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Immunotherapy represented by anti-PD-(L)1 and anti-CTLA-4 inhibitors has revolutionized cancer treatment, but challenges related
to resistance and toxicity still remain. Due to the advancement of immuno-oncology, an increasing number of novel
immunoregulatory targets and mechanisms are being revealed, with relevant therapies promising to improve clinical
immunotherapy in the foreseeable future. Therefore, comprehending the larger picture is important. In this review, we analyze and
summarize the current landscape of preclinical and translational mechanistic research, drug development, and clinical trials that
brought about next-generation pharmacological immunoregulatory anti-cancer agents and drug candidates beyond classical
immune checkpoint inhibitors. Along with further clarification of cancer immunobiology and advances in antibody engineering,
agents targeting additional inhibitory immune checkpoints, including LAG-3, TIM-3, TIGIT, CD47, and B7 family members are
becoming an important part of cancer immunotherapy research and discovery, as are structurally and functionally optimized novel
anti-PD-(L)1 and anti-CTLA-4 agents and agonists of co-stimulatory molecules of T cells. Exemplified by bispecific T cell engagers,
newly emerging bi-specific and multi-specific antibodies targeting immunoregulatory molecules can provide considerable clinical
benefits. Next-generation agents also include immune epigenetic drugs and cytokine-based therapeutics. Cell therapies, cancer
vaccines, and oncolytic viruses are not covered in this review. This comprehensive review might aid in further development and the

fastest possible clinical adoption of effective immuno-oncology modalities for the benefit of patients.
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INTRODUCTION

Immunotherapies attempt to harness the innate and adaptive
immune system to attack cancer cells." Since early systematic
clinical applications of immunotherapy in oncology, such as the
use of Coley’s bacterial toxin for sarcoma more than 100 years ago
and Bacillus Calmette-Guérin vaccine for bladder cancer in the
1970s,” there has been an exponential evolution accelerated by
the epochal FDA approvals of the first immune checkpoint
inhibitors (ICls), the antibody ipilimumab against anti-cytotoxic T
lymphocyte-associated antigen 4 (CTLA-4) in 2011 and the first
antibodies against anti-programmed cell death protein 1 (PD-1)
pembrolizumab and nivolumab in 20143 (Fig. 1).

Despite the remarkable success achieved by ICls and ICI-based
treatment combinations in some tumor entities,*2° many patients
are unresponsive or experience weak responses?'* and immune-
related adverse events (irAEs),***° stressing the need for novel
immunomodulatory strategies. Multiple host intrinsic and extrinsic
factors associated with ICI response and toxicity have been
reported, providing insights for the development of next-

; https://doi.org/10.1038/541392-024-01826-z

generation immunotherapeutics.®® It would be advantageous if
next-generation immunotherapeutics had distinct mechanisms of
action compared to classical anti-PD-(L)1 and anti-CTLA-4
antibodies and showed significant single-agent anti-tumor effi-
cacy or enhanced the efficacy and safety of classical immunother-
apeutics. Although many drug candidates and associated
mechanisms already have received immense research interest,
some research areas are still in the early stages of mechanistic
exploration and therapeutic development, e.g. regarding aging,
obesity, microbiota, and other systemic and host extrinsic
factors.?® Certain drug candidates have already progressed
significantly into pharmacological development and relevant
therapeutic strategies have evolved with great clinical potential,
as indicated by recent clinical trial results. Considering the large
number of immunomodulatory agents under development,
identifying the dominant drivers of anti-tumor immunity within
the complex anti-tumor immune network remains one of the top
challenges in selecting major therapeutic targets and optimizing
treatment combinations.”” Extensive assessment of biological
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Fig. 1

Timeline showing representative events of drug approval, clinical trials, and key biological discovery for immunoregulatory targets of

anti-cancer therapeutics. Events involving immunoregulatory receptors and bispecific antibodies are in blue and dark gray boxes and those
related to immuno-epigenetics and cytokines are in light gray and pink boxes, respectively. Boxes with solid lines indicate approvals, while
other events are in dashed line boxes. Lines with rounded corners indicate the period of clinical trials. The approvals include the final
approval, the accelerated approval by FDA, and the approval by EMA. Cancer stage descriptions such as advanced or metastatic, pathological
subtypes, and details of combination therapies are omitted. ICl immune checkpoint inhibitors, mAb monoclonal antibody, BiTE bispecific T cell
engager, ALL acute lymphoid leukemia, NSCLC non-small cell lung cancer, MSI-H microsatellite instability-high, dMMR deficient mismatch
repair, TNBC triple-negative breast cancer, SCLC small cell lung cancer, bsAb bispecific antibody, HCC hepatocellular carcinoma, TCR T-cell

receptor, TCE T cell engager, rhlL-2 recombinant human interleukin-2

patient parameters to establish predictive biomarkers and the use
of analytical platforms?® are important to handle inter- and intra-
patient tumor heterogeneity. This requires a deep understanding
but also a panoramic grasp of the current knowledge of
mechanisms of anti-tumor immunity as well as of established
and potential therapeutic targets and immunomodulatory agents.

Therefore, in this review we summarize recent advances in
mechanistic exploration and drug development of therapeutics
targeting relevant anti-tumor immunomodulatory molecules (Fig.
1). Our study is based mainly on articles published between
2017-2022, reports from recent annual meetings of the American
Society of Clinical Oncology, American Association for Cancer
Research, European Society for Medical Oncology, Society for
Immunotherapy of Cancer, and a comprehensive analysis of
clinical trial databases. We do not describe previously developed
drugs that have been removed from the pipelines. Our statistics
are up to December 2022.

First, we present a comprehensive update on the biology and
drug development related to immune checkpoints and co-
stimulatory molecules, highlighting additional inhibitory immune
checkpoints beyond PD-1/programmed cell death ligand 1 (PD-L1)
and CTLA-4. We then summarize the current state of the
development of bi-specific antibodies (bsAbs) and multi-specific
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antibodies (msAbs) in immuno-oncology. Lastly, we discuss recent
advances in exploiting epigenetics and cytokines for the devel-
opment of immunomodulatory anti-tumor therapeutics. In each
section, we discuss the biology and functions of the respective
immune targets in cancer and the developmental status and
clinical trial data of agents acting on these targets.

INHIBITORY CHECKPOINTS AND PROTEIN FAMILIES

Besides the canonical immune checkpoints PD-1 and CTLA-4,
alternative negative regulatory checkpoints have been found
and are focused on by cancer biologists, clinical oncologists,
and industry. Biology and therapeutic potential of the
immunoglobulin (Ig) superfamily (IgSF) members, including
LAG-3, TIM-3, TIGIT, CD47/SIRPa, B7 family members, and
others such as leukocyte Ig-like receptor family, butyrophilin
family, and sialic acid-binding Ig-type lectins, are increasingly
found to be important in T cell-mediated anti-tumor immunity.
In addition, the more recent development of PD-(L)1 and CTLA-
4 inhibitors has sought to generate new agents that can
overcome shortcomings of currently used ICls. These inhibitory
molecules are involved in intricate networks illustrated in
Fig. 2.
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Fig. 2 Antagonistic and agonistic antibodies act on inhibitory immune checkpoints and co-stimulatory molecules respectively to promote
anti-tumoral T cell functions. By blocking the inhibitory receptor-ligand binding process, antagonistic antibodies prevent the activation of
inhibitory downstream signaling in T cells, thereby sustaining the function, proliferation, and survival of T cells (left panel). Beyond the two
first confirmed receptor-ligand pairs, PD-1-PD-L1 and CTLA-4-CD80/CD86, more and more immune checkpoint receptor-ligand pairs have
been identified. Besides the interaction between specific cognate receptor and ligand pairs, inter-relationships exist between certain immune
checkpoints such as PD-1 and TIGIT/CD226. With a certain amount of redundancy and robustness, these inhibitory circuits guarantee
balanced T cell immunity under physiological conditions. However, these mechanisms are utilized by cancer cells and the inhibitory TME to
limit anti-tumor immunity. By promoting trimerization and superclustering, agonistic antibodies promote and amplify downstream signaling
of co-stimulatory molecules to sustain the function, proliferation, and survival of T cells (right panel). Likewise, by upregulating the expression
of receptors and ligands, inter-relationships also exist between co-stimulatory molecules such as CD28 and CD40. Another strategy using
agonistic antibodies is modifying the Fc segment to predispose agonists to bind activating FcyRs for Treg depletion. DC Dendritic cell, cGAS-
STING cyclic GMP-AMP synthase-stimulator of interferon genes, pMHCII peptide major histocompatibility complex class I, PD-1 programmed
cell death protein 1, PD-L1 programmed death-ligand 1, FGL1 fibrinogen-like protein 1, HMGB1 high mobility group box 1, CTLA-4 cytotoxic T-
lymphocyte-associated protein 4, LAG-3 lymphocyte-activation gene 3, TIM-3 T-cell immunoglobulin and mucin-domain containing-3,
CEACAM1 carcinoembryonic antigen-related cell adhesion molecule 1, KIR2DL5 killer cell immunoglobulin-like receptor, two Ilg domains and
long cytoplasmic tail 5, Eomes eomesodermin, TIGIT T-cell immunoreceptor with Ig and ITIM domains, PtSer phosphatidylserine, TLT-2
triggering receptor expressed on myeloid cells 2, PSGL-1 P-selectin glycoprotein ligand-1, SIRP« signaling-regulatory protein a, APC antigen-
presenting cell, NF-xB nuclear factor kappa B, ICOS inducible T-cell costimulator, ICOSL inducible T-cell costimulator ligand, FcyR Fc gamma

receptor, Treg regulatory T cell

Additional checkpoints: LAG-3, TIM-3, and TIGIT

LAG-3: biology, drug development, and therapeutic efficacy. Lym-
phocyte activation gene 3 (LAG-3, CD223) is a membrane protein
sharing homology with CD4.%° It is expressed on T cells, regulatory
T cells (Tregs), B cells, natural killer (NK) cells, and myeloid cells.
Upon activation, its expression is elevated on T cells to prevent
autoimmunity in concert with PD-1°° and is also one of the
hallmarks of exhausted CD8" T cells.>'3? By selectively recogniz-
ing stable complexes of peptide and MHC class Il (pMHCII), LAG-3
inhibits the activity and expansion of CD4" effector T cells and
antigen-specific CD8™ T cells** (Fig. 2). LAG-3 blockade rescues
accumulation and functions of T cells,**™*° especially with PD-1
blockade.*'** Another ligand of LAG-3, galectin-3 also suppresses
CD8" T cells and inhibits immunostimulatory plasmacytoid
dendritic cells.** Fibrinogen-like protein 1 (FGL1) also binds LAG-
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3 and mediates clustering of membrane LAG-3-FGL1 complexes,**
but pMHCII rather than FGL1 may be the major functional ligand
for LAG-3-mediated immunosuppression.*® Surprisingly, LAG-3
can move to the immune synapse and dissociate the tyrosine
kinase Lck from the CD4/CD8 co-receptor to attenuate T cell
receptor (TCR) signaling, even without ligands*® (Fig. 2). In
contrast, LAG-3 induces dendritic cell (DC) activation and
maturation by ligating MHC class Il on DCs,*” and soluble LAG-3
(LAG-3-Ig fusion protein) is feasible to stimulate T cells indirectly
by antigen presenting cells (APCs).*®

Expression of LAG-3 on tumor-infiltrating lymphocytes (TILs)
and peripheral blood cells correlates with early recurrence and
poor prognosis in patients who received anti-PD-1 + anti-CTLA-4
regimen.”~>! Development of drugs targeting LAG-3 focuses on
anti-LAG-3 monoclonal antibodies (mAbs), LAG-3-Ig fusion
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proteins, and bsAbs/msAbs targeting LAG-3 (Table 1 and
Supplementary Table 1). Anti-LAG-3 agent monotherapy was not
as effective as anti-PD-1 antibody in preclinical models but
showed synergy with anti-PD-1 antibody.** Of note, the first anti-
LAG-3 antibody entered into phase lll, relatlimab, received FDA
approval according to higher median PFS (mPFS) of 10.1 months
in combination with nivolumab, compared to 4.6 months
observed with nivolumab monotherapy in the RELATIVITY-047
study in melanoma patients; moreover, the relatlimab/nivolumab
combination appeared to be less toxic compared to nivolumab
plus plus ipilimumab.>> Other combinations like miptenalimab
plus ezabenlimab and favezelimab plus pembrolizumab are still
under phase | exploration (Table 1 and Supplementary Table 1).
LAG-3-lg fusion protein eftilagimod alpha plus pembrolizumab
caused an overall response rate (ORR) of 33% and 50% in
pembrolizumab-refractory and anti-PD-1 naive non-small cell lung
cancer (NSCLC) patients, respectively,®® and showed a similarly
considerable effect®® in head and neck squamous cell carcinoma
(HNSCC) patients, thus was granted fast track status by FDA for
NSCLC and HNSCC. The LAG-3 pathway has thus now been
established as the third immune checkpoint pathway that can be
inhibited to stimulate anti-tumor immune responses with clinical
benefit.

TIM-3: biology, drug development, and therapeutic efficacy. T cell
immunoglobulin domain and mucin domain 3 (TIM-3, HAVCR?2) is
a membrane protein whose functions and signaling are not fully
clear hitherto.>® TIM-3 is expressed on T cells, DCs, NK cells, and
Tregs with distinct functions. TIM-3 can be expressed on activated
CD4" Th1 cells, mediating immune inhibition.**>® On tumor-
specific exhausted CD8" T cells, expression of TIM-3 is upregu-
lated.”® Galectin-9, carcinoembryonic antigen cell adhesion
molecule 1 (CEACAMT), high mobility group box protein 1
(HMGB?1), and phosphatidylserine have been identified as ligands
of TIM-3 but none of them seems exclusive (Fig. 2). Galectin-9 and
CEACAM1 suppress anti-tumor immunity by ligating TIM-3 to
inhibit type 1 immunity.5®®" Expression of intracellular protein
Bat3, an inhibitor of TIM-3, is reduced in TIM-3"CD4" exhausted
T cells.®#%3 A current hypothesis is that Bat3 binds the cytoplasmic
tail of TIM-3 and recruits tyrosine kinase Lck, impeding TIM-3
immunosuppression.>® However, co-stimulatory activity of TIM-3 is
also purported, based on the finding that its transmembrane
domain recruits it to the immune synapse, its cytoplasmic tail
enhances TCR-signaling® and its expression promotes the
development of short-lived effector T cells®® and CD8" T cell
responses.®®

On conventional DCs, TIM-3 mainly displays inhibitory functions.
TIM-3 on tumor-infiltrating DCs sequesters nucleic acid-carrying
protein HMGB1%” and thus can silence the immunogenicity of
nucleic acids, resulting in reduced downstream cyclic GMP-AMP
synthase (cGAS)-stimulator of interferon genes (STING) activation
with reduced interferon-l, CXCR3, and CXCL9 production.?®%° In
the CD8" DC subset, TIM-3 recognizes phosphatidylserine and
mediates phagocytosis of dying cell-associated antigens, which
might silence tumor antigenicity’® (Fig. 2). Loss of TIM-3 activates
NLR family pyrin domain containing 3 (NLRP3) inflammasome and
subsequent interleukin (IL)-1 and IL-18 production, thus main-
taining CD8" effector and stem-like T cells.”"”? Moreover, TIM3 "
Tregs induce stronger immunosuppression and express upregu-
lated immunosuppressive markers.”?

