Impact of complications at admission to rehabilitation on the functional status of patients with spinal cord lesion

Abstract

Study design

Retrospective cohort study.

Objective

Aim of the study is to evaluate the impact of complications at admission on the functional status of spinal cord lesions patients.

Setting

Rehabilitation hospital in Italy.

Methods

Two hundred and seven patients with complications (mostly pressure ulcers) at admission to rehabilitation were matched for neurological level of injury and AIS grade with 207 patients without complications. Measures: International Standards for Neurological Classification of Spinal Cord Injury, Spinal Cord Independence Measure, Rivermead Mobility Index, and Walking Index for Spinal Cord Injury. These measures were recorded at admission to rehabilitation and at discharge. We also recorded length of acute and rehabilitation stay and discharge destination. Statistics: Student’s T test for paired samples, McNemar’s chi-square test.

Results

Patients with complications at admission suffered more often from a traumatic lesions. The functional status at admission and discharge of the patients without complications was significantly better than the functional status of patients with complications (Spinal Cord Independence Measure mean difference between the two groups 5.7 (CI 2.8–8.5) at admission, and 10 (CI 5.3–14.7) at discharge). Length of stay was significantly higher in patients with complications. Patients with complications were more often institutionalized than their counterparts (46/161 vs. 20/187, odds ratio 0.4 (CI 0.2–0.7)).

Conclusions

Complications seem to be more frequent in patients with traumatic lesions. The presence of complications has a negative effect on patients’ functional status at discharge and length of stay, and it determines a higher risk of being institutionalized.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: The flow chart depicts the selection of the matching dyads from the entire cohort.

Data availability

Data are available as Supplementary material.

References

  1. 1.

    Singh A, Tetreault L, Kalsi-Ryan S, Nouri A, Fehlings MG. Global prevalence and incidence of traumatic spinal cord injury. Clin Epidemiol. 2014;6:309–31.

    PubMed Central  PubMed  Google Scholar 

  2. 2.

    New PW, Cripps RA, Bonne Lee B. Global maps of non-traumatic spinal cord injury epidemiology: towards a living data repository. Spinal Cord. 2014;52:97–109.

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Steeves JD, Lammertse D, Curt A, Fawcett JW, Tuszynski MH, Ditunno JF, et al. Guidelines for the conduct of clinical trials for spinal cord Guidelines injury (SCI) as developed by the ICCP panel: clinical trial outcome measures. Spinal Cord. 2007;45:206–21.

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Scivoletto G, Morganti B, Molinari M. Neurologic recovery of spinal cord injury patients in Italy. Arch Phys Med Rehabil. 2004;85:485–9.

    Article  PubMed  Google Scholar 

  5. 5.

    Anson CA, Shepherd C. Incidence of secondary complications in spinal cord injury. Int J Rehabil Res. 1996;19:55–66.

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Chen D, Apple DF Jr., Hudson LM, Bode RK. Medical complications during acute rehabilitation following spinal cord injury—current experience of the Model Systems. Arch Phys Med Rehabil. 1999;80:1397–401.

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Richard-Denis A, Feldman DE, Thompson C, Mac-Thiong JM. The impact of acute management on the occurrence of medical complications during the specialized spinal cord injury acute hospitalization following motor-complete cervical spinal cord injury. J Spinal Cord Med. 2018;41:388–96.

    Article  PubMed  Google Scholar 

  8. 8.

    Tator CH, Duncan EG, Edmonds VE, Lapczak LI, Andrews DF. Complications and costs of management of acute spinal cord injury. Paraplegia. 1993;31:700–7.

    CAS  PubMed  Google Scholar 

  9. 9.

    Gupta A, Taly AB, Srivastava A, Murali T. Non-traumatic spinal cord lesions: epidemiology, complications, neurological and functional outcome of rehabilitation. Spinal Cord 2009;47:307–11.

