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Abstract
Study design Method development.
Objectives To develop a reliable protocol for automatic segmentation of Thoracolumbar spinal cord using MRI based on K-
means clustering algorithm in 3D images.
Setting University-based laboratory, Tehran, Iran.
Methods T2 structural volumes acquired from the spinal cord of 20 uninjured volunteers on a 3T MR scanner. We proposed
an automatic method for spinal cord segmentation based on the K-means clustering algorithm in 3D images and compare our
results with two available segmentation methods (PropSeg, DeepSeg) implemented in the Spinal Cord Toolbox. Dice and
Hausdorff were used to compare the results of our method (K-Seg) with the manual segmentation, PropSeg, and DeepSeg.
Results The accuracy of our automatic segmentation method for T2-weighted images was significantly better or similar
to the SCT methods, in terms of 3D DC (p < 0.001). The 3D DCs were respectively (0.81 ± 0.04) and Hausdorff Distance
(12.3 ± 2.48) by the K-Seg method in contrary to other SCT methods for T2-weighted images.
Conclusions The output with similar protocols showed that K-Seg results match the manual segmentation better than the
other methods especially on the thoracolumbar levels in the spinal cord due to the low image contrast as a result of poor SNR
in these areas.

Introduction

The spinal cord is a tubular structure of the central nervous
system located in the vertebral column and surrounded by
bony columns and soft tissues extending from the medulla

oblongata. The spinal cord is undeniably involved in many
functions of the nervous system, and its magnetic resonance
imaging (MRI) in health and disease became very inter-
esting for clinicians and researchers. For example, spinal
cord injury (SCI) is one of the primary causes of motor
disabilities in humans and Skeletal muscles experience
deleterious physiological changes after an accident [1, 2].
Due to the highly variable nature of recovery following an
injury to the cord, it is difficult to predict the outcome and
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prognosis [3, 4]. It is important to have an accurate
assessment of injury severity in SCI as early as possible to
plan the acute injury management and have a better idea
about the prognosis of the patient that helps the procedures
in later stages, clinical trials, and candidacy for novel
therapies [4, 5]. However, due to the existing challenges
such as brain trauma and pain, an objective assessment
seems to be far to reach [4, 5]. Advances in the MR imaging
promises new opportunities for the study of spinal cord
injuries and other conditions and is becoming the standard
technique for the assessment of the damage [4–7]. How-
ever, to increase the impact there is a need for the
improvement of techniques that may contribute to the
validity and reliability of measures. Since SC segmentation
is the first step in atlas-based SC analysis [7], improvement
of this step can have a drastic influence on the outcome of
the analysis. Manual segmentation techniques are time-
consuming and subject to between and within rater varia-
bility [7, 8]. Accordingly, for large sample sizes and clinical
purposes, manual segmentation is a vulnerability. The
Spinal Cord Toolbox has contributed invaluably to the
development of protocols for the automatic segmentation of
the SC [8] but most of their focus was on the cervical cord
in the human and lumbar cord has not received proper
attention. Besides, the algorithm used in their protocol is
more sensitive to coexisting pathologies that may influence
the outcome of the segmentation and its accuracy. A seg-
mentation protocol that can deal with these challenges in the
SCI is required to improve the impact of MR imaging on the
study of SCI by contributing to the validity and reliability of
measures. Similarly, in other clinical populations like low
back pain patients and patients with Multiple Sclerosis (MS)
improved outcome of segmentation the lumbar cord can
contribute to the use of MR imaging more accurately in the
clinic. It has been shown that atrophy in the gray matter of
the spinal cord is associated with disability in patients with
MS [9, 10]. So, it is important for clinicians and researchers
dealing with those patients to monitor the structural changes
in the cord (its shape or its cross-sectional area (CSA)).
Hence, understanding the pathophysiological sequelae
would help to prevent and reduce disease burden and would
facilitate the development of effective regenerative and
neuroprotective treatments. However, manual segmentation
of the cord is time-consuming, unreliable and varies from
person to person [11]. Raters need to segment each scan in
parallel and for each subject, the associated consensus
segmentation of the raters for the cord and canal must be
estimated using majority voting. For this purpose, the dice
coefficient (DC) and Hausdorff distance (HD) between each
rater’s segmentation usually is calculated and a consensus
mask is produced across all the raters’ marks as a gold
standard. To overcome these issues, a segmentation model
is required to find the severity of the injury and to predict

