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RNA modifications in cellular metabolism: implications for
metabolism-targeted therapy and immunotherapy
Wei-Wei Liu1,2, Si-Qing Zheng1,3, Tian Li1,3, Yun-Fei Fei1,3, Chen Wang1,3, Shuang Zhang1,3, Fei Wang4✉, Guan-Min Jiang5✉ and
Hao Wang1,3✉

Cellular metabolism is an intricate network satisfying bioenergetic and biosynthesis requirements of cells. Relevant studies have
been constantly making inroads in our understanding of pathophysiology, and inspiring development of therapeutics. As a crucial
component of epigenetics at post-transcription level, RNA modification significantly determines RNA fates, further affecting various
biological processes and cellular phenotypes. To be noted, immunometabolism defines the metabolic alterations occur on immune
cells in different stages and immunological contexts. In this review, we characterize the distribution features, modifying
mechanisms and biological functions of 8 RNA modifications, including N6-methyladenosine (m6A), N6,2′-O-dimethyladenosine
(m6Am), N1-methyladenosine (m1A), 5-methylcytosine (m5C), N4-acetylcytosine (ac4C), N7-methylguanosine (m7G), Pseudouridine
(Ψ), adenosine-to-inosine (A-to-I) editing, which are relatively the most studied types. Then regulatory roles of these RNA
modification on metabolism in diverse health and disease contexts are comprehensively described, categorized as glucose, lipid,
amino acid, and mitochondrial metabolism. And we highlight the regulation of RNA modifications on immunometabolism, further
influencing immune responses. Above all, we provide a thorough discussion about clinical implications of RNA modification in
metabolism-targeted therapy and immunotherapy, progression of RNA modification-targeted agents, and its potential in RNA-
targeted therapeutics. Eventually, we give legitimate perspectives for future researches in this field from methodological
requirements, mechanistic insights, to therapeutic applications.
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INTRODUCTION
Since the first documentation of RNA modification as early as
1950s, over 170 types have been identified, ubiquitously existing
in coding RNAs and non-coding RNAs.1 The contributions of
nucleoside base modifications in developing mRNA vaccine
against COVID-19, which is awarded the Nobel Prize for 2023,
immensely refresh the biologists studying RNA-based therapeu-
tics. In most situations, the RNA modifications we talked about are
reversible type, similar to DNA methylation. These modifications
are deposited, removed and recognized by dedicated machi-
neries, composed of writers, erasers and readers. These post-
transcriptional modifications alter the canonical ribose and base
structure to determine RNA fates, including splicing, trafficking,
degradation, translation, and so on. Via regulating gene expres-
sion and cellular phenotypes, RNA modifications are extensively
involved in various cellular processes.2

Cellular metabolism, a sophisticated network involving multi-
tudes of biochemical reactions, continuously invigorates scien-
tific researches. “Metabolism reprogramming” was originally
proposed in cancer research, and gradually expanded to other
non-tumor diseases and normal physiological processes. Used to
be defined as “changes of tumor cellular bioenergetics”, the
current perception tends to regard it as an inherent adaptive

capacity of all cells, which is strengthened in tumor cells via
abnormally activated pre-existing processes.3 Such metabolic
adaptability is based on the interaction between cells and
environment. During these biochemical processes, epigenetic
modifications adjust the cell-environment relationship in a
context-dependent manner.
According to the alarming statistics of several recent public

health researches, metabolic diseases appear as an increasingly
severe burden in human society. There have been more than 1.9
billion adults and over 650 million adults qualified as obese and
overweight globally in 2016.4 According to International Diabetes
Federation, 537 million adults had diabetes in 2021, which has
become the ninth major cause of death worldwide.5 NAFLD is the
most common chronic liver disease worldwide, the global
prevalence of which was 25%.6 On the other hand, recent clinical
trials targeting cancer metabolism come out with unsatisfactory
efficacy and frustrating adverse reactions.7–9 Leaving dietary
interventions alone, metabolic therapy is divided into agents
targeting nucleotide metabolism and non-nucleotide metabolism.
Not a few metabolic drugs targeting nucleotide metabolism,
mostly nucleotide analogs, have been commonly employed in
clinical practice. But development of the non-nucleotide metabo-
lism-targeted drug remains in its nascent stages.
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Therefore, for better insights into pathophysiology and
optimized therapeutic strategies, integrated multi-omics analysis
of metabolism is imperative. Not a few excellent studies have
discussed the regulatory roles of RNA modifications on metabo-
lism in specified pathological situations, with a particular focus on
cancers.10–12 However, there is a deficiency of a comprehensive
and wide-scale review on the epigenetic-metabolic interaction
covering health and disease context.
Notably, immunometabolism is emerging field, expected to

