprietary unit pertaining to
ActiGraph activity monitors, the VMC cutoff thresholds are only
applicable to ActiGraph devices and cannot be used by other
accelerometer-based wearable devices. With these considerations,
it is worthwhile to consider developing models with features
based on simple raw accelerometer data.
In this study, we evaluated previously published VMC cutoff

thresholds for MWUs with SCI using an out-of-sample dataset of
60 individuals with SCI. We have also developed and evaluated
two types of PA intensity classification models for MWUs with SCI
based on raw accelerometer signals, including a simple cutoff
threshold model (in unit of milligravity) and a random forest (RF)
classification model.

METHODS
Study sites and participants
The data used in this study were collected from two prior studies [23, 28].
Study 1 [23] collected data from the Human Engineering Research
Laboratories (HERL) and the James J. Peters VA Medical Center in Bronx,
NY, while Study 2 [28] took place at HERL and the Human Performance Lab
at Lakeshore Foundation in Birmingham, AL. Institutional Review Board

approvals were obtained from the James J. Peters VA Medical Center and
the VA Pittsburgh Health Care System for Study 1 [23], and the University
of Pittsburgh and University of Alabama at Birmingham for Study 2 [28].
The inclusion criteria for Study 1 [23] was (1) between the ages of 18 and
65, (2) having an SCI at least one-year post injury and medically stable, and
(3) using a manual wheelchair as their primary means of mobility for at
least 40 hours/week. Participants were excluded from the study if they
were unable to tolerate sitting for three hours, had active pelvic or thigh
wounds, had medical conditions that were contraindications to exercise, or
were pregnant based on self-report. Study 2 [28] had similar inclusion
criteria except for also recruiting MWUs without SCI, however only MWUs
with SCIs data were utilized in this study.

Protocol
For both Study 1 [23] and Study 2 [28], individuals first gave informed
consent and completed a demographics questionnaire. Participants were
asked to rest in a supine position for 20min to collect their MET values
when at rest. Note this resting period is not as strict as the standard RMR
measurement protocol proposed by Compher et al. [29]. Their height was
measured using a tape measure in supine position, and weight was
measured while individuals were in their wheelchair, on a wheelchair
weight scale (Detecto, Webb City, MO, US). This weight was then
subtracted by the weight of the wheelchair alone. For Study 1 [23],
participants performed a random array of activities of daily living (ADLs) for
10min each with at least a 3-minute break. These activities included:
resting in a wheelchair; propulsion at self-selected slow, normal, and fast
pace on a tiled surface; propulsion up and down a slope; watching TV;
working on a computer; practicing shooting a basketball; sweeping or
vacuuming the floor; loading and unloading a dishwasher; weightlifting;
TheraBand exercises; arm ergometry exercise at self-selected slow and fast
pace; folding laundry and being pushed in their wheelchair. Study 2
followed a similar protocol but included other activities in both a lab and
home visit, such as propulsion on a low pile carpet; propulsion on the
sidewalk, and cleaning the house. Additional details about Study 2 have
been previously reported [28].

Instrumentation
Individuals were either equipped with a COSMED K4b2 portable metabolic
cart (COSMED Inc, Rome, Italy) or a Jaeger Oxycon Mobile portable
metabolic cart (Vyaire Medical Inc, Mettawa, IL, US) during supine resting
and all activity trials, which calculates VO2 intake and VCO2 output.
Individuals were also equipped with either an ActiGraph GT9X Link in
Study 1 [23] or an ActiGraph GT3X+ in Study 2 [28] (an earlier model that
uses an identical accelerometer as the GT9X), on the dominant wrist, which
records raw accelerations in three axes at 30 Hz. Raw signal data was
obtained from the ActiGraph ActiLife software (v6.11.9). The K4b2, Oxycon,
and ActiGraph devices were calibrated following standard procedures and
time synchronized.