the disease patterns along the segmented spinal cord
regions. Automatic detection of spinal cord and calculation
of the CSA metrics (the rate of volumetric changes and
tissue atrophy) are complex due to changes in structure
and size. Besides automatic segmentation of this area is an
essential factor that influences the detection of spinal cord
atrophy and its severity of the SCI. Although semi or fully
automated methods are susceptible to the level of contrast to
noise in the image, they use sophisticated methods that lead
to robust outcomes and more reliable results which indeed
can contribute to the reproducibility of studies. For exam-
ple, among those hired semi-automated methods Tench
et al. [12] improved this metric in their edge-detection based
method by taking into account the spinal cord orientation
and the partial volume effect between spinal cord and
cerebra-spinal fluid (CSF). However, these methods need
more manual interventions (requires a few points along the
spinal cord, identified by the user to initialize the segmen-
tation process). Other researchers developed techniques
based on an active surface model [13, 14], used a double
threshold-based method on the 3D T2-weighted turbo spin-
echo MR scans of the spinal cord [15], proposed a protocol
based on a globally minimal path optimization method
using PCA to cluster the spinal cord shapes [16], or
developed a method based on one-dimensional template
matching [17]. A significant limitation of all these methods
goes back to them requiring the intervention of the user at
different stages, which may influence the reliability at dif-
ferent levels. On the other hand, fully automated methods
are preferred because they are faster, suitable for bigger
samples and not susceptible to the user’s bias. For example,
De Leener et al. [8, 18] developed an automatic segmen-
tation method (PropSeg) based on multi-resolution propa-
gating of tubular deformation models on MR images.
Consequently, Gros et al. [11] proposed an original and
fully automatic framework (DeepSeg) based on convolu-
tional neural networks (CNNs) applied to the spinal cord
morphometry for segmenting the spinal cord and/or intra-
medullary MS lesions, degenerative cervical myelopathy
(DCM), neuromyelitis optica (NMO), traumatic SCI,
amyotrophic lateral sclerosis (ALS), and syringomyelia
(SYR) from a variety of MRI contrasts and resolutions.
However, none of these methods are optimized from images
acquired from the thoracolumbar spinal cord. Due to the
specific structure of this part of the spinal cord and its
involvement in damages related to lower limbs and lower
back, it is important to have a reliable protocol for the
segmentation of the cord and the canal.

In this paper, we present a fully automatic framework for
the segmentation of the spinal cord and spinal canal, opti-
mized for thoracolumbar segments. The main contributions
of this paper are: (1) providing an independent detection
module to find the spinal cord and spinal canal location
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based on the circular shape. The symmetry of the body
helps to perform Circular Hough Transform to find the
circular shape better. (2) Applying an anisotropic diffusion
(AD) filter to remove noises and stabilize the optimization
process on the results of images. (3) Using the K-means
clustering algorithm for segmentation of the spinal cord and
spinal canal. Our method performs well in low SNR
regions, and it is robust towards low contrast, especially in
thoracolumbar areas. Since this technique is optimized for
low contrast images, we predict a better match between
manual segmentation and K-Seg output as compared with
two established models implemented in the SCT.