In human cancers, TIM-3 expression indicates an exhausted
immune phenotype and correlates with poor outcome.”*”?
Blockade of TIM-3 plus PD-1 showed synergy in preclinical
models.28! Representative TIM-3 blocking antibodies cobolimab,
sabatolimab, and LY3321367 showed good safety but limited
efficacy in combination with anti-PD-1 antibody in phase |
trials®>™®* (Table 1 and Supplementary Table 1). However, in
hematological malignancies, sabatolimab induced encouraging
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ORR of 61% and 47% in two different entities in combination with
decitabine® and received FDA fast track designation.?® A better
understanding of TIM-3 biology and combination with other
immunotherapeutic approaches may help overcome resistance
and achieve durable responses.

TIGIT: biology, drug development, and therapeutic efficacy. The T
cell immunoreceptor with Ig and ITIM domains (TIGIT) pathway is
a complex immunoregulatory pathway due to the five different
output receptors: TIGIT, CD96, CD112R (poliovirus receptor-related
immunoglobulin  domain-containing (PVRIG)), CD226 (DNAX
accessory molecule-1 (DNAM-1)), and killer-cell Ig-like receptor
2DL5 (KIR2DL5), and four ligands: CD155 (poliovirus receptor
(PVR)), CD112 (poliovirus receptor-related (PVRL)2, Nectin-2),
CD111 (PVRL1, Nectin-1), and Nectin-4 (PVRL4) that have been
identified so far (Fig. 2). Among the five receptors, TIGIT, CD96,
CD112R, and KIR2DL5 mediate immunosuppression, while CD226
activates immunity. TIGIT interacts with CD155 and CD112 to
inhibit activation and cytotoxicity of T and NK cells®”®8 (Fig. 2). It is
expressed on memory and effector CD8" T cells and NK cells, and
its expression is elevated in the tumor microenvironment (TME)
and is associated with their exhaustion.®*° TIGIT also charac-
terizes highly suppressive regulatory B cells®' and Tregs.”*** CD96
ligates CD155 but not CD112, resulting in inhibition of T and NK
cell activity.>**® Blockade of CD96 in animal models induced
hyperresponsive NK and T cells with decreased tumor develop-
ment and metastases.”>*”?® CD112R selectively binds CD112 and
similarly suppresses CD8" T and NK cells.’®'°2 KIR2DL5, a receptor
on NK cells and T cells, specific for CD155,'%'%* can be engaged
by CD155 to inhibit cytotoxicity.® Co-stimulatory CD226
competes with the four co-inhibitory receptors for binding to
CD155 and CD112,'% and can promote graft-versus-host disease
(GVHD).'”” CD226 is also involved in lymphocyte function-
associated antigen 1 (LFA-1)-mediated co-stimulatory signal-
ing.'%®'%° CD226-CD155 interaction also plays a role in regulating
NK cell-mediated cytotoxicity toward cancer cell."'%'"

A remarkable feature of this pathway is the affinity disparity
between the ligand-receptor interactions (Fig. 2). As reported,®®'"?
CD155 has the highest affinity to TIGIT and lower affinity to CD96
and CD226. CD112 binds TIGIT and CD226 less strong than CD155,
and does not bind CD96.°5''? CD111 only interacts with and
stabilizes CD155.""® Nectin-4 only interacts with TIGIT.""* These
preferences bring about competitive binding dynamics, explain-
ing the mechanism of immunosuppression mediated by this
network-like pathway in cancers. Due to this, TIGIT and CD96
compete with CD226 to bind CD155/CD112 dominantly,”>%'"3
and TIGIT can disturb the dimerization of CD226 for CD226
activation in cis.®® Other mechanisms include the upregulation of
the transcription factor eomesodermin in T cells of the TME which
inhibits CD226 expression, making TILs non-responsive to anti-PD-
1 therapy,'®® and PD-1-mediated direct inhibition of phosphoryla-
tion of CD226 and CD28.''° These effects on CD226 disrupt its
stimulatory function. Taken together, TIGIT blockade abrogates
the inhibitory effect by TIGIT and CD96 and is CD226-dependent,
explaining anti-TIGIT and anti-PD-1 synergy.”®''®

Expression of CD155 and CD112 is elevated in some human
cancers,'%""7712% and TIGIT and CD96 are upregulated on T and
NK cells in a series of malignancies, which is associated with poor
prognosis and poor response to anti-PD-1 therapy, whereas
benefit is observed with TIGIT and/or CD96 blockade.''”/'18125-131
Anti-TIGIT mAb is the major agent type targeting this pathway,
with fewer anti-CD96, anti-CD112R, and anti-CD155 mAbs (and
recombinant poliovirus agent for CD155) available (Table 1 and
Supplementary Table 1). Nectin-4 is overexpressed in many
cancers and is mainly investigated as antibody-drug conjugate
(ADCQ) target, i.e., as a tumor-associated antigen (TAA). Anti-TIGIT
mAbs evaluated in phase |ll trials include vibostolimab,
tiragolumab, ociperlimab, and domvanalimab (Table 1 and
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Supplementary Table 1). Anti-TIGIT mAbs are generally combined
with anti-PD-1 mAb. Data of the phase Il CITYSCAPE trial showed
an ORR of 69.0% in the PD-L1 tumor proportion score (TPS) = 50%
group and 38.8% in the intention-to-treat group using tiragolu-
mab and atezolizumab. The mPFS and median OS (mOS) of
combination therapy also nearly doubled in the intention-to-treat
group with quadrupled mPFS in the PD-L1 TPS = 50% group (16.6
vs. 4.1 months)."*? However, the phase Ill SKYSCRAPER-01 and
SKYSCRAPER-02'%3 trials combining tiragolumab and atezolizu-
mab did not meet their PFS endpoint compared with atezolizu-
mab, although the OS endpoint is immature. Other phase llI
studies of tiragolumab are currently ongoing (Table 1 and
Supplementary Table 1). A phase | study of vibostolimab showed
an ORR of 26% in anti-PD-(L)1-naive NSCLC patients with
pembrolizumab.'** Other phase Il and Ill studies of vibostolimab
are ongoing.

Myeloid checkpoint: CD47

CD47 (integrin associated protein (IAP), MER6, OA3) is expressed
on normal tissue cells, cancer cells, and immune cells."*>"3¢ It
primarily exerts innate immune inhibitory effects through the
signal-regulatory protein (SIRP) family proteins, especially SIRPa
and SIRPy expressed on myeloid cells'*”~'*' to inhibit phagocy-
tosis signals (Fig. 2). Compared to SIRPa, SIRPy has much lower
affinity for CD47,'*? rendering SIRPa the main study focus. SIRPa
has three Ig-like domains, a transmembrane domain, and a
cytoplasmic tail carrying an ITIM and an immunoreceptor tyrosine-
based switching motif (ITSM).'**7'* It is predominantly expressed
on myeloid cells, including macrophages, DCs, mast cells, and
neutrophils.'*%141:146:147 gimilar to other inhibitory receptors, upon
binding of CD47, activated ITIM and ITSM in SIRPa and the
downstream signaling cascade mediated by SHP-1/2, Csk, and
Grb-2 contribute to the weakened phagocytic effects,'## 1421487150
CDA47 also interacts with pro-phagocytic SLAMF7 in cis to inhibit
phagocytosis triggered by SLAMF7'>' as well as integrins and
thrombospondin-1 in the extracellular matrix to activate integrin
signaling and platelet activation.'>>™'>*

Under physiological conditions, CD47 participates in various
biological processes and reduces excessive destruction of cells
and cellular components, including red blood cells (RBCs),'>%"'*
platelets,”*®> and neuronal synapses.”*'*® Under pathological
conditions, phagocytosis is abnormally attenuated through the
CD47-SIRPa  axis and mediates retention of pathological
RBCs,">*"%° macrophage dysfunction,’®""'%? and abnormal prolif-
eration of brain tissue.'®® Regarding anti-tumor immunity, CD47 is
expressed in various hematological and solid tumors,'®4"'%”
promoting tumor survival by evading the phagocytic activity of
innate immune cells, laying the foundation for blocking the CD47-
SIRPa axis to enhance tumor cell killing by phagocytosis. When the
CD47-SIRPa axis is nonfunctional, macrophage clusters'®® and IgA-
mediated anti-tumoral neutrophils'® can generate potent anti-
tumor responses. This axis also interferes with adaptive immunity.
T cell responses are regulated by this axis indirectly via myeloid
cells'® and directly through the CD47 and SIRPa expression on
T cells.'367162170 D47 expressed on CD8™ T cells promotes their
adhesion to cancer cells and sensitizes melanoma to ICls when
binding to SIRPa on cancer cells,'””" and it also shields CD8™" T cells
from necroptosis when interacting with conventional DCs,
promoting the survival and functions of CD8" T cells.'”? These
contrasting roles of the CD47-SIRPa axis in anti-tumor immunity
need further study. Nevertheless, CD47-SIRPa axis blockade has
shown anti-cancer effects and synergy with other anti-
cancer'3¢"3%1*" therapies. However, since CD47 protects RBCs
and platelets from destruction by myeloid cells, inhibiting this
pathway may lead to adverse effects such as anemia'’>"'"® and
thrombocytopenia,'””'7® which requires patients to receive a
preceding low dose priming in the clinic.'"”*'® The Fc-FcyR
interaction required for the anti-tumor activity of anti-CD47 mAbs
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is another contributor to these off-tumor adverse effects.'®’ Thus,
the balance between effect and toxicity is crucial in CD47 drug
development. Current pharmaceutical development focuses on
structural modifications to reduce RBC toxicities as well as on
providing additional pro-phagocytic signals to trigger the optimal
anti-tumor effects of macrophages.'®?

The primary class of early CD47-SIRPa pathway-targeting
drugs have been mAbs. Magrolimab, the most advanced anti-
CD47 antibody, resulted in a high response rate in hematological
tumors (complete response (CR): 53% in untreated acute
myeloid leukemia (AML)/myelodysplastic syndrome (MDS),
10% in relapsed/refractory AML/MDS'’®). Though the phase Il
ENHANCE study for high-risk MDS has been terminated due to
insufficient efficacy, results are still expected from other phase Ill
trials in both hematological and solid tumors (Table 1 and
Supplementary Table 1). Next generation anti-CD47 antibodies
with reduced binding to RBCs due to cell type-specific
glycosylation modification have been developed'®*'88
(Table 1 and Supplementary Table 1), some showing enhanced
safety and efficacy in clinical trials."”*'8"®! L emzoparlimab, an
anti-CD47 IgG4 antibody, enables a unique RBC-sparing property
while retaining strong anti-tumor activity.'®® Due to its promis-
ing early phase results,'¥>"'°* it is now being evaluated in MDS
patients with azacitidine in a phase [l clinical trial
(NCT05709093). Ligufalimab similarly did not associate with
hematological adverse effects and does not require a priming
dose to prevent anemia.'®® CD47-blocking fusion proteins with
reduced binding to RBC and/or additional pro-phagocytic signal
are developed. Although IgG1 possesses the best ability to
induce phagocytosis by macrophages, IgG4 has been the most-
chosen partner for fusion protein development to avoid severe
RBC toxicity at the expense of some anti-tumor activity. Notably,
ontorpacept exhibits only weak binding to RBCs, thus allowing
the use of IgG1 to induce stronger phagocytosis.'® It is
undergoing phase Il evaluation for diffuse large B cell ymphoma
and leiomyosarcoma (Table 1 and Supplementary Table 1), and
preliminary results are promising.'*%'%’

Combinatorial therapy has become another mainstream
strategy. The current focus is on the use of azacitidine with or
without venetoclax in hematological tumors.'”>'981%% The use
of chemotherapy increases the overall “eat me” signal of
tumors, which synergizes with blockade of the “don’t eat me”
signal and leads to enhanced phagocytic effects. Both the
doublet'®® and triplet'”> combination resulted in promising CR
rates in AML patients (doublet: over 30% in newly diagnosed
patients; triplet: over 40% in newly diagnosed patients, over
10% in relapsed/refractory patients). In solid tumors, combina-
tions with PD-(L)1 inhibitors and standard chemotherapy and
radiotherapy receives extensive interest (Table 1 and Supple-
mentary Table 1). Though efficacy results of phase I/Il trials are
mixed,'’32%°72% most studies reported a feasible safety profile
and preliminary signs of action, promoting further investiga-
tion. In previously treated small cell lung cancer patients,
combined use of chemotherapy and nibrozetone, a first-in-class
small molecule MYC and CD47 downregulator, resulted in 1/26
CR and 6/26 partial response.?°® Ligufalimab, cadonilimab, and
chemotherapy resulted in an ORR of 75% and a disease control
rate (DCR) of 100% in 8 gastric or gastroesophageal junction
cancer (GC/GEJC) patients.?°’

In general, though the CDA47-SIRPa axis receives immense
interest regarding biological exploration and shows promising
results in early clinical trials, there are still gaps to be filled in our
knowledge about its immunomodulatory mechanisms, and its
pharmacological development is in an early stage with ongoing
phase | and Il clinical trials. Further validation is still required, and
there will be more novel agents applying innovative drug delivery
methods®®’'® or engineered protein forms and antibody
format®'* entering clinical trials in the near future.

SPRINGERNATURE

B7 family proteins

The B7 family includes ten transmembrane glycoproteins identi-
fied so far: B7-1 (CD80), B7-2 (CD86), B7-H1 (PD-L1, CD274), B7-DC
(PD-L2, CD273), B7-H2 (ICOSL, CD275, B7h), B7-H3 (CD276), B7-H4
(VTCNT1), B7-H5 (VISTA), B7-H6 (NCR3LG1), and B7-H7 (HHLAZ2). PD-
L1, PD-L2, CD80, and CD86 have been thoroughly investigated,
and B7-H2 and B7-H6 are recognized as co-stimulatory, hence
they are not discussed here. B7-H3, B7-H4, and B7-H7 are
immunoreceptor ligands expressed on APCs or cancer cells, while
B7-H5 simultaneously acts as a ligand or receptor (Fig. 2). In the
following, we focus on B7-H3, B7-H4, and B7-H5, whose drug
development has reached the stage of clinical trials.