Data processing
If either data from the portable metabolic device or the ActiGraph were
not available for a minute due to the device malfunctioning, data from
both devices were removed. Only steady-state data for each activity trial
was retained in the final dataset. Steady-state was defined as VO2 and
VCO2 having changed less than 10% for 5 continuous minutes [30, 31]. If
this was not available for an activity, a minimum of 3 min was attempted
or the data was removed [32]. All metabolic data were organized into
different PA intensity categories based on METs, defined as the average
VO2, in units of ml kg−1 min−1, divided by 2.7 ml kg−1 min−1 [13]. This
served as the criterion for PA intensity, with values below 1.5 as
sedentary, those between 1.5 and 3.0 as light-intensity, and those above
3.0 as MVPA [14].

Published VMC cutoff thresholds for PA intensity
We have found five published studies that developed a simple VMC cutoff
threshold model for MWUs [21–25]. Table 1 provides the study population
and the published VMC cutoff threshold from each study. The classification
accuracy of these cutoff thresholds was examined using the out-of-sample
data collected in this study. Only individuals from our out-of-sample
dataset that fit the inclusion/exclusion criteria of the respective studies
(Table 1) were utilized to assess their model’s performance. Veerubhotla’s
model [23] was not evaluated, as its cutoff threshold was derived using a
subset of our dataset. Bourassa’s model [24], was also not evaluated as
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criterion activity intensity was defined as low, moderate, and high based
on the activity type instead of METs.

Custom classification models based on raw accelerations
Two types of models for classifying PA intensities using raw acceleration
signals including a simple cutoff threshold model and a machine learning-
based model were developed by our group. The cutoff threshold approach
based on a single signal feature was computationally simple and easily
implemented on any accelerometry-based wearable device for real-time
activity intensity tracking. The machine learning approach uses more
features to learn a non-linear decision boundary and thus can potentially
achieve better classification performance [33].

Cutoff threshold models. Two cutoff threshold models were developed on
two different gravity-removed variables. One model was based on the
Euclidean norm minus one (ENMO) obtained using the equation below,
where n is the number of samples in each minute, and X, Y, and Z
represent the triaxial accelerometer measurements in ‘g’ [34]. Subtracting
one g from the vector magnitude removes the gravity component leaving
only the dynamic acceleration component [35]. This variable was then
converted to milligravity (or ‘mg’) by multiplying by 1000, which provides
results consistent with those found in the literature for the ambulatory
population [34].

ENMO ¼ 1
n

X ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 þ Y2 þ Z2

p
� 1

���
���

Another model was based on the mean absolute deviation (MAD)
obtained using the equation below, where VMi represents the ith resultant
vector magnitude within the minute and VM represents the mean value of
the minute, and n is the number of samples in each minute. This
represents another method to remove the static gravity component of 1 g,
but also captures the variations of wrist accelerations, which has been
shown to be predictive of PA intensity in the ambulatory population [35].
Similar to ENMO, the variable was also converted to mg by multiplying by
1000 to remain consistent with other studies [34–36].

MAD ¼ 1
n

X
VMi � VM
�� ��

To derive the cutoff thresholds for sedentary vs non-sedentary, and
MVPA vs non-MVPA for each model, receiver operating characteristic (ROC)
analyses were performed using MATLAB 2019a (MathWorks Inc, Natick,

MA, USA). First, a linearly spaced vector ranging from the minimum to the
maximum value of the variable ENMO or MAD was obtained. Then, each
integer in this vector was tested as a threshold. The threshold that yielded
the lowest distance to the top left corner from the ROC curve was used as
the cutoff threshold [37].
Machine learning model. The RF classifier was used to categorize the
three intensities (i.e., sedentary, light, and MVPA). RF is an ensemble-based
learning algorithm comprised of multiple de-correlated decision trees and
known to limit overfitting without substantially increasing bias. It is built
off the idea of bootstrap aggregation where individual trees are
constructed with random subsets of training samples and random subsets
of features are used for splitting nodes of individual trees [38]. The RF
classifier then computes majority votes from individual trees [38]. Using
Python3 (Python, Wilmington, DE, USA), we obtained 115 features based
on raw acceleration signals along X, Y, Z, Vector Magnitude (VM), and
ENMO, including mean, standard deviation, MAD, minimum, maximum,
summation, 10th, 25th, 50th, 75th, and 90th percentiles, interquartile
range, the correlation between each axis, coefficient of variation, skewness,
kurtosis, signal power, auto-correlation, zero-crossing, peak features (i.e.,
magnitude difference between neighboring peaks, the number of peaks,
and the number of positive peaks), dominant frequency, dominant
frequency amplitude. To reduce redundant features, those with a
correlation coefficient of 0.90 or greater were identified and one of them
was removed. Weka (Machine Learning Group, University of Waikato), an
open-source machine learning software was then used to construct and
tune the RF model based on two parameters including the number of trees
(from 10 to 100 with a 10-tree interval) and tree depth (i.e., 5 and 10) using
five-fold cross validation. The parameters that yielded the highest cross
validation accuracy were used for the final model. It should be noted that
hyperparameter tuning was only done on the training dataset during five-
fold cross validation so the testing set didn’t leak info into the training
process, and remained as an unbiased performance estimation.