Methods

Image acquisition

The method described in this paper was tested on T2-
weighted MRI images of the thoracolumbar spinal cord of
20 uninjured volunteers (male, age= 24.48 ± 4.62 years,
range= 22–31 years). The imaging data were acquired on a
3T Siemens Prisma MR scanner at the National Brain Map-
ping Laboratory, the University of Tehran. Volunteers were

positioned carefully, and pads were used to restrict foot and
spine movements. A structural volume was acquired in the
sagittal orientation using a T2 sampling perfection by using
flip angle evolution (SPACE) sequence (TR= 1500ms;
TE= 119ms; FOVs= 320 × 320mm; matrix size= 256 ×
256 × 56 slices, slice thickness= 1.3 mm, and in-plane reso-
lution= 1 × 1mm). To demonstrate the efficiency of the
K-Seg in the segmentation of the cord in the low contrast
region, only the vertebrae below T7 were included. The K-
Seg was implemented in MATLAB environment. The code
and sample data are freely available at (see Supplementary
Appendix 2 for MATLAB Code).

Segmentation framework

The K-Seg framework is illustrated in Fig. 1. It consists of
five major steps:

(1) recognition of region of interest (ROI) based on
mutual information (MI) as a similarity measure in
left–right direction

(2) applying a canny filter to extract the edges and Hough
line transform to remove the extra parts from the ROI
in the anterior–posterior direction

Detection of body

symmetry by MI and 

 extracting ROI in 

Left-Right direction

Applying Circular 
Hough Transform

Applying Anisotropic 

Diffusion Filter and using

K-means clustering to segment 

spinal cord and canal

Select a candidate 

circle close to AP line

 with (radius [7-9]) 

Removing regions

 outside of the detected 

lines and limiting RoI in

 Anterior- Posterior direction

3D Canny Edge Detection

Hough Line Transform

1

2

4

5

3 2

Fig. 1 The framework of the K-Seg method. The framework
includes: (1) recognition of region of interest (ROI) based on mutual
information as a similarity measure; (2) applying canny filter to extract
edges and Hough line transform in order to remove the extra parts
from ROI in anterior–posterior direction; (3) computing the centerline

of spinal cord by using Hough circular transform; (4) resorting the
circles by select a candidate circle close to AP line with radius [7–9] to
find the spinal cord curvature and (5) applying an anisotropic diffusion
filter to remove noises and segmentation of spinal cord and canal by
k-means clustering algorithm to classify intensities.
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(3) using a Circular Hough Transform to find appropriate
circles around the SC and CSF along the cord. So the
automatic CSF segmentation can be achieved as well
as SC location

(4) resorting the circles by selecting a candidate circle
close to the AP line (a circle with radius [7–9] is good
enough to find the spinal cord curvature in each slice
due to the spine has varying shape from top to bottom)

(5) applying an AD filter to remove noises and segmenta-
tion of the spinal cord and canal by K-means
clustering algorithm to classify intensities.

Extracting region of interest in the left–right
direction

Most methods rely on semiautomatic or manual approaches,
getting one or more landmarks to detect the position of the
ROI to extract the spine in images [13–15] and some groups
do it automatically [8, 11, 18–22]; we used an automatic
method: an axial slice was automatically selected (e.g., the
middle slice of the volume). Using the MI metric [23] and
presuming the human body as symmetric the medial
anterior–posterior line (AP line) was detected (the AP line
passes the spinal cord) (Fig. 1, step 1). This step, in parti-
cular, reduced the computational time. Detection of the AP
line using the MI was through the following equation
[18, 23]:

P ¼ arg max S I left; Iright
� �� �

; ð1Þ
where S (Ileft, Iright) represents the MI between images, and
Ileft and Iright are two 2D axial planes in left and right sides.
A restrained image is built here by cropping an area with
eight slices in the left–right direction around the AP line.

Removing unwanted regions inside of the ROI in the
anterior–posterior direction

Here we aimed to remove unwanted regions inside of the ROI
obtained from the previous step in the anterior–posterior
direction (Fig. 1, step 2). To extract the spinal canal position,
finding more details of the edges on the ROI is essential.
Among the many edge-detection methods, we used the Canny
method [24], because of its ability to detect more details of
edges in an image. After the edge detection, the Hough Line
Transform was used to find the vertical lines in the image to
extract the edges of interest [25, 26].