B7-H3. B7-H3 (CD276, B7RP-2) is expressed on non-
hematopoietic cells and APCs. It can also be induced on T cells,
NK cells, and many types of cancer cells.?'>?'” B7-H3 inhibits T
cell immunity, especially Th1 immunity by acting directly on
T cells*'®2' or indirectly on DCs.?*° However, a co-stimulatory
receptor, triggering receptor expressed on myeloid cells (TREM)-
like transcript 2 (TLT-2, TREML2) expressed on CD8" T cells
constitutively and on activated CD4™ T cells, has been identified as
a receptor of B7-H3, and their ligation promotes T cell immunity®?'
(Fig. 2). Another study claimed that B7-H3 on cancer cells reduced
Tregs in the TME, enhancing anti-tumor immunity.?*? But still,
more studies consider B7-H3 as immunosuppressive in cancer.
Recentlz/, IL20RA has been identified as one of the receptors of B7-
H3,'%4223 and its expression is found predominantly on epithelial
cells and carcinomas,*** suggesting cancer cell-cancer cell B7-H3-
IL20RA interaction in cis or in trans. IL20RA upregulates PD-L1
expression by the JAK1-STAT3-SOX2 cascade, > and B7-H3
maintains STAT3 levels to express CCL2, polarizing macrophages
in the TME to the M2 phenotype.?*®

B7-H3 is expressed in a series of cancers, and higher expression
is associated with worse prognosis.??’ 3¢ Moreover, B7-H3 is co-
expressed with other immunosuppressive molecules such as PD-
L1, B7-H4, and IDO1 on cancer cells.*” B7-H3 is also upregulated
on APCs in the TME, suppressing T cell immunity.>*® Anti-B7-H3
mAb induced CD8" T and/or NK cell dependent anti-tumor
immunity.??”23924° However, due to the yet elusive immunobiol-
ogy of B7-H3, the therapeutic approach using it as a TAA to
develop CAR-T cells, ADCs, or bsAbs is more common. B7-H3 ADCs
showed favorable efficacy preclinically®*'?*? and have entered
clinical trials, for example MGCO018, mirzotamab clezutoclax, and
DS-7300a (Table 1 and Supplementary Table 1). Enoblituzumab is
an Fc-enhanced anti-B7-H3 mAb inducing antibody-dependent
cellular cytotoxicity (ADCC)-mediated anti-tumor activity;?** phase
| studies and a phase Il prostate cancer study (NCT02923180)
demonstrated favorable safety and efficacy. However, another
phase Il study of enoblituzumab with anti-PD-1 mAb or PD-
1XLAG-3 bsAb in HNSCC has been closed due to safety concerns
(NCT04634825). B7-H3 targeting agents may be mainly developed
as ADCs and msAbs in the future. The anti-tumor activity of B7-H3
mAb caused by interference with B7-H3 ligand-receptor interac-
tion should be further clarified.

B7-H4. B7-H4 (V-Set Domain Containing T Cell Activation
Inhibitor 1 (VTCN1), B7x, B7S1) is expressed on hematopoietic
cells and especially on myeloid APCs. B7-H4 ligation of the not yet
identified putative receptor on T cells mediates profound
inhibitory effects on T cell immunity®** (Fig. 2). B7-H4 limits Th1
and Th17-mediated autoimmunity®*> and neutrophil-dependent
innate immunity.?*® Inhibition of B7-H4 can partially restore CD28
or inducible T-cell costimulator (ICOS) deficiency-mediated inhibi-
tion of T cell proliferation and functions.**’

Expression of B7-H4 is upregulated in several cancers and is
related to worse prognosis.>3#237248-251 |ts expression is also
complementary to PD-L1 expression in lung cancer.?>??>3 B7-H4 is
expressed on immunosuppressive tumor-associated macrophages
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(TAMs) in the TME>** Its expression is stimulated by STAT3
activated by IL-6 and IL-10 produced by TAMs in an autocrine
manner, and this autocrine loop is induced by Tregs recruited by
CCL22 secreted from TAMs.2>>%¢ B7-H4 expressed on DCs in the
TME interacts with its putative receptor on CD8" T cells to induce
T cell dysfunction.®” Combinatorial blockade of B7-H4 and PD-1
synergistically enhanced anti-tumor immunity in a preclinical
study.?>” However, two studies indicated a co-stimulatory role of
B7-H4 in anti-tumor immunity®>® and renal immunopathy.>*® As
B7-H4 is generally regarded as a co-inhibitory ligand, its precise
function should be clarified by identifying its receptor.

In line with inhibitory properties of B7-H4, anti-B7-H4-blocking
antibodies showed encouraging preclinical anti-tumor effi-
cacy.?>7%50261 Anti-B7-H4 mAb has entered clinical trials including
first-in-class antibody alsevalimab and NC762 (Table 1 and
Supplementary Table 1). Enroliment for phase Ib monotherapy
and phase la combinatorial therapy for alsevalimab is ongoing.

B7-H5. B7-H5 (V-domain Ig suppressor of T cell activation (VISTA),
PD-1H) contains one PD-L1-like extracellular IgV-like domain.
Human B7-H5 lacks immunoreceptor tyrosine-based inhibitory
motif (ITIM) but possesses three intracellular SH3 binding motifs,
suggesting roles as both receptor and ligand, and bidirectional
signaling. B7-H5 is primarily expressed on hematopoietic cells
including myeloid APCs and T cells, and is predominantly
expressed higher on the former ones.?®>%* As a ligand, B7-H5
on APCs ligates VSIG3, P-selectin glycoprotein ligand 1 (PSGL-1),
and less confirmed VSIG8 on T cells?®*2% thus inhibiting T cell
functions?®® (Fig. 2). B7-H5 on T cells regulates naive-T cell
quiescence, suppresses CD4" T cell immunity as a receptor,?*”2%8
and is nonredundant with PD-1.2%° Absence of functional B7-H5
exacerbates autoimmunity by impairing B7-H5-mediated quies-
cence of self-reactive naive T cells.2%827°-272 B7-H5 on T cells,
neutrophils, and DCs can transmit inhibitory signals as a receptor,
reducing their activation and functions.?’® B7-H5 is upregulated
on APCs and Tregs in the TME but not predominantly on cancer
cells. 232737275 |t can also be upregulated on TAMs after activation
of histamine receptors, resulting in downregulation of histamine-
mediated allergy or tumor inflammation.?’®?”” Moreover, in the
hypoxic TME, upregulated hypoxia-inducible factor-1a elevates
B7-H5 expression on myeloid-derived suppressor cells (MDSCs).2”®
Meanwhile, this acidic TME promotes B7-H5-PSGL-1 binding,?%*2%¢
inducing enhanced immunosuppression.

As a potential therapy, B7-H5 blockade suppressed tumor
growth by enhancing the infiltration, proliferation, and effector
function of T cells, and reducing B7-H5" MDSCs and Tregs.?’3%7#
Anti-B7-H5 mAb HMBD-002 and onvatilimab, and small molecule
inhibitor CA-170 have entered clinical trials (Table 1 and
Supplementary Table 1). HMBD-002 reversed B7-H5-induced
immunosuppression and inhibited tumor growth.?”® A phase |
study of HMBD-002 + pembrolizumab is ongoing (NCT05082610).
CA-170 increased CD8" T cell infiltration, decreased infiltration of
MDSCs and Tregs, and provoked almost complete suppression of
lung cancer when combined with a peptide vaccine.®° CA-170
monotherapy induced clinical benefit rate (CBR) and mPFS of 75%
and 19.5 weeks in immunotherapy-naive NSCLC patients in a
phase | study,?®' and CBR of 68.18% in this population in a phase Il
study.??

Structurally or functionally optimized anti-PD-(L)1 and anti-CTLA-
4 agents

Meanwhile, a relatively large number of alternative ICls targeting
PD-1, PD-L1, and CTLA-4 have been developed. A major aim of
current drug development is to overcome limitations of existing
ICls. New antibodies such as toripalimab, sintilimab, and
spartalizumab are specifically designed to bind epitopes of PD-1
so far not targeted, reinforcing affinity and PD-1 saturation, and
have shown considerable clinical efficacy.?®>?%* Besides, the
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binding to Fc-gamma receptors (FcyRs) is minimized in tislelizu-
mab or eliminated in penpulimab, impairing antibody-dependent
macrophage-mediated killing of T effector cells. Novel anti-CTLA-4
antibodies such as AGEN1181 are Fc-engineered to prompt Treg
depletion.?®® Further development utilizes innovative molecule
structures. The unique design of the novel anti-PD-L1 antibody
envafolimab fusing a single Fab domain to an ADCC/complement-
dependent cytotoxicity (CDC)-silent Fc domain can improve tumor
penetration and subcutaneous injectability.?*® Probody technique-
based anti-PD-L1 pacmilimab is proteolytically conditionally
activated in tumor tissue, and may thus reduce off-target toxicity.
In summary, improvement strategies for new anti-PD-(L)1 and
anti-CTLA-4 antibodies include (1) binding previously not yet
targeted epitopes of PD-1 (e.g. toripalimab, sintilimab, and
spartalizumab), (2) Fc engineering, either abating/eliminating or
enhancing binding of the antibody Fc segment to Fc receptors,
and (3) adapting new structures (e.g., envafolimab and pacmili-
mab). In the second strategy, the Fc segment can be silenced to
avoid disturbance from FcyRs (e.g., tislelizumab, penpulimab, and
prolgolimab). Alternatively, binding of FcyRs by anti-CTLA-4
antibodies can be enhanced, facilitating efficient Treg depletion
(e.g., botensilimab and porustobart). Another approach involves
enhancing binding to the neonatal Fc receptor, thereby extending
half-life of the antibody (e.g., pucotenlimab).?®” Approaches are
further diversified by introducing RNA interference and small
molecule inhibitors, not only aiming at blocking receptor/ligand
interaction but instead kinases or other pathways regulating
immune checkpoint activities, resulting in very diverse approaches
of anti-PD-1/PD-L1 and anti-CTLA-4 agent development. At
present, more than 30 anti-PD-1/PD-L1 and more than 10 anti-
CTLA-4 agents so far without FDA approval are under clinical
investigation (Table 1 and Supplementary Table 2).

CO-STIMULATORY MOLECULES OF T CELLS

T-cell activity is not only regulated by inhibitory checkpoints but
also by positive co-stimulatory molecules. To initiate anti-cancer
immunity, activation signals from CD28 and other positive co-
stimulatory molecules are needed for naive-T cell priming. The use
of ICls, e.g., of PD-(L)1 blockers, does not appear promising in the
case of insufficient T cell priming, as in “cold” tumors and non-
responsive patients. For successful priming, T cells need additional
signals from molecules including IgSF member ICOS and tumor
necrosis factor (TNF) receptor (TNFR) superfamily (TNFRSF)
members CD40, GITR, OX40, 4-1BB, and others for further
activation, proliferation, and differentiation (Fig. 2). After the first
two activation signals from the TCR/CD3 complex-MHC molecule
interaction and CD28-CD80/CD86 interaction, TNFRSF member
CD40 on APCs interacts with its ligand CD40L on T cells.?®3%%° This
elicits further signals driving T cell activation and DC maturation
and reciprocally enhances CD28 and CD80/CD86 expression,
resulting in a feedforward cycle.?®® Thereafter, additional TNFRSF
co-stimulatory molecules preserve T cell function by their ligation
and downstream signaling. Besides CD40, these molecules include
0X40, 4-1BB, GITR, TNFR1/2, CD27, and others. B7-H2/ICOSL and
B7-H6 are regarded as ligands of ICOS and NKp30, respectively.
Our discussion focuses on ICOSL and ICOS as the physiology of B7-
H6 is not well known yet. For TNFRSF members, our discussion
focuses on CD40, OX40, and 4-1BB.

Targeting co-stimulatory molecules with agonistic antibodies:
mechanism of action and characteristics

The main strategy for utilizing these molecules in cancer
immunotherapy is developing agonistic antibodies or agonists.
Different from ICls blocking receptor/ligand interactions and TAA
mAbs inducing ADCC/CDC, co-stimulatory agonists are meant to
stabilize bridging and immune synapses formed by co-stimulatory
ligand-receptor interaction between APCs and T cells, stabilize
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receptor oligomerization and superclustering to mediate strong
activation®*>?®" (Fig. 2). Therefore, the efficiency of agonists is
affected by unique factors. First of all, agonists with very high
affinity or at excessive dose can lose their agonistic function,”?
suggesting a bell-shaped affinity-agonism and dose-response
relationship and an optimal affinity and dose. Secondly, agonistic
antibodies can bind both natural ligand binding sites and
exclusive epitopes.??%?%32% For example, different domains of
CD40 are associated with agonistic or antagonistic effects of anti-
CD40 antibodies.?®> Characterizing the antibody binding epitope
is therefore very important for agonist development.

Moreover, the interaction between the antibody Fc domain and
FcyRs can induce both agonist and ADCC/CDC effects. Except for
the inhibitory FcyRIIB, other FcyRs are activating and FcyRI has the
highest affinity for the Fc region. Binding FcyRIIB is proposed to
promote target receptor crosslinking and to maintain immune
synapses, thus providing true agonism??>?°' (Fig. 2). Instead,
binding activating FcyRs can elicit ADCC, which can be utilized to
deplete Tregs, especially using the IgG1 isotype with the strongest
binding to activating FcyRs*°%%°" (Fig. 2). Therefore, agonists can
either activate anti-cancer immune cells or deplete immunosup-
pressive populations. However, issues might arise from indis-
criminate ADCC triggered by activating FcyRs, depleting Tregs but
also effector cells. Binding activating FcyRs also contributes to
toxic side effects, e.g., in case of 4-1BB agonists.>?*?%” For these
reasons, Fc engineering is crucial and has been shown to be highly
useful for the development of pure agonists by removing the Fc
segment,?®”?*® mutation methods abating Fc-FcyR interactions®®®
or selectively enhancing Fc-FcyRIIB binding. 3%

In particular, human IgG2 agonists can activate co-stimulatory
molecules including CD40, 4-1BB, and CD28 independent of
FcyRs.22%3%" Later studies showed that agonists with rigid
conformation constrained by “tight” hinge region promote
clustering of co-stimulatory molecules®®' % and tend not to
bind excess epitopes mediating antagonism as is the case for
more flexible antibodies,>*'%* thus providing sufficient agonism
even without FcyRs,>®> and this phenomenon exists on natural
IgG2 isotype mAb.301302

IgSF co-stimulatory receptor: ICOS

ICOS (CD278) is the receptor of ICOSL (B7-H2, CD275, B7h). Upon
initial activation of TCR and CD28 signaling, ICOS is upregulated
on T cells and this can non-redundantly enhance T cell
immunity?®8290291 \while 1COS is constitutively expressed on
Tregs.?®" ICOSL is constitutively expressed on APCs.?® After
activation, ICOS induces phosphoinositide 3-kinase (PI3K)-Akt
signaling,®® mammalian target of rapamycin (mTOR) % and
nuclear factor of activated T cells (NFAT)-responsive genes®®° in
T cells.