Data analysis
To evaluate the published VMC cutoff thresholds, we applied them to
individuals from our dataset that met the inclusion/exclusion criteria of the
respective studies. Accuracy measures including recall, precision, specifi-
city, and the normalized Matthews correlation coefficient (nMCC), were
obtained for each VMC cutoff threshold. Because the dataset for sedentary
vs non-sedentary and MVPA vs non-MVPA were imbalanced and the
performance of both positive and negative cases was included, the
Matthews correlation coefficient (MCC) was chosen over other accuracy
measures [39]. Compared with the general accuracy measure (i.e., the
proportion of correctly classified samples) and F1 score (i.e., the harmonic

Table 1. Published VMC cutoff thresholds for MWUs.

Author Demographics Sedentary vs non-
sedentary

MVPA vs non-MVPA

Learmonth (21) (N= 25) 10 SCI (unknown injury level and completeness)
5 Spina Bifida
4 Multiple Sclerosis
2 Amputation
2 Congenital Bone Disorder
1 Cerebral Palsy
1 Demyelinating Disease

– 3,644 counts min−1

McCracken (22) (N= 20) 11 Paraplegic (unknown completeness)
9 Tetraplegic (unknown completeness)

– 11,652 counts min−1

Holmlund (25) (N= 63) 37 Paraplegics, Complete Male: 6,997 counts min−1

Female: 6,559 counts min−1
Male: 9,854 counts min−1

Female: 9,415 counts min−1

26 Tetraplegics, Complete Male: 3,645 counts min−1

Female: 3,462 counts min−1
Male: 4,887 counts min−1

Female: 4,657 counts min−1

Veerubhotla (23) (N= 31) 20 Paraplegic, Complete
4 Paraplegic, Incomplete
2 Tetraplegic, Complete
2 Tetraplegic, Incomplete
3 SCI, Unknown injury level and type

2,057 counts min−1 11,551 counts min−1

Bourassa (24) (N= 28) 14 SCI, Unknown injury level and type
5 Multiple Sclerosis
9 Other (Multiple Sclerosis, Parkinson’s Disorder, Post-
Polio, amputation)

45 counts s−1a 100 counts s−1a

aFor Bourassa’s study, >45 counts s−1 is defined as low intensity, 45–100 counts s−1 is defined as moderate intensity, and >100 counts s−1 is defined as high
intensity based on activity type instead of METs.
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mean of precision and recall), MCC is a more reliable accuracy measure
that produces a high score only if the prediction is able to correctly predict
the majority of the positive cases and the majority of negative cases
especially when the dataset is unbalanced [39]. MCC ranges from −1 to +1
with extreme values −1 and +1 being perfect misclassification and perfect
classification, respectively, and MCC= 0 being the expected value for the
coin-tossing classifier [39]. To be consistent with other measures that range
from 0 to 1, nMCC defined as (MCC+1)/2, was reported here, which
projects the original range into the traditional interval [0 1] with nMCC=
0.5 as the average value for the coin-tossing classifier [39]. Confusion
matrices were also provided for each model.
To evaluate the custom models, the total dataset was split into a training

(70%) and testing (30%) dataset. The models were developed based on the
training dataset and evaluated in the testing dataset with measures
including recall, precision, specificity, and nMCC. Confusion matrices for all
three models were also obtained.