The Hough transform is a technique to isolate features of
particular shapes within an image. The most common use of
the Hough transform is in the detection of curves, lines,
circles, and ellipses. This method is robust and unaffected
by the image noise. We assume that the Hough Lines

Transform is parameterized in this form [25, 26]:

p ¼ x cos θ þ y sin θ ð2Þ
Where p is a perpendicular distance from the line to the
origin, and θ is the angle of distance p from the x-axis.

The Hough line transform (for removing unwanted tis-
sues inside of the ROI in the AP direction) is based on the
following steps:

(1) Binarizing the ROI in the sagittal view, and applying
the Hough line transform to it;

(2) Finding 50 significant Hough transform peaks
(enough to indicate vertical lines of the spinal cord)

(3) Detecting the initial and endpoints of lines, and
linking these points on the restrained binary image.
Linking these points obtained the spinal cord and
canal’s range in the image and let us remove the area
outside these lines.

Detection of spinal cord and canal location

The detection module, based on the circular Hough trans-
form, is in three steps (Fig. 1, step 3). A Circular Hough
Transform [25, 26] was applied to the restrained image in
the axial view (considering the circular shape of the spinal
cord and the canal). Among the many identified circles, the
circle with the minimum distance to the AP line was
selected as a candidate circle (Fig. 1, step 4). The distance
was measured by the Euclidean method. The circular Hough
transform is parameterized in this form [25, 26]:

x � að Þ2 þ y � bð Þ2 ¼ r2; ð3Þ

where (a, b) is the center of the circle and r is its radius. The
radius of the circle of interest was in the range of 7–9 mm
(as the spine has a varying shape from top to bottom), and
the sensitivity was set on 0.97. Next, in each axial slice, we
created a mask on the candidate circle and then assigned
the gray level intensities from the original image to this
circle (Fig. 1, step 4). By estimating the center of the circle
in each slice, the coordinate of the centerline could be
continuously updated in each slice to estimate the cord’s
curvature. In the slices where no optimal circle could be
identified (e.g., due to the low contrast of the image), the
algorithm used the coordinates of the circle of the previous
slice. As the candidate circles include spinal cord and canal
tissues as well, the K-means clustering algorithm was
applied to classify the intensities and segment the spinal
cord and CSF regions (Fig. 1, step 5). This clustering
method is sensitive to the image noise, and therefore, the
images were first spatially smoothed. To avoid the blurring
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of the edges while smoothing, the contrast of the image was
enhanced by applying an AD filter (Fig. 1, step 5).

Anisotropic diffusion filter

Diffusion algorithms by Perona–Malik formulation remove
noise from an image using a partial differential equation.
The isotropic diffusion equation was:

∂I x; y; tð Þ
∂t

¼ div ∇Ið Þ ð4Þ

Where I (x, y, 0) is the original image, (x, y) refers to the spatial
position, t is an artificial time parameter and ∇I is the image
gradient [27, 28]. Because of equivalency of the isotropic
diffusion with a Gaussian filter, Perona and Malik [28]
replaced the classical formula of an isotropic equation with:

∂Iðx; y; tÞ
∂t

¼ div g ∇Ij jj jð Þ∇Ið Þ; ð5Þ

Where ∇Ij jj j is the gradient magnitude of the image and
ðg ∇Ij jj jÞ is an “edge-stopping” function. This function is
defined to satisfy g(x)→0 when x→∞. So that the diffusion
is stopped across the edges. This filter can smooth the
original image without any edge blurring by preserving
brightness discontinuities.