Anti-ICOS agonistic antibodies currently under development
include vopratelimab and alomfilimab (Table 1 and Supplemen-
tary Table 3). The widely reported IgG4 pure agonist feladilimab
has been removed from the GlaxoSmithKline pipeline due to its
unsatisfactory clinical activity in phase Il studies. The IgG1 mAbs
vopratelimab and alomfilimab are designed to deplete intratu-
moral Tregs. Although vopratelimab plus nivolumab only elicited a
total ORR of 2.3%, patients with ICOSM9" CD4™" effector T cells had
longer PFS and OS than patients without these cells (6.2 vs. 1.9
and 20.7 vs. 9.0, months).>®® This finding guided the patient
selection for the phase Il SELECT study in NSCLC, where the
combination of vopratelimab at 0.03 mg/kg with pimivalimab (a
PD-1 inhibitor) yielded an ORR of 40% and a 6-month PFS rate of
80%. However, the study did not reach the primary endpoint of
tumor shrinkage between vopratelimab plus pimivalimab and
pimivalimab monotherapy groups>®” Alomfilimab depleted
ICOS"9"  Tregs, had monotherapy anti-tumor efficacy, and
improved anti-PD-L1 efficacy in a pre-clinical study.*®® According
to a preliminary report there were 5 OR cases out of 103 patients
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in a phase I/ll trial testing alomfilimab + atezolizumab.?®° In
summary, ICOS drug development is still challenging.

TNFRSF co-stimulatory receptor: CD40, OX40, and 4-1BB

Upon ligand trimer ligation, TNFRs on T cells trimerize to recruit
TNFR-associated factor (TRAF)1-6 in different preferences and
activate distinct downstream adapters but predominantly con-
verge at nuclear factor-kB (NF-kB) signaling.”®>?°® According to
the chronological impact on T cell activation as discussed above,
we first discuss CD40, then focus on OX40 and 4-1BB that aroused
most incentives of industries. Unlike OX40 and 4-1BB, the
development of GITR agonists has been largely terminated due
to limited responses.>''> Similarly, agents targeting the CD27-
CD70 pathway, such as the widely reported CD27 agonist
varlilumab and CD70 agonist cusatuzumab, have also been
removed from the pipelines of Celldex and Argenx, respectively,
due to unfavorable developmental prospects. Likewise, the
development of TNFR1/2 agonists remains immature, with almost
all agents still under preclinical investigation.>'®*'” Therefore,
other TNFRSF receptors, including GITR, CD27/CD70, and TNFR1/2,
are not the focus of our discussion.

CD40. CD40 (TNFRSF5) expressed mainly by APCs plays an
important role in initial activation of CD4" T cells following the
CD28 signal. CD40L (CD154) mainly expressed by CD41 T cells
ligates and activates CDA40, triggering the maturation of DCs which
is crucial for the efficient priming of T cells including CD4 " Th cells
and cross-primed CD8" T cells*®3'® (Fig. 2). Activated
CD40 stimulates expression of CD80 and CD86 on DCs thus
stimulating the CD28 coreceptor on T cells which in turn leads to
upregulation of CD40L on T cells coordinately driving T cell
stimulation and DC maturation (Fig. 2).

The agents presently developed all entered phase Il clinical
trials (Table 1 and Supplementary Table 3), while only the
development of selicrelumab has been discontinued. SEA-CD40,
mitazalimab, sotigalimab, and giloralimab are I9G1 FcyR-depen-
dent DC activators, whereas YH003 and CDX-1140 are IgG2 pure
agonists. In the phase Ib/ll PRINCE study of sotigalimab plus
chemotherapy * nivolumab in pancreatic adenocarcinoma, the
total ORR was 58% in the phase Ib part,>'? while in phase Il part,
the confirmed ORR of sotigalimab plus chemotherapy was 33%.3'°
Mitazalimab efficiently upregulated CD80/CD86 expression and IL-
12 secretion by DCs, induced antigen-specific T cell proliferation
and anti-tumor activity preclinically.>?°*2' Efficacy evaluation is
ongoing in the phase Il OPTIMIZE-1 study combining mitazalimab
and chemotherapy in pancreatic ductal adenocarcinoma (PDAC)
patients. More studies will be needed on combinations with other
agents or regarding optimizing indication selection.

0X40. OX40 (CD134, TNFRSF4) is temporarily expressed by
memory T cells and activated T cells following TCR/
CD3 signaling and has important roles in their survival, yet it
does not participate in T cell priming.?®2°" It is also constitutively
expressed by Tregs.?®82°! Interestingly, OX40 agonism does not
impair the immunosuppressive functions of Tregs but only confers
them an inflammatory phenotype?? Expression of OX40L
(CD252) is upregulated on APCs after their activation and can be
promoted by activated CD40.2%% After binding of OX40L3%
trimerized OX40 recruits TRAF2-3 and TRAF5 to transmit canonical
and non-canonical NF-kB and other signals®®3?%° (Fig. 2).

Several major companies have withdrawn from the develop-
ment of OX40 agonists due to unfavorable clinical efficacies,***~32¢
indicating the necessity of strategy improvement for further
development. OX40 agonists under development currently
include revdofilimab, HFB301001, and BGB-A445 (Table 1 and
Supplementary Table 3). The IgG1 agonist INCAGN1949 is proven
to FcyR-dependently stimulate OX40 and deplete OXx4ohigh
Tregs3?” However, in a phase I/l study, INCAGN1949
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monotherapy only elicited an ORR of 1.15%,%?® hence it has been
removed from the pipeline of Agenus. Trials of other agonists are
all still ongoing. The development of many OX40 agonists has
been discontinued. Due to the transient expression of OX40, the
timing of OX40 agonist administration may be important.?°’
Further development of OX40 agonists may need either combin-
ing with other agents in an appropriate order or developing
msAbs.

4-1BB. 4-1BB (CD137, TNFRSF9) is also transiently upregulated
following TCR/CD3-mediated signaling mainly on activated
T cells®® but is also detected on NK cells and APCs.?®' Upon
ligation of 4-1BBL (TNFSF9), 4-1BB recruits TRAF1-2 to activate
downstream signaling similar to OX40°%° (Fig. 2). Considering the
substantial liver toxicity at doses of >1mg/kg®?*??*?%* and
modest ORR of 3.8%>%° observed in trials of the first generation
4-1BB agonistic antibodies urelumab and utomilumab respec-
tively, Bristol-Myers Squibb and Pfizer deprioritized the develop-
ment of these two drugs. However, subsequent analyses have
guided further design of 4-1BB agonists. As many reports
indicated, utomilumab showed insufficient clinical monotherapy
activity while urelumab induces strong agonism but also severe
toxicity in a fraction of the patients.”! Structural analysis indicated
that utomilumab blocks natural ligands and binds 4-1BB at
proximal domains while urelumab binds the distal oneZ3%3%
which is consistent with antibodies against CD40.2°> This reflects
the importance of the binding epitopes in the design of agonists.
The toxicity of urelumab mostly stems from Fc-FcyR interaction,
thus Fc engineering is relevant for toxicity management of 4-1BB
agonists. Based on such considerations, next-generation 4-1BB
agonists including ADG106,>*? LVGN6051,%*® AGEN2373,*** and
ATOR1017 have been developed and are being investigated in
clinical trials (Table 1 and Supplementary Table 3). In a phase | trial
of ADG106, treatment appeared to be safe with a DCR of 57%.332
LVGN6051 monotherapy elicited a DCR of 70% and induced
preliminary ORR of 25% combined with pembrolizumab in a phase
I study.3®> AGEN2373 induced a DCR of 26.3% without liver
toxicity.>*® Dose escalation for ATOR-1017 is still ongoing with the
best response of SD observed.>*’

In summary, agonists targeting costimulatory receptors appear
powerful candidates for future immunotherapy and a wave of new
agonistic molecules has been developed many of which have
entered clinical trials. However, agonist development is more
difficult than the development of antagonists because more
parameters have to be taken into account. Clinical trials have
shown that agonist monotherapies scarcely induce favorable
responses hence combination with ICls or other agents may
become particularly important. Next-generation constructs includ-
ing Fc-engineered mAbs, multi-valent mAbs, and bsAbs/msAbs
seem promising.

IMMUNOREGULATORY BISPECIFIC AND MULTI-SPECIFIC
ANTIBODIES

The concept of bsAb targeting two different molecules was
proposed in the last century.>*® At that time, shortly after gaining
insights into immunoglobulin biology, Alfred Nisonoff envisioned
combining two distinct antigen-binding sites within a single
molecule. He connected rabbit Fab fragments with different
specificities using chemical methods and demonstrated bispeci-
ficity of the resulting product.®*° Subsequently, other researchers
advanced the field of bsAbs by introducing hybridoma methods
for mAbs, phage display techniques, and strategies to direct
antibody effects towards various target cells.>*°** However,
bsAbs/msAbs with promising efficacy and acceptable safety had
not been developed until the last decade, when the CD3xCD19
bispecific T-cell engager (BiTE) blinatumomab was approved by
the FDA.3*? Along with the advances in antibody format design,
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and further comprehension of cancer immunology, anti-cancer
bsAbs/msAbs targeting immunoregulatory and other cancer-
related molecules are under intensive development. Here we
present an update of the developmental landscape of these
agents (Fig. 3a-d, Table 2 and Supplementary Table 4) compared
with previous summaries**>>4¢ according to data from the
pipeline and clinical trials. We briefly introduce the characteristics
of anti-cancer immunoregulatory bsAbs/msAbs, mainly discussing
their categories according to mechanism-of-action, and clinical
vista of widely reported agents.

BsAbs/msAbs have both similar and distinct mechanisms of
action compared with mAbs. Fc-FcyR interactions are thought to
be mainly responsible for the toxicity of early bsAbs, as in the case
of the bispecific trifunctional antibody catumaxomab (anti-
EpCAMxanti-xanti-CD3).3*> Thus, now T cell engagers (TCEs) are
mainly constructed without Fc segment or with a functionally
silenced Fc segment. Complete removal of the Fc segment as in
the cases of BiTEs and DARTs has not been the main trend and the
development of many BiTEs and DARTs has been discontinued
due to insufficient efficacy and safety issues. With the Fc segment
silenced by mutation, the leading format of TCE development at
present is the 1+ 1 asymmetric IgG-like form (Fig. 3a). The affinity
toward different targets of a single bsAb can be fine-tuned by
adjusting the two single-chain variable fragment (scFv) arms
independently, thus ameliorating safety or pharmacokinetic/
pharmacodynamic (PK/PD) properties. Moreover, in terms of PK/
PD characteristics, the optimal dose for bsAbs is one that results in
maximum target-bsAb-target trimer formation.>*’

Some bsAbs/msAbs can elicit biological effects that cannot be
induced by the corresponding mAb mixture, therefore they are
called obligate bsAbs/msAbs.>*?> For immunoregulatory anti-
cancer bsAbs/msAbs, this has been demonstrated by redirecting
CD3™ T cells, or immune cells expressing checkpoint receptors or
co-stimulatory molecules to TAA-expressing cells or the TME.
Moreover, bsAbs/msAbs binding different immunoregulatory
targets can, at the same cellular spatial location, target multiple
immunoreceptors or simultaneously enhance the co-stimulatory
signal and inhibit immune checkpoints, hence potentially causing
stronger anti-cancer immunity compared with the mAb mixture.
These bsAbs/msAbs can be divided into cell engagers involving
CD3, CD16a, or TAA-specific TCRs and general immunoregulatory
anti-cancer bsAbs/msAbs combining all other immunoregulatory
molecules or TAAs (Fig. 3¢, d and Table 2).