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Dimar JR, Fisher C, Vaccaro AR, Okonkwo DO, Dvorak M, Fehlings M, et al. Predictors of complications after spinal stabilization of thoracolumbar spine injuries. J Trauma 2010;69:1497–500.

    Article  PubMed  Google Scholar 

  11. 11.

    Grossman RG, Frankowski RF, Burau KD, Toups EG, Crommett JW, Johnson MM. et al. Incidence and severity of acute complications after spinal cord injury. J Neurosurg Spine. 2012;17 Suppl 1:119–28.

    Article  PubMed  Google Scholar 

  12. 12.

    Bourassa-Moreau É, Mac-Thiong JM, Ehrmann Feldman D, Thompson C, Parent S. Complications in acute phase hospitalization of traumatic spinal cord injury: does surgical timing matter? J Trauma Acute Care Surg. 2013;74:849–54.

    Article  PubMed  Google Scholar 

  13. 13.

    Do JG, Kim du H, Sung DH. Incidence of deep vein thrombosis after spinal cord injury in Korean patients at acute rehabilitation unit. J Korean Med Sci. 2013;28:1382–7.

    PubMed Central  Article  PubMed  Google Scholar 

  14. 14.

    van Weert KCM, Schouten EJ, Hofstede J, van de Meent H, Holtslag HR, van den Berg-Emons RJG. Acute phase complications following traumatic spinal cord injury in Dutch Level 1 trauma centres. J Rehabil Med 2014;46:882–5.

    Article  PubMed  Google Scholar 

  15. 15.

    Hastings BM, Ntsiea MV, Olorunju S. Factors that influence functional ability in individuals with spinal cord injury: a cross-sectional, observational study. S Afr J Physiother. 2015;71:235.

    PubMed Central  Article  PubMed  Google Scholar 

  16. 16.

    Alabed S, de Heredia LL, Naidoo A, Belci M, Hughes RJ, Meagher TM. Incidence of pulmonary embolism after the first 3 months of spinal cord injury. Spinal Cord 2015;53:835–7.

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Scivoletto G, Bonavita J, Torre M, Baroncini I, Tiberti S, Maietti E, et al. Observational study of the effectiveness of spinal cord injury rehabilitation using the Spinal Cord Injury-Ability Realization Measurement Index. Spinal Cord. 2016;54:467–72.

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Joseph C, Nilsson Wikmar L. Prevalence of secondary medical complications and risk factors for pressure ulcers after traumatic spinal cord injury during acute care in South Africa. Spinal Cord. 2016;54:535–9.

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Kreinest M, Ludes L, Biglari B, Küffer M, Türk A, Grützner PA, et al. Influence of previous comorbidities and common complications on motor function after early surgical treatment of patients with traumatic spinal cord injury. J Neurotrauma. 2016;33:2175–80.

    Article  PubMed  Google Scholar 

  20. 20.

    Maharaj MM, Stanford RE, Lee BB, Mobbs RJ, Marial O, Schiller M, et al. The effects of early or direct admission to a specialised spinal injury unit on outcomes after acute traumatic spinal cord injury. Spinal Cord 2017;55:518–24.

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Scivoletto G, Torre M, Iosa M, Porto MR, Molinari M. Prediction model for the presence of complications at admission to rehabilitation after traumatic spinal cord injury. Top Spinal Cord Inj Rehabil. 2018;24:151–6.

    Article  PubMed  Google Scholar 

  22. 22.

    Denis AR, Feldman D, Thompson C, Mac-Thiong JM. Prediction of functional recovery six months following traumatic spinal cord injury during acute care hospitalization. J Spinal Cord Med. 2018;41:309–17.

    Article  PubMed  Google Scholar 

  23. 23.

    Wang H, Niewczyk P, DiVita M, Camicia M, Appelman J, Mix J, et al. Impact of pressure ulcers on outcomes in inpatient rehabilitation facilities. Am J Phys Med Rehabil. 2014;93:207–16.

    Article  PubMed  Google Scholar 

  24. 24.