RESULTS
A total of 60 participants were recruited and tested in this study.
There was a total of 5,971minutes of steady-state data from all
participants, with 1,503 (25%) minutes classified as sedentary,
2,282 (38%) minutes classified as light, and 2,186 (37%) minutes
classified as MVPA based on the criterion metabolic data. At the
participant level, the steady-state minutes were 100 ± 25minutes
with a range of 31–153minutes. The demographic information
can be found in Table 2, where the number of participants along
with their characteristics used to evaluate either the published
cutoff thresholds or the custom models are provided. A total of 23
participants with complete SCI met the inclusion criteria of
Holmlund [25], while all 60 participants met the inclusion criteria
of Learmonth [21] and McCracken [22]. For the three custom

models, 42 participants were randomly assigned to the training
dataset and 18 participants to the testing dataset which were used
to evaluate the custom models.

Published VMC cutoff thresholds
The performance of all published cutoff thresholds when applied
to our out-of-sample dataset is presented in Table 3. Holmlund
[25] provided cutoff thresholds for sedentary vs light PA and light
PA vs MVPA, which allows for evaluation of sedentary vs non-
sedentary, and MVPA vs non-MVPA. Learmonth’s [21] and
McCracken’s [22] only provided a cutoff threshold for MVPA vs
non-MVPA. Confusion matrices for all three published models can
be found in Supplementary Files 1.

Custom ENMO and MAD cutoff thresholds
The ROC analysis results for ENMO and MAD cutoff thresholds
respectively are presented in Figs. 1 and 2. The performance
measures of ENMO and MAD cutoff thresholds for activity
intensity classification of the 18 participants in the testing dataset
are presented in Table 3. The confusion matrices across all 18 of
these hold-out patients for both ENMO and MAD cutoff threshold
evaluations are provided in Supplementary Files 1.

Random forest model
After assessing the pair-wise correlations of all 115 features, 55
features were removed due to high correlations, and 60 features
were retained. Based on the five-fold cross validation, the RF
model with 60 trees and a tree depth of 10 yielded the highest
accuracy of 79.4%. This model was then applied to the testing
dataset to obtain unbiased model performance. The performance

Table 2. Participant demographics.

Category Mean (standard deviation) or number of participants (% of patients)

Three custom models Holmlund (25) (n= 23) Learmonth (21),
McCracken (22) (n= 60)

Training (n= 42) Testing (n= 18)

Age (years) 40 (12) 38 (12) 40 (10) 40 (12)

Weight (kg) 79 (18) 83 (20) 78 (16) 79 (18)

Height (cm) 175 (10) 175 (8) 175 (10) 175 (10)

Gender

Male 34 (81%) 15 (83%) 21 (91%) 49 (82%)

Female 8 (19%) 3 (17%) 2 (9%) 11 (18%)

Injury level/completeness

Cervical lesion

Complete 2 (4%) – 2 (8%) 2 (3%)

Incomplete 5 (12%) – – 5 (8%)

Complete 15 (36%) 6 (33%) 21 (92%) 21 (36%)

Incomplete 7 (17%) 4 (22%) – 11 (19%)

Completeness unknown 8 (19%) 5 (28%) – 13 (22%)

Lumbar lesion

Completeness unknown 1 (2%) 2 (11%) – 4 (7%)

Unknown injury level or completeness 4 (10%) 1 (6%) – 5 (5%)

Years using a wheelchair 10 (8) 12 (10) 9 (8) 11 (9)

Body mass index

Normal 24 (58%) 6 (33%) 12 (52%) 30 (50%)

Overweight 11 (26%) 8 (45%) 8 (35%) 19 (32%)

Obese 7 (16%) 4 (22%) 3 (13%) 11 (18%)

Athlete 20 (48%) 10 (56%) 12 (52%) 30 (51%)

Smoker 8 (19%) 5 (28%) 7 (30%) 13 (22%)
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Table 3. Performance of different models in classifying activity intensities.