In summary, bsAbs/msAbs have several potential advantages,
including (1) superior specificity, safety, and therapeutic efficacy
compared with the corresponding mixture of mAbs, (2) the ability
to bridge and recruit immune cells, and (3) dual or multiple signal
regulation. Nevertheless, disadvantages of bsAbs/msAbs still exist
including chain mispairing in production, risk of inducing cytokine
release syndrome (CRS), and the potential for inducing anti-drug
antibodies (ADAs). In bsAb/msAb production, diverse combina-
tions of light and heavy chains could lead to the dilution of the
target bsAb, posing challenges in its isolation and resulting in low
yield >*33%° Innovative development platforms, such as Cross-
Mab**°3*! and orthogonal Fab interface,>*> have emerged to
mitigate the impact of this issue. CRS is a common and distinctive
adverse effect in the clinical application of bsAbs,***7>° mainly
associated with TCEs containing the anti-CD3 arm. It is a systemic
inflammatory response with symptoms ranging from fever,
fatigue, and headache to multiorgan failure, triggered by T cell
activation, with myeloid cells and TNF-a being the main mediators
of the systemic cytokine release.3*3*” To advance the further
application of TCEs, the management of their using and the
handling of adverse events should be improved, for example, with
stepwise dosing, properly using tocilizumab, corticosteroids, or
TNF-a blockade, and supportive®>373>>358 care. Regarding the
induction of ADAs, increased engineering and artificial design may
result in greater differences between bsAbs and endogenous
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immunoglobulins, and bsAbs could therefore potentially contain
new epitopes that elevate antigenicity and subsequently increase
the likelihood of ADA development. Therefore, early monitoring of
immunogenicity is crucial for increasing clinical success rates in
bsAb development.3>°36°

Bispecific T cell engagers

TCEs are representative obligate bsAbs combining anti-CD3 and
anti-TAA scFvs to redirect any T cell to TAA-expressing tumor cells.
TCEs make up nearly half of the immunoregulatory anti-cancer
bsAbs/msAbs currently in clinical trials (Fig. 3b). Of note, the

formats of TCEs comprise BiTE, dual-affinity re-targeting (DART),
IgG-like full-length format, and others>**3** (Fig. 3a). Another type
of TCE utilizing a TAA-specific TCR instead of an anti-TAA scFv is
called ImmTAC. The development of TCEs surged after the
approval of blinatumomab, which, as explained above, is an Fc-
free BIiTE. Blinatumomab yielded a CR rate of 43% in a phase |l trial
in Ph- relapsed or refractory (r/r) B-precursor acute lymphoblastic
leukemia (ALL) patients>®"; it was thus approved by FDA in 2014.
After blinatumomab, the CD3xCD20 IgG-like TCE mosunetuzumab
was conditionally approved in the European Union,*®? and also
received accelerated approval by FDA in 2022 because it induced
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Fig. 3 Various formats and categories of bsAbs. a Examples of common bsAb formats. Short bars indicate the antibody Fab segment, long
bars indicate the Fc segment, and for InmTAC, the Fab segment is linked to an antigen-specific TCR. In the same antibody icon, different color
combinations of the Fab segment indicate the binding to different target proteins. BsAb examples of these formats are in the gray box.
b According to our statistics of bsAbs that have entered clinical trials, the TCEs comprising the anti-CD3 scFv account for about half of all
bsAbs under development at present. The development of other bsAb categories presents a diversified landscape. The two ends of each arc
indicate two targets of bsAbs. Only bsAbs are counted for this figure, with msAbs with higher valency excluded. The data of this figure are
consistent with Table 2 and Supplementary Table 4. The statistic is up to October 2022 and bsAbs with terminated development are excluded.
¢ Prism of developmental strategies of bsAbs. The strategy of bsAb development is mainly to combine four types of targets: immune cell
targets, tumor cell targets, co-stimulatory molecules/immunostimulatory cytokines, and immune checkpoints or other immunosuppressive
molecules. By these designs, immune cells and immunomodulatory signals can be introduced into the TAA-expressing environment. The
black lines on the edge of the prism indicate that the corresponding bsAb category targets the target types directed by the arrows: (1) TCEs
and NKEs; group | general bsAbs: (2) co-stimulatory molecule x TAA or TME protein and (3) co-stimulatory molecule x co-stimulatory molecule;
group Il general bsAbs: (4) inhibitory checkpoint x TAA and (5) inhibitory checkpoint X inhibitory checkpoint; group Il general bsAbs: (6)
inhibitory checkpoint x co-stimulatory molecule. d Mechanism-of-action of bispecific cell engagers and group I-lll general immunoregulatory
anti-cancer bsAbs. DART dual-affinity retargeting, scFv single-chain variable fragment, TAA tumor-associated antigen, HLA human leukocyte
antigen, HSA human serum albumin, TriTAC Tri-specific T cell activating construct, CAF cancer-associated fibroblast, FAP fibroblast activation

protein

«

a CR rate of 60% for r/r follicular lymphoma (FL) in phase | and |l
trials.333%* |ikewise, teclistamab monotherapy was conditionally
approved in the European Union®®> and approved by FDA®® in
2022 for r/r multiple myeloma (MM) due to an ORR of 63.0%, a CR
rate of 39.4% and mPFS of 11.3 months in the phase I/l MajesTEC-
1 trial.3673%8 Because of the reported mOS of 21.7 months in HLA-
A*02:01" uveal melanoma patients in a phase Il trial>®°
tebentafusp became the first approved ImmTAC in 2022.

The indications of TCEs depend on the TAA expression of the
cancer type. For example, TCEs targeting CD20, CD19, and CD38
are all designed for hematological malignancies and are rivals of
CAR-T cell therapies in hematology. The development of TCEs
against solid tumors seems more challenging. Challenges include
heterogeneity in TAA expression, on-target off-tumor toxicity for
normal tissue, the immunosuppressive TME, disordered vascula-
ture, and limited tumor penetration. These challenges might be
overcome by further structure design exploration, antibody avidity
fine-tuning, or therapy combinations.

At present, TCEs that have been approved or entered phase llI
clinical trials all target hematological TAAs. TCEs advanced into
phase Il trials before approval include epcoritamab (CD3xCD20),
glofitamab (CD3xCD20), and elranatamab (CD3xB-cell maturation
antigen) (Table 2 and Supplementary Table 4). For epcoritamab,
the phase I/ll EPCORE NHL-1 study showed an ORR of 68% and
90% for r/r B-cell non-Hodgkin lymphoma (B-NHL) and r/r FL
patients with monotherapy,®’° supporting the ongoing phase I
EPCORE DLBCL-1 study. The majority of trials of glofitamab
combine it with rituximab, obinutuzumab, or tocilizumab pre-
treatment to mitigate cytokine release3”' A phase | study
combining glofitamab and obinutuzumab pretreatment in r/r
B-NHL patients showed an ORR of 53.8% and a CR rate of
36.8%.3"2 For elranatamab, the phase | MagnetisMM-1 study has
demonstrated an ORR of 75% at high doses,*”* supporting two
ongoing phase Il trials.

Beyond conventional TCEs, other components are introduced
in novel formats to refine immunostimulatory properties, PK/PD
attributes, and toxicity (Fig. 3d and Table 2). By introducing a
CD28 immunostimulatory arm, Sanofi designed Fc-silenced
CD3 x CD38 x CD28 TCE with better stimulation of anti-tumoral
T cells.>”* Based on this design, SAR442257 has been developed
and is being tested in a phase | trial (NCT04401020). Another
category called Tri-specific T Cell-Activating Construct (TriTAC)
introduced anti-human serum albumin scFv to improve PK/PD
properties for solid tumors. Preclinical results showed superior
T-cell killing compared with conventional BiTEs targeting EGFR
or PSMA and favorable efficacy,>”® supporting phase I/Il trials
(Table 2 and Supplementary Table 4). To improve safety,
XTENylated protease-activated T cell engagers (XPATs) were
created by introducing scFvs with TME-specific degradable
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masking, thus avoiding off-tumor T cell activation. Sanofi
completed the acquisition of this technology in 2022, including
the HER2 XPAT AMX-818. Moreover, as functions are being
continuously discovered, innate immune cell populations are
also evaluated for immuno-oncology agent development.
BsAbs targeting CD16A/FcyRllla, an activating FcyR, to redirect
NK cells to TAA-expressing cells are called NK cell engagers
(NKEs) or innate cell engagers (ICEs) (Table 2 and Supplemen-
tary Table 4). Unfortunately, AFM13, a representative CD16A X
CD30 NKE for r/r Hodgkin lymphoma, only induced an ORR
below 25% in several trials as monotherapy.>’%3”” However, an
ORR of 88% was induced by combining AFM13 and pembro-
lizumab,>”® suggesting combination therapy for further
development.

General immunoregulatory anti-cancer bsAbs/msAbs

Apart from CD3-engaging TCEs, many other anti-cancer bsAbs/
msAbs target immunoregulatory proteins other than the CD3
complex. Based on the design, this category includes three
subgroups: bsAbs/msAbs stimulating co-stimulatory molecules
(group 1), blocking immune checkpoints (group Il), and the
combination of these two tactics (group Ill) (Fig. 3d, Table 2 and
Supplementary Table 4). These bsAbs/msAbs are currently mainly
developed for the treatment of solid tumors.

Two designs are used for group | bsAbs/msAbs (Table 2). The
first one is by binding co-stimulatory molecules on immune cells
and TAA-expressing tumor cells or fibroblast activation protein on
cancer-associated fibroblasts. The second one is to concurrently
target distinct IgSF/TNFRSF  co-stimulatory molecules on
immune cells.

Group Il bsAbs/msAbs include three subtypes (Table 2). The first
one redirects PD-1/PD-L1 blockade toward TAAs or tyrosine kinase
expression-enriched TME. The second one concurrently targets
different immune checkpoint ligand-receptor axes. Due to
thorough research on ICI combination therapies, the development
of this subtype is the main trend for group Il bsAbs/msAbs and is
also most advanced in this category. The third one targets PD-1/
PD-L1T and immunosuppressive molecules beyond IgSF check-
points, such as CD47 and TGF-BRIl. Group Il includes designs
mainly combining anti-PD-1/PD-L1 and co-stimulatory agonist
arms, and fusion proteins combining ICI and immunostimulatory
cytokines (immunocytokines) (Fig. 3d and Table 2). In a preclinical
study, anti-PD1-IL-2v immunocytokine was proved to have
superior ability to expand tumor-specific CD8% effector-like
T cells and therapeutic efficacy than the (agonistic) IL-2RBy-biased
mutant IL-2 variant IL-2v in tandem with an anti-FAP scFv.>”°
These findings support the clinical development of RG6279, a
bispecific anti-PD1-IL-2v fusion protein directing IL-2v to PD-1*
tumor-reactive T cells.
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Encouraging preclinical results have been reported for various
agents in these bsAb categories, including 4-1BBxHER2,3%° 4-
1BBxCD40,’®"  4-1BBxPD-1/PD-L1,**°®  PD-1xGITRL*** PD-
L1XLAG-3,*%° PD-1xCTLA-4,%% PD-L1xIL-15/IL-15RA®®" bispecifics,
and others. However, in general, except for several group Il bsAbs,
most others are still at early phases of development. BsAbs
entered in phase lll trials include cadonilimab, erfonrilimab,
tebotelimab, retlirafusp alfa, and ivonescimab (Table 2 and
Supplementary Table 4). Cadonilimab is an Fc-silenced symmetric
IgG1 PD-1xXCTLA-4 bsAb. Combined with chemotherapy, cadoni-
limab elicited an ORR of 65.9% in phase I/Il trial for GC/GEJC.3%8 In
the phase I/Il trial for PD-L1 TPS=1% NSCLC, cadonilimab
combined with anlotinib induced an ORR of 62.5%.3%° Thus,
cadonilimab combined with chemotherapy or targeted therapy
elicited excellent ORRs (Table 2). Erfonrilimab is a symmetric full-
length IgG1 PD-1XCTLA-4 bsAb. Combined with chemotherapy,
erfonrilimab induced ORRs of 50.6%, 583%, and 55.6% in
NSCLC,**° ESCC,**' and PDAC patients.>*? A similar ORR of 57%
was also observed combining erfonrilimab and lenvatinib in HCC
patients.>®® Tebotelimab is a PD-1xLAG-3 Fc-preserved DART
molecule. Combined with anti-HER2 mAb margetuximab, tebote-
limab induced a preliminary ORR of 40% in HER2" malignancies.
The phase II/lll MAHOGANY study combining margetuximab and
tebotelimab or retifanlimab + chemotherapy in HER2" GC/GEJC is
ongoing. Retlirafusp alfa is an anti-PD-L1-TGF-II fusion protein. In
phase | trials in advanced solid tumors, NSCLC with EGFR
mutation, and GC, retlirafusp alfa induced medium ORRs of
17.8%,%°* 16.7%,%%> and 19.4%,*°® but an impressive ORR of 44.2%
was observed in the PD-L1" NSCLC cohort*” The efficacy of
retlirafusp alfa needs further confirmation since its design is

similar to bintrafusp alfa, which was removed from the pipeline of
Merck, owing to its inferiority compared to pembrolizumab in a
phase lll trial.>*® Ivonescimab is a symmetric IgG1 PD-1xVEGF
bsAb. Combined with chemotherapy, ivonescimab induced a high
ORR of 40.0% and 76.9% in r/r NSCLC and treatment-naive
NSCLC.3%° At present, excellent ORR endpoints of phase I/l trials
are mostly observed in therapeutic settings combining general
immunoregulatory bsAbs with other treatments. Results of
currently ongoing phase lll trials are eagerly awaited.

IMMUNO-EPIGENETICS

Epigenetics refers to gene expression fine-tuning without changes
in DNA sequence mainly via selective transcription; it mainly
includes DNA methylation, histone modification, and chromatin
remodeling.*®**°" It plays a critical regulatory role in a variety of
physiological and  pathological  processes.*®®™%?  Ne-
methyladenosine (m6A) RNA modification, the most common
RNA methylation, is closely associated with cancer progression,
drug resistance®”**”* and cancer immunity.***~*°> Notably, antag-
onizing m6A modifiers can sensitize tumors to PD-1 blockade in
mice.*%*'° However, most agents targeting m6A regulators are
still in preclinical development and none has entered clinical
evaluation.*'" Thus, considering the volume and scope of this
review, we mainly focus on DNA methylation by DNA methyl-
transferases (DNMTs), histone deacetylation by histone deacety-
lases (HDACs), recognition of acetylated histone by the mammalian
bromodomain and extra-terminal (BET) proteins, and demethyla-
tion by histone methylase polycomb repressive complex 2 (PRC2)
and lysine-specific histone demethylase 1 (LSD1) (Fig. 4).
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Fig. 4 Epigenetic targets and their impact on different immune cell types and tumor cells in the TME. Lines of the same color indicate the
impacts on different cell types of the same epigenetic process. And the color of lines corresponds to the background color of the specific
process those lines indicated. Epigenetic regulation mainly comprises transcriptional regulation via DNA methylation, histone modification,
and post-transcriptional modification. Immune-related pharmacological development has mainly focused on DNA methylation by DNMTs,
histone deacetylation by HDACs, recognition of acetylated histone by BET proteins, and histone demethylation by PRC2 and LSD1. DNA
methylation, which is mainly mediated by DNMTSs, represses gene transcription when located in a gene promoter and regulates anti-tumor
immunity with the orchestration of different cell members. The aforementioned histone modifications are capable of remodeling chromatin
structures and interactions with other regulating factors (e.g., recruitment of transcription factors) and affect gene transcription of various cell
types in the TME. The post-transcriptional m6A methylation represents a new layer of epigenetic regulation that mainly affects the fate of
RNAs via promoting or antagonizing their degradation or translation. Classification of drugs of each epigenetic target are indicated in the blue
boxes. inh inhibitor, DNMT DNA methyltransferase, HDAC histone deacetylase, BET bromodomain and extraterminal domain, BRD
bromodomain, BRDT bromodomain testis-specific protein, RNA pol RNA polymerase, PRC2 polycomb repressive complex 2, EZH enhancer of

zeste homolog, EED embryonic ectoderm development, SUZ suppressor of zeste, LSD1

methyladenosine, SASP senescence-associated secretory phenotype
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DNA methyltransferases (DNMTs)

Targeting DNA methylation has become important for the treatment
of certain hematological malignancies with the intention to
reactivate tumor suppressors and promote differentiation of the
malignant cells. Regarding anti-tumor immunity, therapeutic DNA
demethylation can enhance tumor immunogenicity by inducing
expression of endogeneous retroviral elements and of neoantigens
normally silenced by DNA methylation. Expression of the former
induces double-strand RNA which, in turn, can induce interferon-
based innate immune activation essential for adaptive antitumor
immunity, and is one reason why DNMT inhibitors can cause
immunogenic cell death of malignant cells.*'>*'* Furthermore,
therapeutic DNA demethylation can alter the composition and
behavior of immune cells; it can increase the expression of MHC
molecules, alleviate T cell exhaustion and enhance T cell effector and
memory potential, increase secretion of Thi-type cytokines, and
reduce immunosuppressive myeloid and Treg cells.*'**'* DNA
methylation status and demethylating agents can also directly affect
the expression of multiple immune checkpoints, including
PD_-|,414,415 PD_L1,414,416,4'I7’ LAG3,414 TIM_3,414,418,419, CrLA_4’414,420
and TIGIT,**'*?? by recruiting of proteins involved in gene repression
or by inhibiting the binding of them.