Spinal cord and canal segmentation by K-means
clustering algorithm

K-means is a powerful, simple, and fast clustering algorithm
[29, 30]. A clustering method is used to divide a set of data
points into several groups (Fig. 1, step 5). The K-means
algorithm on an image operates in these steps:

(1) initializing the number of clusters (k= 3);
(2) calculating the Euclidean distance d between the

center of the clusters and each pixel of an image,
using the following equation [29, 30]:

d ¼ p x; yð Þ � ckj jj j ð6Þ

(3) Assigning each pixel to the nearest center in a cluster
based on distance d and recalculating the new position
of the center using this equation:

ck ¼ 1
k

X
y2ck

X
x2ck

pðx; yÞ ð7Þ

(4) Repeating the process until it satisfies the tolerance or
error value;

(5) Reshaping the cluster pixels into the image.

The number of clusters that we consider to segment
spinal cord and canal areas is (k= 3). The first cluster is
related to the spinal cord region, the second class includes
the spinal canal area and the third cluster is referred to keep
the same false areas which added on both SC and CSF
throughout the detecting circles. By switching among these
clusters the automatic SC and CSF segmentation can be
achieved as well.

Inter-rater variability of the spinal cord
segmentation

We estimated the inter-rater variability of the spinal cord
segmentation between two raters on all volunteers (n= 20).
For each of these subjects, one scan was available, which
allow the raters to segment each scan in parallel and com-
bine their information at the end of the work. For this
purpose, we calculated the DC and HD between each rater’s
segmentation and a consensus mask produced as majority
voting across all the raters’ marks for a gold standard (see
Table 1) [11].

Validation methodology

The segmented data by K-Seg was validated against (1)
manual segmentation performed independently by two
experienced individuals and also the consensus of two
expert manual segmentations which was selected as a gold
standard, (2) segmentation using the PropSeg [8, 18],
implemented in C++ based on multiresolution propagation
of tubular deformation models, and (3) segmentation using
the DeepSeg [11], implemented in Python 2.7 based on
CNNs. To assess the performance of the K-Seg, two mea-
sures were computed as below:

(1) The 3D DC defined in [31] by the following
equation:

Dice X;Yð Þ ¼ 2 X \ Yj j
Xj j þ Yj j ; ð8Þ

where X, Y are the binary segmentation mask to compare.
As stated, the consensus of two expert manual segmenta-
tions was considered as a gold standard, and the three
methods were compared with that. The DC range is
between [0, 1], and closing to 1 means more similarity to
the gold standard.
(2) The HD [32] that is described as the maximum

distance between two images. Two sets are close in
the HD if every point of either set is close to some
points of the other set. A low HD demonstrates good
results in comparison.

H X;Yð Þ ¼ max h X; Yð Þ; h Y; Xð Þf g; ð9Þ

Fully automatic 3D segmentation of the thoracolumbar spinal cord and the vertebral canal from. . . 815



where h (X, Y) is the HD from the surface X to Y and is
defined as:

h X;Yð Þ ¼ max
xϵX

min
yϵY

d x; yð Þf g
� �

; ð10Þ

where x, y are two points from the surfaces X, Y and d (x,
y) is the Euclidean distance between a and b.

Two independent one-way ANOVAs [33] with DC and
HD as the dependent variables and the segmentation
method versus manual segmentation as the independent
variable compared the outcome of the K-Seg versus
DeepSeg and PropSeg.

Results

Results of the spinal cord segmentation on T2-weighted
images on 20 uninjured subjects are presented in Table 1.
High DC and low HD demonstrate good results of the K-Seg
method. In addition, we calculated the DC and HD between
each rater’s segmentation and a consensus mask produced
across all the raters’ labels as a gold standard. As shown in
Table 1, results have been compared with two independent
experienced individuals and also the consensus of two expert
manual segmentations as a gold standard. The accuracy of
the proposed method was found to be close, comparable and
in some situations better than a single rater, in terms of 3D
DC (p < 0.001). The 3D DCs were respectively 0.81 and
HD 12.3 by the K-Seg method for T2-weighted images.