Model Measure Recall Precision Specificity nMCC

Learmonth (21) MVPA vs
Non-MVPA

98.0% 55.3% 54.3% 0.76

McCracken (22) MVPA vs
Non-MVPA

59.7% 75.4% 88.8% 0.76

Holmlund (25) Sedentary vs non-sedentary 95.0% 68.2% 88.0% 0.87

MVPA vs
Non-MVPA

74.0% 71.6% 80.9% 0.77

ENMO Sedentary vs non-sedentary 88.8% 75.2% 88.7% 0.87

MVPA vs
Non-MVPA

75.8% 75.8% 85.2% 0.80

MAD Sedentary vs non-sedentary 94.3% 78.8% 90.2% 0.90

MVPA vs
Non-MVPA

76.8% 76.8% 85.8% 0.81

RF Sedentary vs non-sedentary 78.6% 82.3% 93.5% 0.87

MVPA vs
Non-MVPA

73.3% 80.5% 89.2% 0.82

Fig. 1 ROC analysis of the ENMO feature for both sedentary vs non-sedentary, and MVPA vs non-MVPA cutoff thresholds. Using the 42
patients from the training dataset, a distance to the corner of 0.185 yielded a cutoff threshold of 40mg for sedentary vs non-sedentary, while
a distance to the corner of 0.308 yielded a cutoff threshold of 129mg for MVPA vs non-MVPA.

Fig. 2 ROC analysis of the MAD feature for both sedentary vs non-sedentary, and MVPA vs non-MVPA cutoff thresholds. Using the 42
patients from the training dataset, a distance to the corner of 0.158 yielded a cutoff threshold of 53mg for sedentary vs non-sedentary, while
a distance to the corner of 0.307 yielded a cutoff threshold of 192mg for MVPA vs non-MVPA.
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measures of the RF model on the 18 participants in the testing
dataset are presented in Table 3. The confusion matrix across all
18 of these hold-out patients is provided in Supplementary File 1.

DISCUSSION
In this study, we assessed the performance of three published
VMC-based cutoff thresholds for PA intensity classification based
on ActiGraph devices for MWUs, and developed three custom
models based on raw wrist accelerations, which could potentially
be utilized by other wrist-worn wearable devices to classify activity
intensity in MWUs with SCI. The data used to evaluate the model
performance was from a wide array of physical activities usually
performed by MWUs including household chores, wheelchair
propulsion at different speeds and over different terrains, as well
as cardio and resistance-based exercises. All models, either
published or custom, showed similar overall performance in
terms of classifying MVPA, ranging from a nMCC of 0.76–0.82.
Additionally, sedentary behaviors could be detected with higher
accuracy than MVPA by either published or custom models,
ranging from a nMCC of 0.87–0.90.
In terms of the custom models based on raw acceleration

signals, all three models including the simple ENMO, MAD cutoff
thresholds, and the RF model yielded similar performance, with
the MAD cutoff threshold showing slightly better performance for
classifying sedentary vs non-sedentary activities. This finding is
consistent with previous studies in the ambulatory population
where the MAD feature was often found to yield higher accuracy
than other features including ENMO [34–36]. Both ENMO and
MAD have the component of gravity removed, however, MAD also
captures the average variations of a user’s movements, likely
causing this feature to yield a stronger performance than ENMO.
We expected the RF model, a machine learning-based approach
that takes many signal features into consideration, would yield
better performance than the cutoff thresholds. However, the RF
model performed similarly to the two cutoff thresholds. One
possible reason could be that only one RF model was developed
that was intended to classify activities into three levels: sedentary,
light-weight, and MVPA, instead of two separate RF models for
sedentary vs non-sedentary and for MVPA vs non-MVPA,
respectively. It is also possible that the features included in the
RF model were not able to contribute additional information for
intensity classification than what MAD already provided.
In terms of the published VMC-based cutoff thresholds,