    Winslow C, Bode RK, Felton D, Chen D, Meyer PR Jr. Impact of respiratory complications on length of stay and hospital costs in acute cervical spine injury. Chest. 2002;121:1548–54.

    Article  PubMed  Google Scholar 

  25. 25.

    Facchinello Y, Beauséjour M, Richard-Denis A, Thompson C, Mac-Thiong JM. The use of regression tree analysis for predicting the functional outcome following traumatic spinal cord injury. J Neurotrauma. 2017. https://doi.org/10.1089/neu.2017.5321.

  26. 26.

    Stampas A, Dominick E, Zhu L. Evaluation of functional outcomes in traumatic spinal cord injury with rehabilitation-acquired urinary tract infections: a retrospective study. J Spinal Cord Med. 2019;42:579–85.

    Article  PubMed  Google Scholar 

  27. 27.

    Donhauser M, Grassner L, Klein B, Voth M, Mach O, Vogel M, et al. Severe pressure ulcers requiring surgery impair the functional outcome after acute spinal cord injury. Spinal Cord. 2020;58:70–77.

    Article  PubMed  Google Scholar 

  28. 28.

    Failli V, Kopp MA, Gericke C, Martus P, Klingbeil S, Brommer B, et al. Functional neurological recovery after spinal cord injury is impaired in patients with infections. Brain 2012;135:3238–50.

    Article  PubMed  Google Scholar 

  29. 29.

    Kirshblum SC, Waring W, Biering-Sorensen F, Burns SP, Johansen M, Schmidt-Read M, et al. Reference for the 2011 revision of the International Standards for Neurological Classification of Spinal Cord Injury. J Spinal Cord Med. 2011;34:547–54.

    PubMed Central  Article  PubMed  Google Scholar 

  30. 30.

    Itzkovich M, Tripolski M, Zeilig G, Ring H, Rosentul N, Ronen J, et al. Rasch analysis of the Catz-Itzkovich spinal cord independence measure. Spinal Cord. 2002;40:396–407.

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Catz A, Itzkovich M, Tesio L, Biering-Sorensen F, Weeks C, Laramee MT, et al. Multicenter International Study on the Spinal Cord Independence Measure, Version III: Rasch psychometric validation. Spinal Cord. 2007;45:275–91.

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Collen FM, Wade DT, Robb GF, Bradshaw CM. The Rivermead Mobility Index: a further development of the Rivermead Motor Assessment. Int Disabil Stud. 1991;13:50–4.

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Ditunno JF Jr, Ditunno PL, Scivoletto G, Patrick M, Dijkers M, Barbeau H, et al. The Walking Index for Spinal Cord Injury (WISCI/WISCI II): nature, metric properties, use and misuse. Spinal Cord. 2013;51:346–55.25.

    Article  PubMed  Google Scholar 

  34. 34.

    Scivoletto G, Morganti B, Ditunno P, Ditunno JF, Molinari M. Effects of age on spinal cord lesion patients rehabilitation. Spinal Cord. 2003;41:457–64.

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Morganti B, Scivoletto G, Ditunno P, Ditunno JF, Molinari M. Walking Index For Spinal Cord Injury (WISCI): criterion validation. Spinal Cord. 2005;43:27–33.

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Scivoletto G, Morganti B, Molinari M. Sex related differences of rehabilitation outcomes of spinal cord lesion patients. Clin Rehabil. 2004;18:709–13.

    Article  PubMed  Google Scholar 

  37. 37.

    Daniel E, Ho DE, Kosuke Imai K, Gary King G, Elizabeth A, Stuart EA. MatchIt: nonparametric preprocessing for parametric causal inference. J Stat Softw. 2011;42:1–28. http://www.jstatsoft.org/v42/i08/.

    Google Scholar 

  38. 38.

    Stephan K, Huber S, Häberle S, Kanz KG, Bühren V, van Griensven M, et al. Spinal cord injury–incidence, prognosis, and outcome: an analysis of the Trauma Register DGU. Spine J 2015;15:1994–2001.