Therefore, K-Seg shows the accurate result when compared
with the SCT methods, as shown by the higher DC and
lower HD in Table 1. Two examples of K-Seg segmentation
of the spinal cord are presented in Fig. 2a, b. Our findings
suggest better results by using the K-Seg as compared with
both DeepSeg and PropSeg. These images have a loss of
quality with distortion in the presence of magnetic material.
So the proposed method manages the segmentation firmly
even when CSF and SC contrast is at lowest on a specific
part of the spinal cord. As illustrated in Fig. 2a, b, some
segmentation errors can be observed by PropSeg and
DeepSeg methods, particularly in the lumbar portions. Fur-
thermore, for a typical T2-W acquisition (TR= 1500 ms;
TE= 119ms; FOVs= 320 × 320mm; matrix size= 256 ×
256 × 56 slices, slice thickness= 1.3 mm, in-plane resolu-
tion= 1 × 1 mm), the computation time on a workstation
with WIN 10 OS system equipped with an (Intel core i7,
2.20 GHz processor and 6 GB RAM), was 40 s for K-Seg
versus 1 min 55 s for DeepSeg and 32 s for PropSeg.

Cross-sectional areas

Spinal cord measurements such as the CSA can be extracted
by K-Seg framework. CSAs were calculated for each slice
of a binarized segmentation of the spinal cord. This mea-
surement was calculated for three methods by counting the
pixels in each slice and then comparing it with a gold
standard. The differences in CSA observed at vertebrae
levels in Fig. 3. Significant differences were observed for
multiple vertebral levels. The CSAs in T12 level are greater
than other vertebral levels.

Table 1 Evaluation of spinal
cord segmentation using K-Seg,
DeepSeg, and PropSeg methods
versus the manual segmentation.

Raters Methods 3D dice coefficient
minimun–maximun (Mean ± SD)

Hausdorff distance(mm)
minimun–maximun (Mean ± SD)

Rater 1 K-Seg 0.7–0.81 (0.77 ± 0.04) 17.7–32.6 (24.1 ± 2.02)

DeepSeg 0.58–0.79 (0.73 ± 0.05) 18.7–31.5 (24.5 ± 2.08)

PropSeg 0.48–0.78 (0.67 ± 0.14) 19.1–44.6 (26.4 ± 5.04)

F*(2,57) 7.4 6.2

Rater 2 K-Seg 0.72–0.85 (0.8 ± 0.04) 7.7–16.9 (12.5 ± 2.48)

DeepSeg 0.58–0.79 (0.72 ± 0.05) 10–21.1 (13.2 ± 2.49)

PropSeg 0.48–0.78 (0.66 ± 0.14) 11–22.1 (15.8 ± 3.32)

F*(2,57) 12.4 14.1

Rater 1 and rater
2 (gold standard)

K-Seg 0.76–0.86 (0.81 ± 0.04) 7.3–16.5 (12.3 ± 2.48)

DeepSeg 0.58–0.76 (0.71 ± 0.05) 10.2–21.3 (13.4 ± 2.49)

PropSeg 0.43–0.7 (0.64 ± 0.14) 11.4–22.3 (16.1 ± 3.32)

Rater 1 versus
Rater 2

0.9–0.98 (0.93) 3.5–8.8 (5.9)

Results (mean ± standard division) are compared using 3D dice coefficient (3D DC) and Hausdorff distance
(HD) (N= 20). Also, gold standard and the inter-rater variability are computed for twenty subjects. The
variation among individuals is presented in range (minimun–maximun). Significant differences between
K-Seg and two methods from SCT are enhanced in bold.