Because of these interesting antitumor immune effects,
combinations of hypomethylating agents (HMAs), currently mainly
DNMT inhibitors, with immunotherapeutics are being investi-
gated. Decitabine plus camrelizumab caused high response rates
and long-term benefits in patients with Hodgkin's lymphoma who
failed PD-1 inhibitors.*?**** The combination of decitabine and
pembrolizumab induced better response in patients with relapsed
AML, with transcriptional signs of immune activation.**> Other
combinations of HMAs and ICls also show good safety and
preliminary anti-tumor effects in patients with hematological
malignancies in clinical trials***™**° (Supplementary Table 5).
Regarding solid tumors, although the preclinical and some early
clinical results using the combination of PD-1 blockade and HMAs
are highly promising,"*®**? most clinical data has been disap-
pointing. No responses were observed after guadecitabine plus
atezolizumab in metastatic urothelial carcinoma which had
progressed on previous immune checkpoint blockade (ICB).**®
The combination of guadecitabine or azacytidine and pembroli-
zumab or durvalumab produced only modest anti-tumor effects in
a variety of solid tumors.*****¢ The addition of azacytidine or CC-
486 (oral azacytidine) to pembrolizumab®*”4*® or durvalumab**®
was not more effective than standalone ICl treatment. Lack of
robust tumor DNA demethylation and of viral mimicry was found
to be associated with a missing clinical response in one study.**

Overall, the combination of HMAs and ICls needs further
studies, especially in solid tumors. Notably, investigations of how
dosing and scheduling of these drug classes affect the immuno-
modulatory and anti-tumor effects in the clinical setting are
expected. In mouse solid tumor models, low-dose HMAs plus ICls
outperform either HMAs or ICls alone in restricting tumor growth
and prolonging survival, with significant HMA-related immune
modulation.**®*3*! Epigenetic priming using HMAs with sequential
ICls has the potential to produce durable clinical benefit
associated with immune responses in patients with solid
tumors.*%**" |n addition, there is considerable interest in the
development of compounds targeting a selective subtype of
DNMTs, which may enhance the tolerability and efficacy.***~**
CAR T cells pretreated with low-dose decitabine can show
enhanced anti-tumor activity and persistence,”*® and cell products
primed with demethylating agents are undergoing clinical
evaluation (Supplementary Table 5).

Histone deacetylases (HDACs)

As important epigenetic writers, HDACs include four classes of
proteins, of which HDAC |, II, IV are Zn" dependent, whereas HDAC
Il is not (HDAC I: HDAC1-3, 8; HDAC II: HDAC4-7, 9, 20; HDAC IV:
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HDAC 11; HDAC lll: SIRT1-7). HDAC inhibition can profoundly affect
anti-tumor immune responses, including enhancing MHC class |
antigen presentation,*> promoting M1-like polarization of
TAMs,*54%7 and depleting MDSCs.**® HDAC inhibition can
maintain intra-tumoral macrophages with a pro-inflammatory
tumoricidal phenotype and preserve their ability to conduct ADCC
needed by ADCC-dependent therapeutic antibodies,**® which
cannot be achieved by the depletion of TAMs (Fig. 4). To date,
both selective and pan-HDAC inhibitors have been developed
(Table 3 and Supplementary Table 5). Early attempts inhibiting
class %5752 or 1*>34%% HDACs have produced suboptimal results
in solid tumors, which may be explained by the selective inhibition
of immunosuppressive  polymorphonuclear MDSCs  and
monocytic-MDSCs by the class | HDAC inhibitor entinostat and
the class Il HDAC inhibitor ricolinostat, respectively.*>> Thus, novel
selective  HDAC inhibitors with superior immunostimulatory
activity as well as inhibitors of more classes of HDACs to
completely inhibit different MDSCs subsets, such as class /Il
HDAC and pan-HDAC inhibitors may be more effective. For
example, domatinostat, a novel class | HDAC inhibitor, has
demonstrated good tolerability and preliminary effectiveness as
adjuvant to checkpoint blockade.****7 In the SENSITIZE trial,
domatinostat treatment increased expression of antigen
processing-related genes and MHC molecules along with
enhanced cytotoxic T cell infiltration in some patients with
advanced melanoma who had failed PD-1 blockade, with tumors
either immunologically cold or hot.**® Domatinostat has obtained
FDA approval as an investigational new drug allowing the clinical
evaluation in various solid tumors to overcome resistance to ICls
(Supplementary Table 5). Clinical performances of class I/l HDAC
inhibitors vary across cancer types and regimens. Vorinostat
demonstrated only modest activity when used with pembrolizu-
mab in HNSCC,**? NSCLC,**° and breast cancer.*®’ Another class I/
I HDAC inhibitor, resminostat, induced a CR rate of 54.8% in basal
cell carcinoma in a phase Il study.*®> However, the results in biliary
tract cancer®®® and liver cancer*®* were disappointing. Pan-HDAC
inhibitors suppressing the activity of Zn™ dependent HDACs (class
I, II, and IV) have entered phase lll trials due to their success in MM
and other hematological malignancies (Table 3). However, the
accelerated FDA approval of the panobinostat plus bortezomib
combination for MM has been withdrawn in 2021 due to the
minimal survival benefit and high TRAEs-related discontinuation
rate*%>4%® as well as inadequate follow-up studies confirming the
prolonged PFS in the PANORAMAT1 study. Encouragingly, optimi-
zation of dosing*®” and administration route*®® may improve the
tolerability of this regimen. And the efficacy of panobinostat in
patients with solid tumors remains to be tested. Additionally,
some other pan-HDAC inhibitors have shown favorable tolerability
and efficacy in solid tumors in phase | and Il trials,**®47° calling for
more advanced clinical evaluations.

The mammalian bromodomain and extra-terminal family proteins
(BET family proteins)

The BET family proteins (including BRD2, BRD3, BRD4, and BRDT)
are all bromodomain-containing epigenetic modifiers, which have
histone acetyltransferase activity. The main mechanisms support-
ing the development of inhibitors of these proteins are transcrip-
tional activation of multiple pro-tumorigenic pathways*’*’2 (Fig.
4). Their inhibition also stimulates anti-tumor immunity at several
steps of the cancer-immunity cycle, suggesting their combinations
with existing immunotherapies may be beneficial. For example,
inhibition of BRD4, the most studied and targeted BET protein,
enhances antigen presentation via increasing MHC class |
expression,*”* converts TAMs towards the M1-like phenotype,*”*
and reduces the expression of immune checkpoints (PD-L1
expression on DCs, TAMs and cancer cells*’**’> and CD47
expression on cancer cells*’®). In addition, BRD4 is required for
the activation of senescence-associated secretory phenotype
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genes and downstream paracrine signaling, inducing immune
surveillance of the premalignant senescent cells.*’”” Thus, combi-
nation of PD-1/PD-L1 blockade and BET inhibition might be
synergistic; however, adding BET inhibitors to ICls did not improve
patient responses.*’®~*8 Encouragingly, NEO2734, an orally active
BET and p300/CBP dual inhibitor, causes apoptosis and immuno-
genic cell death of tumor cells*®! and acts synergistically with anti-
PD-L1 and anti-CTLA-4 treatment, outstripping another BET
inhibitor.*®? Considering the current evidence and the potential
of BET proteins in cancer and immune-related diseases,*®® the
exploration of their impacts on anti-tumor immunity and the
development of drugs targeting BETs worth more effort.

Histone methylase polycomb repressive complex 2 (PRC2)

PRC2, which is formed when zeste homolog 2 (EZH2) associates
with embryonic ectoderm development (EED) protein and SUZ12,
is responsible for histone methylation mainly at histone 3 lysine 27
(H3K27). It has a broad impact on cancer immunity®®* (Fig. 4). It
mediates long-term transcriptional silencing of the MHC-I antigen
processing pathway*®> and represses CXCL9 and CXCL10 produc-
tion by tumors, two critical chemokines for effector T-cell
trafficking.**®*%” The orchestrated immune modulation also
includes higher MDSC infiltration, less NK cell-mediated killing
and more Treg-mediated immune suppression.*®*4% EZH2
inhibition could enhance the efficacy and overcome resistance
to current immunotherapies.*®® Tazemetostat, an inhibitor of
EZH2, the main catalytic unit, demonstrated clinical activity in
epithelioid sarcoma in a phase Il trial (ORR: 15%, duration of
response: not reached).”®® It was approved by FDA for locally
advanced or metastatic epithelioid sarcoma in 2020. EZH1, a
paralog of EZH2, can also form functional PRC2 complexes as a
compensatory mechanism for tumor cells to escape EZH2
inhibition.**%4°! Therefore, co-inhibition of EZH2 and EZH149%~4%*
or EED inhibition**2%* could more completely inhibit the activity
of PRC2, especially in the presence of innate or acquired resistance
mutations in EZH2 and by addressing the potential compensatory
mechanism of EZH1-driven tumor growth. SETD2, an upstream
regulator of EZH2, can also be targeted to combat EZH2-high
tumors.*®® Future preclinical and clinical investigations may
identify novel drug targets and formats, and will provide more
insight into the value of PRC2 inhibition in cancer immunotherapy.

Lysine-specific histone demethylase 1 (LSD1)

LSD1 inhibitors are widely applied in myeloid hematological
malignancies as they promote the differentiation of myeloid cells
via regulation of myeloid transcription factors GFI1 and PU.1.%974%®
Regarding anti-tumor immunity, LSD1 undermines T cell-mediated
cytotoxicity via promoting terminal differentiation of T cells*9°>%°
(Fig. 4). Accordingly, LSD1 inhibition expands progenitor
exhausted T cells with stem-like properties, thereby enhancing
the efficacy of immunotherapy.*®*° LSD1 inhibition also
increases antigen presentation mediated by MHC | complexes
on cancer cells*®**°" and decreases exosomal PD-L1.°°% Although
tranylcypromine-based flavin adenine dinucleotide (FAD) domain-
binding irreversible inhibitors exert long-lasting inhibition on LSD1
and yield encouraging clinical results both in myeloid malig-
nancies®® and solid tumors,>®* they induce significant TRAEs due
to their covalent binding to FAD domains contained in critical
enzymes other than LSD1 and the ensuing off-target reactivity.>*®
This could be ameliorated using reversible LSD1 inhibitors. For
example, minimal inhibition of the cytochrome P450 enzymes
containing a FAD domain was reported using the reversible LSD1
inhibitor TACH101.°°%°%” Another two clinical stage reversible
LSD1 inhibitors, seclidemstat®™®® and CC-90011,>% also show
immune activation and efficacy in combination with ICls.
Selectively targeting nuclear LSD1 phosphorylated at serine 111
(nLSD1p) might also be a plausible therapeutic approach to tackle
the safety issue>'® Similar to most other anti-cancer agents
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targeting immuno-epigenetic modifiers, LSD1 inhibitors are
combined with PD-1/PD-L1 blockade in phase I/Il trials with
promising preliminary results.>"’

Targeting epigenetics faces problems related to broad specifi-
city and pleiotropic activity. Discovered immunomodulatory
effects of some existing epigenetic modulators might contrast
their previously known antitumor functions. For example,
although HDAC activity generally seems to impair anti-tumor
immunity, the intrinsic HDAC activity of Tcf1 and Lef1 is crucial for
maintaining CD8" T cell identity.>'>>'® Protein arginine methyl-
transferase 5 (PRMT5), another promising immune-epigenetic
target with its inhibitors undergoing clinical evaluation and
producing clinical benefits,>'* has been reported to help improve
anti-tumor immunity in melanoma®'* (Table 3). However, it is also
required for survival, function, homeostasis, and differentiation of
effector T cells including CD4" Th cells and invariant NK
T cells,®'®*"” and increased PD-L1 expression is induced by PRMT5
inhibition in tumor cells.>'®>'® Accordingly, genetic or pharmaco-
logical targeting of PRMT5 compromises T cell-mediated anti-
tumor immunity. Therefore, more information on how epigenetic
regulators regulate immunity seems necessary in order to develop
successful combination therapies, and cell-specific and/or con-
ditionally activated agents might help to tackle these problems.
There are many other promising immuno-epigenetic targets and
processes, such as histone phosphorylation, various forms of RNA
modifications including the aforementioned m6A modification,
and noncoding RNAs.>?°*2" More joint efforts involving the
industry are required to explore their therapeutic potential and
promote clinical translation.

CYTOKINES

Cytokines are soluble regulators of various intercellular commu-
nications. They are particularly important to the immune system
and have constantly been the focus of studies in immune-related
diseases, including cancer.