Learmonth’s model [21] had a considerably lower cutoff threshold
in comparison to the other models, resulting in this model easily
detecting almost all MVPA minutes (high recall), but missing
almost half of the non-MVPA minutes (low specificity). Also, about
half of the time when a minute was classified as MVPA, it was non-
MVPA (low precision). Given such an imbalanced performance of
this cutoff threshold, it will not be useful in practice. This finding is
consistent with our previous work [40] that assessed Learmonth’s
model [21] to predict the total energy expenditure in MWUs with
SCI and found high estimation errors. Contrary to Learmonth’s
threshold [21], McCracken’s threshold [22] is the largest, which
resulted in an imbalanced performance in a different direction.
McCracken’s threshold [22] was able to capture most non-MVPA
minutes but missed about 40% of MVPA minutes. McCracken et al.
[22] commented that this general cutoff threshold may not work
at individual levels given the diverse physical and physiological
conditions of people with SCI and recommended individually
calibrated cutoff thresholds. McCracken et al. [22] also found that
individually calibrated cutoff thresholds in their study ranged from
6,040 counts min−1 to 21,540 counts min−1. Holmlund et al. [25]
developed demographic-specific cutoff thresholds for sedentary,
light, and MVPA, allowing us to obtain accuracy measures
for sedentary vs non-sedentary, and MVPA vs non-MVPA. Their
study recruited only those participants with complete SCI and

developed cutoff thresholds for paraplegic male, paraplegic
female, tetraplegic male, and tetraplegic females, respectively.
Given this threshold model accounted for both gender and injury
differences, it was expected to yield better performance than the
other two threshold models. From Table 3, the overall accuracy for
MVPA vs non-MVPA detection using this threshold model is very
similar to the other two models (0.77 vs 0.76), though the model is
more balanced for MVPA and non-MVPA instead of heavily biased
towards one of them as the other two models. When further
examination of the performance of all three threshold models in
classifying MVPA at the participant level was performed, we found
that the Holmlund threshold model [25] yielded a better nMCC
than Learmonth’s [21] and McCracken’s [22] models for only five
out of the 23 participants who met the eligibility criteria for all
three models. Individualized thresholds considering gender, injury
level, and completeness of injury appear to be inadequate to
improve MVPA prediction performance. Unfortunately, no pre-
vious literature has investigated a more individualized approach
such as using individually calibrated cutoff thresholds based on a
lab-based activity protocol as suggested by McCracken et al. [22]
which may have resulted in better MVPA detection performance.
A recent study by Ma et al. [41] compared the agreement

between an individually calibrated VMC cutoff threshold and a
self-report questionnaire (i.e., PARA-SCI) in estimating MVPA in a
six-day field study with 19 MWUs with SCI. They found poor
agreement between the two methods at the participant level.
While neither method is fully validated and can be considered as a
criterion measure, the study pointed out that the two methods
captured different aspects of MVPA, possibly leading to the poor
agreement. One limitation with the accelerometer cutoff thresh-
olds was the inability to detect resistance-based MVPA such as
propulsion up sloped ramps or over thick carpet and weightlifting
exercises when their movement paces did not reflect the physical
exertion. This was further corroborated by our findings where the
ENMO, MAD, and RF models misclassified 27 (82%), 28 (85%), and
28 (85%) minutes out of the 33 resistance-based MVPA minutes
for weightlifting activity as non-MVPA. Despite this limitation, one
advantage of using a PA machine learning model was its ability to
report minute-by-minute PA intensity. As stated in Ma et al. [41],
when utilizing a questionnaire, users are likely to block off a whole
time period as MVPA, when in reality they only exhibited spurts of
MVPA. Users are unlikely able to recall the exact periods of when
they were exhibiting a specific intensity while the wearable-based
models can accurately report this information. This situation also
applies to sedentary behavior tracking. Research in the general
population suggests that more frequent breaks in sedentary time
are associated with better overall health and physical function
[42]. With both the Holmlund VMC cutoff thresholds [25] and our
custom models showing a better accuracy in detecting sedentary
behavior than MVPA, the wearable-based approach could be
potentially used to quantify sedentary breaks and other sedentary
measures, for self-monitoring as well as for supporting research
that investigates the relationship between sedentary behavior and
health in people with SCI.