*p value < 0.0002.
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Discussion

In this paper, we described the development and validation
of a framework for the automatic segmentation of the spinal
cord and spinal canal. This framework also allows us to
calculate the quantitative CSA metric along the spinal cord
for multiple vertebral levels. As stated earlier, segmentation
of the spinal cord, spinal canal and also calculation of the
quantitative CSA metric along the spinal cord became very
interesting for clinicians and researchers. So segmentation
frameworks will develop for automated SC segmentation on
subjects without any pathological damage besides patients
with a range of spinal pathologies, including those with
traumatic SCI [1–5] and MS [9, 10]. In this cohort, we
extended the method (k-seg) by providing segmentation of
both SC and CSF based on the concept of the K-means
clustering algorithm. We demonstrated the ability of k-seg
to accurately segment the SC and CSF on T2-W images

based on the same initialization. The first step of the method
initializes by using a Circular Hough Transform to find an
appropriate circle around the SC and CSF along the cord.
The second phase of the method is applying an AD filter to
remove noises and stabilize the optimization process on the
curvature which was detected in the previous section.
Finally, the k-means clustering algorithm is used to separate
SC and CSF regions from each other. Also, the sensitivity
of the location of initialization for spinal cord segmentation
along the axial plane is important. So to initialize the
algorithm, thoracic regions of the spine (e.g., the middle
slices of the selected volumes) yielded better results
because of the higher contrast and shape of the spinal cord.
Therefore, detecting the spinal cord position (the first can-
didate circle) in these areas is more reliable than the other
parts [18]. Based on this, we concluded that the initializa-
tion of our method in the middle axial slices of the MR
image would obtain better results.

Fig. 2 Examples of spinal cord segmentation on Sagittal and Axial
images. a Example of automatic spinal cord segmentation. The fra-
mework includes segmentation on T2-W MRI data in the sagittal view.
This is a comparison between the original image from left to right with
manual (yellow), PropSeg (green), DeepSeg (blue), and K-Seg(red).
The dice coeficient indicated below each method. b Example of spinal

cord segmentation in axial and sagittal views. The framework includes
segmentation in axial and sagittal views, each color corresponds to one
method related to vertebrae level (lower slice→L2, middle slice→T12,
upper slice→T10), the red color is related to K-Seg, green and the blue
color correspond to DeepSeg and PropSeg segmentation.
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As we mentioned earlier, fully automated methods are
preferred because they are faster, suitable for bigger sam-
ples and not susceptible to the user’s bias. For example,
Koh et al. [22] proposed a 2D active contour on sagittal T2-
W MRI scans using gradient vector flow. Neubert et al. [20]
proposed an automated 3D segmentation method on ver-
tebral bodies and intervertebral discs from MRI based on
statistical shape analysis and template matching of gray
level intensity profiles. De Leener et al. [8, 18, 19] devel-
oped an automatic segmentation method (PropSeg) based
on multiresolution propagating of tubular deformation
models on MR images. Finally, Gros et al. [11] proposed an
original and fully automatic framework (DeepSeg) based on
CNNs applied to the spinal cord morphometry for seg-
menting the spinal cord and/or intramedullary MS lesions,
DCM, NMO, traumatic SCI, ALS, and SYR from a variety
of MRI contrasts and resolutions. Although many of the
abovementioned methods, and in particular the PropSeg and
DeepSeg, perform the segmentation of spinal cord from
images with different contrasts and fields of view very well,
when it comes to the segmentation of the thoracolumbar
cord as compared with the cervical and thoracic cord, these
tools do not work as well since in thoracolumbar cord as
compared with the cervical cord the SNR is much lower and
variation in shape and length of the cord inside the vertebral
column is higher [11, 18]. The segmentation process is
highly dependent on the quality of images and works better
on images with high contrast between SC and CSF regions.
In images with a lower CNR both manual and automatic
segmentation face a lot of difficulties. We hypothesized that