Immunostimulatory interleukins: structural design and gene
therapy

Deploying immunostimulatory cytokines, with an emphasis on
interleukins, has been a research hotspot to activate both innate
and adaptive anti-tumor immunity (Fig. 5a, b). IL-2 was the first
cytokine discovered to promote T cell proliferation and expansion,
and recombinant IL-2 (rIL-2) was the first immunotherapeutic that
as monotherapy reproducibly induced durable, complete, and in
some patients, curative regression of metastatic malignancies
(melanoma and renal cancer).'®®'%° However, high-dose rlL-2 can
cause severe life-threatening adverse effects such as capillary
leakage, limiting its clinical application. Moreover, IL-2 is essential
for immunosuppressive CD4"1 Tregs. IL-2 can promote expansion
of CD8" T cells and of NK cells via binding to the intermediate-
affinity dimeric IL-2RBy receptor without IL-2Ra (CD25),°%27°%* but
expands Tregs via binding to the high-affinity trimeric IL-2R
containing CD25,°2>°2¢ which is constitutively expressed on Tregs
and transiently on recently activated nonregulatory T cells. The
CD25-containing high-affinity receptor is also expressed on
vascular endothelial cells and is involved in the capillary leakage
mentioned above.*?” During the last several years, development
of IL-2-targeted agents had focused on non-a-binding IL-2
variants, which allow more selective activation of IL-2 signaling
in CD8" T and NK cells rather than CD4" Tregs and vascular
endothelial cells (Fig. 5b, Table 3 and Supplementary Table 6).
However, though very promising in early trials,>*® such agents
showed suboptimal efficacy in recent trials. Bempegaldesleukin
plus nivolumab had no added clinical efficacy versus nivolumab in
two phase lIl trials, the PIVOT 10-001 study in melanoma®?® and
the PIVOT-09 trial in renal cell carcinoma,>® as well as in the phase
I PIVOT-10 trial in urothelial cancer,®®' which brought about the
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Fig. 5 Two double-edged swords of cytokines and cytokine-based anti-tumor immunotherapy in cancer. a The upper panel illustrates the
major functions of cytokines summarized in this review and highlights the pleiotropism of each cytokine and the cytokine family. On one
hand, the broad spectrum of cytokines comprises both immunosuppressive and immunostimulatory cytokines; on the other hand, a certain
cytokine may have both immunosuppressive and immunostimulatory impact toward different immune cell types concurrently. The bottom
panel illustrates the importance of balancing between off-target toxicity and therapeutic efficacy when utilizing cytokine-based anti-tumor
immunotherapy. b Current strategies of utilizing cytokines in cancer immunotherapy include: (1) stimulating immunostimulatory cytokines or
antagonizing immunosuppressive cytokines, (2) confining the effects of cytokine-based agents within the TME using tumor-targeted
approaches, and (3) targeting specific cell types to tackle pleiotropism. Selective tumor accumulation of cytokines could be achieved by local
delivery methods and cytokine-based gene therapy, tumor-activatable agents, and immunocytokines. The bottom panel is an example of cell-
specific strategies. Natural IL-2 binds to the apy trimer IL-2R expressed on Tregs and the By dimer IL-2R expressed on CD8" T cells and induces
their expansion concurrently; structurally modified non-a IL-2 variants prevent the binding to the « chain of IL-2R, thus avoiding expansion of
immunosuppressive Tregs. TGF-p transforming growth factor-beta, IFN interferon, IL interleukin, Mg macrophage, Th T helper cell, Foxp3

forkhead box protein P3, IL-2R interleukin-2 receptor

termination of other bempegaldesleukin trials. The reasons for this
failure are unclear. However, it is likely that future developments
will focus on agents that more selectively activate anti-tumor
immunity, e.g., by targeting wild-type or mutant IL-2 to tumors or
tumor-specific T cells, and that they will consider emerging
knowledge of the effects of IL-2 and IL-2 variants on T cell
exhaustion/differentiation. The current literature on the effects on
T cell exhaustion appears controversial. One paper reported an
unfavorable role of IL-2 inducing T cell exhaustion via activation of
STAT5 and subsequently nucleus translocation of AhR.>*? How-
ever, several recent papers reported less terminal exhaustion, and
expansion of stem-like and effector-like T cells upon treatment
with IL-2 or IL-2 variants.>”®>3333* When recombinant wild-type IL-
2 was combined with PD-1 blockade in the model of chronic
lymphocytic choriomeningitis virus infection, even a deviation
from the normal exhaustion program towards the formation of
“better effectors” was observed and depended on IL-2 binding to
CD25.***% Similar observations were made in tumor models
using an IL-2RBy-biased IL-2 derivative fused to an anti-PD-1
antibody.>”° The combination of the IL-2RBy-biased IL-2 variant
nemvaleukin alfa with pembrolizumab, which received FDA fast
track designation based on promising results from the ARTISTRY-
1% and ARTISTRY-2>*” studies, might still produce clinical
benefits in ongoing phase Il testing. A plethora of other IL2-
based agents and therapies may still have the potential to benefit
cancer patients.”>® As a natural “non-a IL-2 variant”, IL-15 mainly
combines with the IL-15Ra subunit forming IL-15-IL-15Ra dimers
on APCs and signals through IL-2/15RB (CD122)/cy (CD132) on
T cells or NK cells, with no binding to CD25°%° (Table 3 and
Supplementary Table 6). ALT-803, in which IL-15 and IL-15Ra
subunits are precomplexed to mimic the in vivo form of APC-
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dependent dimerization, yielded a potent anti-tumor response
(ORR: 29%, DCR: 76%) with nivolumab in anti-PD-1 r/r NSCLC
patients,>*® and similarly in a patient cohort with different ICI r/r
solid tumors.>*' Novel structure designs such as introducing
tumor-targeted®*>>** and/or conditionally activated (within the
TME)*****  moieties into cytokine-based agents can avoid
systemic toxicity and achieve preferential tumor control and
cell-biased binding properties (Fig. 5b). For example, fusing a non-
a IL-2 mutein to an antibody against fibroblast activation protein-a
(FAP) expressed on cancer-associated fibroblasts, such as simlu-
kafusp alfa,>*? or to an antibody against carcinoembryonic antigen
often overexpressed by cancer cells, such as cergutuzumab
amunaleukin,®*® has achieved targeted expansion of CD8"
T cells at tumor sites in preclinical models and potentiated other
T cell-stimulating immunotherapies. The first-in-human result of
simlukafusp alfa seems promising,>*® supporting further explora-
tion of it especially in combination with ICls. XTX202, an IL-2
mutein linked to an inactivation domain that could be cleaved by
tumor proteases in the TME, induced potent tumor growth
inhibition without systemic toxicity or peripheral immune activa-
tion in mouse models,>* and it is currently undergoing clinical
evaluation (Table 3).

Apart from structurally altered derivatives, local administration
of gene therapy may also help avoid toxicities associated with
systemic administration and allow better control of the magnitude
of the cytokine response (Fig. 5b). For example, the cytokine IL-12
has been reported to augment antigen presentation, tumor
infiltration, activation, and function of CD8" T cells, and the
generation of M1-like macrophages and to suppress the expres-
sion PD-1 and Foxp3>*® (Fig. 5a). The IL-12-encoding DNA plasmid
tavokinogene telseplasmid resulted in robust tumor response
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(ORR: 36%, CRR: 18%) when electroporated into melanoma lesions
in a phase Il trial,>*® and the efficacy was further augmented (ORR:
41%, CRR: 36%) by combining it with pembrolizumab.>*® Intra-
tumoral administration of saline-formulated®’ or oncolytic
nanoparticle-coated®>?> mRNAs encoding different anti-tumoral
cytokines including IL-12 induced effective anti-tumor activity and
potentiated the effects of ICls in anti-PD-1-resistant tumors. The
induced cytokine expression by gene therapy could be further
controlled by orally available agents>>® Of note, these local
delivery strategies can generate systemic anti-tumor immunity
and immune memory, mediating regression of solid tumors at
untreated sites and preventing tumor rechallenge.”*

Many other immunostimulatory cytokines are also under clinical
evaluation®*>>> (Table 3). For instance, the modified IL-10
pegilodecakin enhanced response rates and durability of benefits,
especially combined with PD-1 blockade in NSCLC,>*® renal cell
carcinoma (RCC),>*>” and melanoma®>® patients, even in settings
with unfavorable immunological features, such as no PD-L1
expression, low tumor mutational burden, presence of liver
metastasis, and progression on prior checkpoint blockade.

Transforming growth factor-p (TGF-3)

In addition to utilizing immunostimulatory cytokines and their
agonists, antagonizing immunosuppressive ones can also aug-
ment anti-tumor immunity, as exemplified by agents targeting
transforming growth factor-B (TGF-B) (Fig. 5a). After activation
from latent TGF-B (L-TGF-B), TGF-B triggers the canonical TGF-
B-Smad signaling and the non-canonical signaling crosstalking
with other pathways such as the PI3K-AKT, ERK, and NF-kB
pathways, which are considered pro-tumorigenic and immuno-
suppressive and are upregulated in advanced cancers.>>*>%°
Regarding the initiation of the cancer-immunity cycle, TGF-$
signaling hampers DC maturation, chemotaxis, and expression of
key components of the antigen-presenting machinery.”®'~>%¢R-
egarding the effector phase, the proliferation and tumor infiltra-
tion of CD8™ T cells are suppressed®">%%; it also suppresses CD8™"
T cell cytotoxicity via inhibition of TCR signaling and of T-bet and
eomesodermin expression,”®® two pivotal transcription factors
controlling the CD8" effector program.’’°>’? Generation of
multiple immunosuppressive cell populations is promoted by
TGF-B signaling, including Tregs,>’>*”* tumor-associated neutro-
phils,>”>*7¢ TAMs,>”” and cancer-associated fibroblasts.>”8°7°
Furthermore, it upregulates PD-L1 expression on TAMs>®® and
PD-1 mRNA in CD8" T cells,”®' warranting co-blockade of the PD-
1/PD-L1 axis and TGF-f signaling. Pan-TGF-B mAb NIS793 is the
only anti-TGF-B mAb still in phase Il trials. It showed a favorable
efficacy and safety profile in phase | exploration and received FDA
orphan drug designation for pancreatic cancer,’®**8% with phase I
and Il studies ongoing (Table 3 and Supplementary Table 6).
However, many anti-TGF-3 mAbs and small-molecule receptor
kinase inhibitors have failed to demonstrate expected clinical
benefits,**°8°> which may be explained by the spatial-temporal
versatility of TGF-B signaling. For example, although TGF-B
supports tumor growth in established tumors, it suppresses tumor
development at the early stages, and abrogation of TGF-B
signaling can result in cancerous transformation of healthy
tissue.”®®7>%8 Besides, debates still exist on its inhibitory effects
on Tregs.*®*>% Similar to immunostimulatory interleukins, recent
drug development efforts for inhibiting TGF-B focus on enabling
tissue/cell-specific engagement. This mainly includes targeting
specific TGF-B isoforms (TGF-$1/2/3) and using bsAbs/msAbs to
selectively inhibit TGF-B signaling in PD-17CD8™ T cells, Tregs, or
other cells within the TME. This could mitigate the adverse effects
caused by the disruption of normal regulation of cardiovascular
smooth muscles by TGF-3 blockade, which made drug develop-
ment stagnant for nearly two decades>®® SRK-181, a mAb
targeting L-TGF-B1, has been promising as it alleviated cardiovas-
cular adverse effects by selectively inhibiting activation of TGF-31,

SPRINGERNATURE

and synergized with anti-PD-1 mAb.>°' Similarly, TGF-B1/3 selec-
tive ligand trap AVID-200 elicited irAEs no greater than grade 3
with SD more than 12 weeks in 2 patients in a phase | trial
(NCT03834662). Bintrafusp alfa, a bifunctional fusion protein
enabling the colocalized and simultaneous blockade of TGF-f
and PD-L1 and the consequent immunostimulatory effects as well
as the preferential accumulation at the tumor site,****%* outper-
forms either a TGF-B trap or a PD-L1 mAb in mouse models>®* and
shows signs of efficacy in early clinical trials in patients with
various types of solid tumors.>*>%° Unfortunately, the phase Il
INTR@PID Lung 037 study testing it in comparison with
pembrolizumab as a first-line treatment in patients with PD-L17
advanced NSCLC has been terminated due to its unlikeliness to
reach the primary endpoint,**® similar to what is observed for the
phase Il INTR@PID BTC 055 and 047 trials testing its combination
with chemotherapy as first-line and second-line treatment for
biliary tract cancer.°°'*°2 Other clinical trials testing the Bintrafusp
alfa-based combinations in the INTR@PID program are ongoing®’®
and the clinical performance of other agents targeting the dual
inhibition of PD-L1 and TGF-B are promising.>®?

Chemokines

Beyond interleukins and TGF-, based on their instrumental role in
leukocyte attraction, chemotactic cg/tokines (chemokines) are also
exploited for therapeutic use.f°*%% There is extensive literature
documenting the role of chemokines in the generation and
delivery of immune cells, but chemokines are also reported to
regulate the phenotype and function of immune cells as well as
their arrangement in the TME.®**®% The drug developmental
interest shows an emphasis on several specific chemokine-
receptor axes, including the CXCL8/CXCL5-CXCR2,%%775%9 CXCL12-
CXCR4°'° and CCL2-CCR2°""%'? axes, which largely participate in
attracting suppressive cells to tumor sites, such as TAMs and
MDSCs. Unmasking of additional immunomodaulatory effects, such
as promoting PD-L1 expression on macrophages®'® and tumor
cells®™ and facilitating T cell exclusion,®'> further supports the
development of chemokine-targeting therapeutics. Most of them
are undergoing phase I/Il clinical evaluation combined with other
anti-tumor treatments, mostly PD-1/PD-L1 blockade (Table 3 and
Supplementary Table 6). In the COMBAT study, small molecule
CXCR4 inhibitor motixafortide improved patient response and OS
in metastatic PDAC patients in combination with pembrolizu-
mab.®'® Mavorixafor, another CXCR4 inhibitor, sensitized patients
with advanced RCC to nivolumab.®'” Further investigations into
the mechanisms underlying the multifarious chemokine axes as
well as the development of chemokine-based immunotherapies
are expected.

The development of novel cytokine derivatives refined by
protein engineering and modifications to enhance their pharma-
cokinetic/pharmacodynamic properties, such as Fc fusions,
PEGylation, and ‘masked’ cytokines, is where important advances
are being made, which may pave the way for future develop-
ments.®'35'° Substantial progress can be made in enhancing the
safety and efficacy of cytokine-based therapeutics with these
emerging principles. In addition to the tremendous efforts
devoted to the pharmacological development, research in recent
years enables a more granular insight into cytokine biology with
discoveries on novel immunological roles of both popular and
less-studied cytokines - a wide research space to explore.

CONCLUSIONS AND PERSPECTIVES

In-depth understanding of cancer immunobiology mechanisms
and the progress in drug development platforms have resulted in
a surge in the number of promising immunoregulatory targets,
newly developed drugs and drug candidates, and related clinical
trials. Identifying the most promising targets and drugs, and the
most important challenges ahead are necessary for more efficient
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and specific future research and accelerating translation from
basic research to patient benefits. Therefore, we have reviewed
recent advances of mechanistic investigations and drug develop-
ment for popular classes of immunomodulatory targets.

In the last few years, the development of immunoregulatory
anti-cancer therapies has expanded from anti-PD-(L)1 and anti-
CTLA-4 agents into several major areas as we discussed above.
These next-generation immunotherapies, which target untapped
pathways and/or utilize novel drug classes, are promising to
benefit patients who are unresponsive to classical
immunotherapies.