Study limitations and considerations
This study experienced a few limitations. First, we classified the PA
intensity over 60-second intervals due to the criterion metabolic
data collected breath-by-breath and averaged for each minute.
Thus, any 60-second intervals that contained a mixture of PA
intensities may not have been correctly identified. Some studies
[34–36] for the ambulatory population developed cutoff thresholds
using a window of 5–6 s, and Bourassa et al. [24] developed a
cutoff threshold for people with SCI based on one-second intervals,
which could account for activities of shorter durations and
potentially improve classification accuracies. Second, participants
in our study were allowed to select the activities of interest from a
list, and participants from different study sites also had different
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activity settings. Thus, it was difficult to assess to what extent the
activities (e.g., type, duration, setting, and sequence) may have
affected the performance of all models at the participant level.
Nonetheless, both the custom and published models seemed to
yield relatively similar performance with about an nMCC of 0.80 for
MVPA and 0.90 for sedentary behaviors. Third, we did not control
for the activity sequence in the activity protocol. For some
participants, we noticed that despite the activity break, the
metabolic carry-over effect from an earlier higher intensity activity
affected the classification of subsequent sedentary behavior.
Although this problem could be addressed by having a more
controlled activity protocol, metabolic carry-over is likely to happen
in daily life and would not be captured by an accelerometer-based
device. We also recognize the lack of an individual vigorous
threshold for 6 METs and above, which was due to two reasons.
First, as it is difficult for many MWUs with SCI to achieve vigorous
PA intensity [6], we do not have enough data for vigorous intensity
as compared with other intensities. Second, the physical activity
guidelines for SCI state the duration and frequency of MVPA for
both cardiorespiratory fitness and cardiometabolic health benefits,
and thus having a cutoff for MVPA would still be helpful.
Additionally, although Holmlund et al. [25] had developed
demographic-specific thresholds, these models displayed no better
performance than the general thresholds. Ideally, this present
study would have assessed the effect of gender and lesion height
on model accuracy, however, due to an imbalanced dataset (11
females, seven tetraplegic patients) we were unable to do so.
Future studies should look into other methods that utilize
demographic information and whether they improve performance.
Activity pattern recognition via machine learning could help detect
certain rhythmic resistance-based activities, potentially improving
MVPA detection. It is also likely the different samples and different
sample sizes may have affected results. However, this methodol-
ogy is still providing a truly non-biased assessment of these
previously published models, in that the entirety of this data was
collected independently. Another issue this study faced was the
lack of true RMR data, which would require patients to adhere to
the following guidelines [29]. Without true RMR data, we were
required to utilize the SCI adjusted MET value of 2.7ml kg−1 min−1,
and were unable to calculate the individual 1-MET. Lastly, although
heart rate tracking may not be appropriate for people with high-
level SCI due to cardiovascular autonomic dysfunction, it could be
used by some individuals with SCI to track activity intensity. A
study utilizing individually calibrated heart rate monitors has
shown to overcome some of these issues [43]. For example, with
the inclusion of heart rate, activities that yield similar acceleration
data, yet require a different energy cost such as changing gradient
or load carriage could be properly identified [43]. Future studies
should look to combine both heart rate and accelerometer data to
more accurately predict PA intensity.

CONCLUSION
The goal of this study was to assess the performance of published
VMC cutoff thresholds, as well as construct and evaluate cutoff
thresholds and RF models utilizing raw accelerometer data for
activity intensity classification in MWUs with SCI. All published and
developed models performed similarly with an nMCC of 0.87–0.90
for predicting sedentary vs non-sedentary behaviors, and an
nMCC of 0.76–0.82 for predicting MVPA vs non-MVPA. While
sedentary behaviors could be detected with a higher accuracy,
people tend to spend significantly more time being sedentary,
which affects the accumulated errors in sedentary minutes over an
entire day [6]. None of the models demonstrated strong
performance for predicting MVPA vs non-MVPA, and mainly the
resistance-based activities resulted in high levels of misclassifica-
tion. Future studies should investigate other approaches such as

activity pattern recognition or adding heart rates to improve
MVPA classification.
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