    Article  PubMed  Google Scholar 

  39. 39.

    Macciocchi S, Seel RT, Warshowsky A, Thompson N, Barlow K. Co-occurring traumatic brain injury and acute spinal cord injury rehabilitation outcomes. Arch Phys Med Rehabil. 2012;93:1788–94. Scivoletto Associated lesions.

    Article  PubMed  Google Scholar 

  40. 40.

    Nott MT, Baguley IJ, Heriseanu R, Weber G, Middleton JW, Meares S, et al. Effects of concomitant spinal cord injury and brain injury on medical and functional outcomes and community participation. Top Spinal Cord Inj Rehabil. 2014;20:225–35. Summer

    PubMed Central  Article  PubMed  Google Scholar 

  41. 41.

    Scivoletto G, Farchi S, Laurenza L, Tamburella F, Molinari M. Impact of multiple injuries on functional and neurological outcomes of patients with spinal cord injury. Scand J Trauma Resusc Emerg Med. 2013;21:42.

    PubMed Central  Article  PubMed  Google Scholar 

  42. 42.

    New PW, Rawicki HB, Bailey MJ. Nontraumatic spinal cord injury rehabilitation: pressure ulcer patterns, prediction, and impact. Arch Phys Med Rehabil. 2004;85:87–93.

    Article  PubMed  Google Scholar 

  43. 43.

    Kruger EA, Pires M, Ngann Y, Sterling M, Rubayi S. Comprehensive management of pressure ulcers in spinal cord injury: current concepts and future trends. J Spinal Cord Med. 2013;36:572–85.

    PubMed Central  Article  PubMed  Google Scholar 

  44. 44.

    Groah SL, Schladen M, Pineda CG, Hsieh CH. Prevention of pressure ulcers among people with spinal cord injury: a systematic review. PM R. 2015;7:613–36.

    Article  PubMed  Google Scholar 

  45. 45.

    Chen Y, DeVivo MJ, Jackson AB. Pressure ulcer prevalence in people with spinal cord injury: age-period-duration effects. Arch Phys Med Rehabil. 2005;86:1208–13.

    Article  PubMed  Google Scholar 

  46. 46.

    Scivoletto G, Fuoco U, Morganti B, Cosentino E, Molinari M. Pressure sores and blood and serum dysmetabolism in spinal cord injury (SCI) patients. Spinal Cord. 2004;42:473–4766.

    CAS  Article  PubMed  Google Scholar 

  47. 47.

    Noller CM, Groah SL, Nash MS. Inflammatory stress effects on health and function after spinal cord injury. Top Spinal Cord Inj Rehabil. 2017;23:207–17. Summer

    PubMed Central  Article  PubMed  Google Scholar 

  48. 48.

    New PW, Scivoletto G, Smith E, Townson A, Gupta A, Reeves RK. International survey of perceived barriers to patient flow in spinal cord injury rehabilitation units. Spinal Cord. 2013;51:893–7. https://doi.org/10.1038/sc.2013.69.

    CAS  Article  PubMed  Google Scholar 

  49. 49.

    Chamberlain JD, Brinkhof MWG. Using strong inference to answer causal questions in spinal cord injury research. Spinal Cord. 2019;57:907–8.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank all patients who were willing to contribute to the database.

Funding

The manuscript is partially supported by the ERANET-NEURON grant to Giorgio Scivoletto.

Author information

Affiliations

Authors

Contributions

All authors equally contributed to the study.

Corresponding author

Correspondence to Giorgio Scivoletto.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics statement

We certify that all applicable institutional and governmental regulations concerning the ethical use of human volunteers/animals were followed during the course of this research.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Scivoletto, G., Marcella, M., Floriana, P. et al. Impact of complications at admission to rehabilitation on the functional status of patients with spinal cord lesion. Spinal Cord (2020). https://doi.org/10.1038/s41393-020-0501-z

Download citation