Since it has turned out that quite a large number of inhibitory
and co-stimulatory immunoreceptors exist, as well as a number of
agents targeting them are being developed, research focuses
more and more on checkpoints other than PD-(L)1 and CTLA-4 to
tackle resistance against classical ICls. With the first approval of
relatlimab, the LAG-3 checkpoint has gained considerable interest.
Likewise, the phase lll clinical trials of anti-TIGIT antibodies are
attracting intensive attention, although final confirmation of their
efficacy is still pending. The puzzles of mechanism-of-action of the
various immune checkpoints are gradually being pieced together,
and a detailed mechanistic clarification is needed to facilitate
related clinical drug development. Biology and roles in anti-tumor
immunity of some other inhibitory checkpoints, such as B7-H7/H
long terminal repeat-associating 2 (HHLA2),%%°%** leukocyte
immunoglobulin-like receptors B family members,®>>%%” neuropi-
lins and semaphorins, 522753 sialic-acid-binding immunoglobulin-
like lectins (Siglecs),®*'°** and butyrophilin family mem-
bers,%**538 including their ligand-receptor interactions, have not
yet been completely elucidated. Further studies are needed to
evaluate the potential of these checkpoints in anti-cancer
immunity. Meanwhile, clinical trials need to be conducted to
validate their therapeutic potential as targets. The prospects of
targeting co-stimulatory molecules remain uncertain, with termi-
nated development of multiple agonistic antibodies due to lack of
efficacy or too much toxicity. Encouragingly, recent advances in
the further clarification of the mechanism-of-action of agonistic
antibodies?88301-304639 ring new research vitality to this field.

In addition to the expanding repertoire of targetable inhibitory
and co-stimulatory molecules, the recent surge of bsAb/msAb
development provides opportunities to enhance the safety and
efficacy of agents targeting either conventional or novel
molecules, based on the unique pharmacological properties of
these novel drugs that go beyond the sum of their parts. The
clinical development of several bsAbs for the treatment of
hematological malignancies has progressed rapidly from phase
Il observations to their FDA approval due to induction of
considerable CR rates. BsAbs/msAbs combining other immunor-
egulatory targets are in clinical trials, and many of them exhibit
promising improvements in anti-tumoral responses. Notably,
other novel drug types beyond bsAb/msAb and some new drug
delivery platforms also facilitate the development of different
kinds of immuno-modulatory therapeutics. Promising examples
include engineered cytokine variants,>****° nucleic acid-based
delivery of cytokines,”®'”** nanoparticles, %% cellular vesi-
cles,?" and exosomes®' encapsulating antagonists/agonists of
different immuno-modulatory pathways, and engineered bac-
teria.%*? Thus, in addition to the biological discoveries of novel
therapeutic targets and pathways, harnessing the full potential of
these novel drug types and drug delivery platforms is also
important for improving the efficacy and safety of cancer
treatment.

Epigenetic therapy has been developed as anti-tumor therapy
to tackle the epigenome dysregulation-driven cancer onset and
progression.*?%°7%43 \ith the recent revelation of their immu-
noregulatory potential, there have also been lots of efforts to
develop agents for epigenetic immunomodulation, particularly
histone modifiers. In comparison to highly cell-specific ICls,
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epigenetic therapies are context-dependent and pleiotropic,
which enables them to orchestrate multiple components within
the TME and target multiple steps in the tumor immune cycle at
the same time, making them important combinatorial and
adjuvant therapies to classical ICls.?”%** Hopefully, optimal
combination and sequencing of these agents with ICl-centered
immunotherapy will overcome treatment resistance and improve
treatment efficacy. Clinical trials exploring and comparing the
sequential or simultaneous combination of these types of agents
will likely be a major trend in the future. Besides, given the
abundance of epigenetic drugs that have already been approved
as anticancer therapeutics, it is likely that some of those can be
repurposed for immunomodulation and combination with classi-
cal cancer immunotherapeutics. Novel immuno-epigenetic targets
are also emerging, highlighted by RNA modifications via
methylation, acetylation, uridylation and other modifications at
different sites that have been well summarized.®**"%*" Although
their biology and immunological effects have just been reported
in animal studies, targeting these novel immuno-epigenetic
processes might improve patient benefits which will require
future studies exploring their therapeutic potential. However,
being fundamental to every living cell, epigenetic processes may
exert differential impacts on different immune cell types, and
epigenetics-targeting agents encounter problems of insufficient
specificity. To tackle this problem, both mechanistic explorations
elucidating their immunological effects and efforts from the
industry to improve their pharmacological properties are highly
expected.

As one of the earliest immunotherapies, cytokine-based anti-
cancer therapeutics have always received strong interest from the
biotech and pharmaceutical industry. The large family of cytokines
and the complex cytokine network play a crucial role in TME
heterogeneity and the differentiation and functions of immuno-
cytes, and this likely affects patient prognosis and responses to
classical immunotherapies. Therefore, cytokine-based therapy
offers substantial potential to overcome IClI resistance and
considerable room for developing personalized, adaptable thera-
pies tailored to various tumor immune subtypes of each patient.
Similar to epigenetic therapy, cytokine-based therapies, based on
their ability to regulate different components and steps of the
anti-tumor immune response, also potentially synergize with ICls
and such combinations are being extensively tested in clinical
trials. However, their varied roles in anti-tumor immunity across
cell types, tissues, and concentrations, and between physiological
and pathological conditions>>>®*¥%%° |eads to an arduous efficacy-
toxicity balance (Fig. 5a). Tissue-/cell-specific therapeutics and/or
conditionally activated agents might help to overcome these
problems. Both cytokine biology research and protein engineering
and novel delivery platforms for cytokines have greatly advanced
in recent years. They will hopefully help to design better drug
structures and to expand the realm of targetable cytokines,
continuously promoting the development of cytokine-based
therapeutics.

It is worth noting that from a clinical perspective, differences
exist in clinical practices for treatment of different cancer types. In
fact, due to the varying immune backgrounds and intrinsic
differences between cancer types, immunoregulatory anti-cancer
therapies targeting different targets indeed have different optimal
indications. Melanoma is well known for its robust immune
responsiveness, which made it predestined for initial evaluation of
therapeutic potential of LAG-3, TIM-3, CD40, and other immunor-
egulatory targets. Pembrolizumab induces CR in melanoma
patients, and over 90% maintain CR for 5 years,®*° highlighting
potent efficacy of ICB. Relatlimab and tebentafusp were also
approved for melanoma as their first indication. Activating the
immune system against melanoma through cytokine-based
therapies such as aldesleukin, darleukin, tavokinogene telseplas-
mid, has also proven to be effective.>** 651,652
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For other solid tumors, additional checkpoints like LAG-3 and
TIGIT are likely to play significant roles. In the case of NSCLC, the
relatively favorable immune environment in most NSCLC cases®>?
suggests that targeting these additional checkpoints could
potentially be advantageous. LAG-3 agents have demonstrated
efficacy in solid tumor entities such as NSCLC and HNSCC,*>>* and
TIGIT agents are currently in several clinical trials in combination
with PD-1/PD-L1 agents in NSCLC (Table 1). Exploration of B7 is
ongoing across various solid tumors.®>** The ADC enfortumab
vedotin targeting nectin-4 has shown promising results particu-
larly in combination with pembrolizumab in bladder cancer
(NCT04223856). The situation is different for SCLC. While
atezolizumab combined with carboplatin/etoposide is approved
as first-line treatment for extensive-stage SCLC, many SCLC
subtypes still respond weakly.5>>%°® These non-immunogenic
tumor subtypes may rely on TAAs, such as DLL3 to be targeted,
for example, with CD3xDLL3 TCE tarlatamab and HPN328.
Neuroendocrine features of SCLC can also be managed with
LSD1 inhibitors such as ladademstat to suppress neuroendocrine
transcription factors.5°676°8

In gastrointestinal tumors, excellent efficacy for GC/GEJC is
primarily observed with regimens based on anti-PD-1 agents and
bsAbs containing anti-PD-1 scFv, such as cadonilimab®®® and
tebotelimab.%>® For PDAC, CAFs are the main component of its
TME, forming a strong physical barrier with the ECM that hampers
T cell infiltration.®®® CD40 agonists like sotigalimab can enhance T
cell infiltration and show efficacy in combination with chemother-
apy and nivolumab.?'® Inhibiting TGF-B with NIS793 in combina-
tion with anti-PD-1 agents may help remodel the CAF-rich TME of
PDAC.>"8>7® HCC is immune-privileged, with abundant MDSCs and
an abnormal vascular system.®®’ Non-inflammatory HCC subtypes
predominate,®®’ requiring anti-PD-1-based immunotherapy com-
bined with anti-angiogenic therapy or dual immunotherapy to
enhance immune response. Currently, atezolizumab plus bevaci-
zumab is the first-line treatment for advanced HCC, with
nivolumab plus ipilimumab and durvalumab plus tremelimumab
also demonstrating efficacy.®°>%%* New bsAbs such as erfonrilimab
and cadonilimab plus lenvatinib have achieved very high
ORR.2%>39% pdditionally, direct targeting of HCC TAAs using bsAbs,
such as CD3xGPC3 TCE ERY974, can be an effective approach.®%*

On the other hand, targeting TIM-3 and CD47 appears to be
effective in hematological malignancies such as AML and
MDS.8>179193194 Given that some types of cancer cells are
themselves transformed immune cells, immuno-epigenetic agents
can elicit effects via either immune or non-immune mediated
mechanisms. Moreover, highly effective TCEs have shown
remarkably high response rates in clinical trials, and reshaped
the treatment for certain hematological malignancies with
emerging new chemotherapy- free regimens.5>-5¢

The TME of pediatric and nervous system tumors lacks TILs and
shows poor expression of PD-(L)1, while TAMs, Tregs, and other
immunosuppressive populations play crucial roles.®®*%7° There-
fore, reshaping the suppressive TME and enhancing T cell
infiltration are important. However, immunotherapy for nervous
system tumors and non-hematological pediatric tumors is still in
its early stages,®”'%’? with no immunotherapy yet proven to
improve prognosis for gliomas.®’? Adenovirus-encoded IL-12 INXN
2001 (Table 3 and Supplementary Table 6) may help ameliorate
the suppressive microenvironment. CD155 serves as both the
ligand for the inhibitory receptor TIGIT and the poliovirus receptor.
The polio-rhinovirus chimera lerapolturev (Table 1 and Supple-
mentary Table 1) offers some hope for treatment of gliomas.®”3
Redirecting anti-tumor immunity relying on TAAs is also an
important strategy for immunotherapy of pediatric and nervous
system tumors, with the mAbs or TCEs targeting B7-H3 and
GD2 showing promise.®”467>

For gynecologic tumors, each of the main cancer types presents
distinct characteristics. Immunotherapy for endometrial cancer is
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mainly limited to the MSI-H/dMMR subgroup, represented by PD-1
agents such as pembrolizumab and dostarlimab,®’® with the
potential of other immunoregulatory therapies yet to be explored.
Ovarian cancer exhibits a highly immunosuppressive TME and
relatively low immunogenicity,®’’ resulting in poor response to
immunotherapy. Combination therapies blocking multiple check-
points, bsAb like ubamatamab or non-a IL-2 variant nemvaleukin
alfa modulating the TME, can possibly enhance immune
responses.t’”’ %’ Cervical cancer shows better responses to
immunotherapy,®®® with promising outcomes observed with
pembrolizumab plus chemotherapy (recently approved by FDA),
anti-PD-1 plus anti-CTLA-4 agents, and bsAbs 5807682

Beyond the drug therapies discussed in detail, other therapies,
such as cancer gene therapy and cancer vaccines, are also
promising anti-cancer treatments with immunoregulatory effects.
While they may not be totally classified as conventional drug
therapies, their rapid development and effectiveness are note-
worthy. Cancer gene therapy can alter genes in vivo or ex vivo. Ex
vivo gene therapy, represented by CAR T cell therapy, has
achieved great clinical successes.®®37%%> Additional genetic mod-
ifications hold promise to further improve cell therapy, as
manifested by the good safety and feasibility of CRISPR-edited
TCR T cells and CAR T cells in patients with solid tumors.63%7 |n-
vivo gene therapy introduces the target gene directly into patients
using a vector. Stimulating intra-tumoral cytokine gene expression
(elaborated in the section on cytokines) and co-stimulatory
molecules as well as inhibiting immunosuppressive molecules/
cell types with anti-sense oligonucleotides (ASOs) and small
interfering RNAs (siRNAs) attract high research interest. The
combined local delivery of OX40L, CD80, and CD86 mRNAs cause
significant local and systemic immune activation and facilitate
tumor regression at both local and abscopal sites.%®®

Cancer vaccines amplify the signal of tumor-specific antigens
(TSAs) or TAAs via encapsulated antigen-encoding DNA and RNA,
peptides, or antigen-loaded APCs.?®°%°" They actively stimulate
patients’ own anti-tumor immune response at the very beginning
of the cancer immunity cycle. With promising potential 9276
current research focuses on identifying antigens with the best
quality and optimizing the delivery platform.58%°" High-
throughput sequencing and bioinformatics tools in recent years
have greatly facilitated the screening of highly immunogenic
neoantigens.®*%%7 Improved vectors®®®%%° and immune adju-
vants’®7% have been reported to enhance the efficacy of
vaccine delivery and the ensuing immune activation and tumor-
killing effects in preclinical studies. Combining cancer vaccines
with ICls and TME-reprogramming may help tackle the problem of
immunosuppressive TME observed in classical immunotherapies,
and is now being extensively tested in clinical trials with some
producing promising results and advancing into phase |l
evaluations (NCT05141721, NCT06077760), but the optimal
combination, dosage, and sequence of combination therapy still
require further exploration. In the broader landscape of immunor-
egulatory cancer therapeutics, it is essential to recognize the
contributions of these diverse approaches.

In summary, we have reviewed highly promising avenues for
the development of immunoregulatory anti-cancer therapeutics
by analyzing a large volume of recent published research, also
including conference reports, and clinical trials. We summarized
recent advances in the understanding of the mechanisms of
action of classes of immunotherapy drug targets and the progress
of the corresponding drug development. Despite considerable
success so far, further research is necessary to boost drug
development to improve treatment responses and prolong cancer
patient survival. Moreover, next-generation drug development in
these immunotherapy fields will continue to rely on clarification of
immunological target biology and progress in drug develop-
mental platforms, whereas the final evaluation of drug efficacy
depends on rigorous high-quality clinical trials. This needs
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effective cooperation of academia, pharmaceutical and biotech
industry, and the clinical medical community. More and more
promising pharmacological immunoregulatory anti-cancer ther-
apeutics are likely to be developed in innovative forms to the
benefit of patients. This will further expand and enrich the
landscape of immunoregulatory anti-cancer therapies.
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