k-seg outperforms the existing protocols for the automatic
segmentation of the spinal in the regions with higher noise
and lower SNR and CNR. We were able to compare the
outcome of our segmentation protocol with other protocols
in different slices across the thoracolumbar spinal cord.
Interestingly, we could see that as we move to lower slices
in the lumbar cord, the gap between the performance of k-
seg, deepseg and propseg tends to enlarge and we can see
more errors in the results acquired from deepseg and
propseg (Table 1). Besides, as shown in Supplementary
Appendix 1 for Supplementary Figures, by moving from
thoracic segments to the lumbar spinal cord, the level of the
noise increases significantly and SNR decreases conse-
quently. These findings support our hypothesis on the better
performance of k-seg than deepseg and propseg when it
comes to the segmentation of images with a higher level of
noise. Indeed, a better performance by k-seg when it comes
to the segmentation of the spinal cord in areas with a higher
level of noise can be attributed to the utilization of a well-
established denoising filter (AD Filter). Applying a proper
filter on MR images is worth being taken into account
because most of the smoothing filters can suppress impor-
tant details along with the spinal cord segmentation, such as
edges and small scale atrophy. However, AD filter allows us
to combine the two most important attributes of the
denoising algorithm: edge preservation and noise removal.
A comparison between selected filters in our method and
other methods in SCT depicts that the propseg method
uses adaptive contrast properties are included within the
deformable model framework that appropriately deal with

Fig. 3 Cross-sectional areas (CSA) along the spinal cord for twenty
subjects. Mean and standard error of the mean (SEM) extracted from
T2-W images are plotted on the same scale by corresponding vertebral
levels. Significant differences are visible among methods results. Each
color corresponds CSA to one method, the yellow color is presented

by the manual segmentation of spinal cord, the red color is related to
K-Seg, green and the blue color corresponds to DeepSeg and PropSeg
segmentation. Also, each axial slice corresponds to one vertebrae level
(Left slice→L2, middle slice→T12, Right slice→T10) with manual
segmentation.
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potential lack of signal-to-noise ratio [19]. However, this
deformable framework only applies a Gaussian filter
through the model which blurs the image and can hinder the
edge-detection process. Also, no smoothing filter was
mentioned in deepseg method. The motivation behind the
use of the AD filter in k-seg is to overcome the blurring
effects of the Gaussian smoothing approach. In this
approach, the image is only convolved in the direction
orthogonal to the gradient of the image, which ensures
the preservation of edges. Taking this step often requires
to remove image artifacts beforehand to make k-means
clustering more robust and efficient to segment SC/CSF
intensities. So, we showed that the k-seg algorithm could
follow the shape of the spinal cord even when the cord
and CSF contrast is minimal on a significant portion of the
spinal cord.

Limitations

Despite the good precision of K-Seg in T2-W thor-
acolumbar 3D images especially in the lower part of the
spine, which has poor contrast, our segmentation method
failed in particular occasions (mostly in the initializing step
by detecting a non-target circle among many circles, using
the circular Hough transform method). Also, our segmen-
tation framework is sensitive to the quality of the images,
which could be partly overcome by choosing a suitable filter
to remove noises.

In addition, the selection of T2-W images as an MR
imaging protocol is considered in the present study because
the quality of T1W images in the thoracolumbar region is
very low and many groups are not interested in doing so.
Accordingly, in most databases, only T2-W images are
included. Similarly, in our database, we only had access to
T2-W images and could not get access to images with T1w
contrasts. However, we could test the algorithm on diffu-
sion images from two subjects tested on another scanner
than ours, and the outcome was similar to what we could get
for T2-W images. Since the number of subjects was not
enough for statistical analysis, we decided not to present
them in the current paper.

Conclusion

The current study was aimed to present a fully automatic
segmentation method supporting T2-weighted images
which can work efficiently on the thoracolumbar levels in
the spinal cord. We also compare the outcome of the seg-
mentation using the K-Seg with the outcome of manual
segmentation and existing widely used methods (i.e.,
PropSeg and DeepSeg). The output with similar protocols
showed that K-Seg results match the manual segmentation

better than the other methods especially on the thor-
acolumbar levels in the spinal cord. Future works are nee-
ded to replicate these results on spine images in a different
field of view.
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All the data for this study are available upon request sub-
mitted to the corresponding author.
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