provide novel therapeutic strategies in cancer, autoimmunity, and
metabolic diseases. The concept illustrates metabolic changes
occurring in immune cells during their differentiation and
activation processes. Studies have confirmed that various immune
cells, including T cells, macrophages, NK cells, and DCs, proceeded
metabolism remodeling to fulfill their specific functions in discrete
contexts.13–16 According to current knowledge, RNA modification
could exert influences on immunometabolism through cell-
intrinsic and extrinsic mechanisms. The former is intrinsic
programs, including mTORC1 signaling and metabolic-related
genes expression. The latter refers to tissue microenvironment
and nutrient availability.
In this review, we first introduce the history and current

understanding of RNA modifications, and focus on their regulatory

roles in cellular metabolism to construct epigenetic-metabolic
landscape in physiological and pathological situations. And the
influences of RNA modifications on immunometabolism in
different immune responses is discussed separately. Eventually,
we highlight the clinical implications of RNA modifications and
provide perspectives for further studies.

OVERVIEW OF RNA MODIFICATIONS
Brief history of RNA modification research
Modified nucleosides in RNA, beyond the canonical A, U, C and G,
have been recognized for more than half a century. Figure 1
illustrates the historical milestones of RNA modifications research.
Pseudouridine (Ψ) is the first RNA modification type to be
identified in 1950s.17 In 1965, sequencing of the first biological
RNA, alanine tRNA derived from yeast, confirmed 10 modification
types.18 Due to technological advancement, over 170 RNA
modifications have been discovered, ubiquitously existing in
various coding and non-coding RNAs. However, it was not until
last decade that the functional significance of RNA modifications
gradually got recognized, prominently the widespread preva-
lence and biological functions of N6-methyladenosine (m6A).19

Following 5′ cap and 3′ poly(A) tail of messenger RNA (mRNA),

Fig. 1 The milestone events in RNA modification field. The first RNA modification type Pseudouridine (Ψ) was discovered in 1951. Since then,
other RNA modification, including m6A, m1A, m6Am, etc were discovered. Along with the accumulation of epi-transcriptomic knowledge,
comprehensive databases like RNAMDB and MODOMICS were incepted. Since Liquid Chromatograph-Mass Spectrometer (LC-MS) technique
was utilized for the quantitative analysis of modified ribonucleosides in 2015, more specific high-throughput mapping methods gradually
emerged. Recent years have witnessed the application of single-cell sequencing technologies in mapping RNA modification. The figure is
generated with BioRender (https://biorender.com)
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internal modifications on mRNAs were identified, represented by
the most common methylation m6A.20,21 These modifications
were observed to exert significant roles in every link of mRNA
fate, including pre-mRNA splicing, nuclear export, translation,
stabilization and degradation. Transfer RNA (tRNA) modification is
renowned for the largest number, with an average of 13
modifications per molecule.22 Their biological roles could be
generalized in two aspects, which are maintaining the tertiary
structure and facilitating codon–anticodon recognition.23 For
ribosomal RNA (rRNA), RNA modifications are especially indis-
pensable, as rRNA biogenesis is interrupted without pseudour-
idines and 2′-O-methyls. Modifications of long noncoding RNA
(lncRNA) are mainly methyl nucleotide derivatives, including m6A
and m5C.24 Though far from being elucidated, lncRNAs modifica-
tions have been revealed to influence the stability, protein
interactions, and subcellular distribution of lncRNAs.25 Human
small nuclear RNA (snRNA) contains 2′-O-methyls, pseudour-
idines, and base methylations, participating in RNA splicing
reaction. At present, mainstream RNA-seq methods are incapable
for comprehensive and quantitative mapping of modifications on
small non-coding RNAs. Here we summarize the current knowl-
edge of RNA modifications, focusing on the regulatory mechan-
isms and biological consequences of several well-learned types.

Main types of RNA modification
To build a general intuition of RNA modifications, we first sketch
the distinctions between reversible and non-reversible modifica-
tions. Reversible types are usually smaller-scale modifications on
chemical side chains, spanning from simple methylation to some
appendages of large-molecular mass. These plastic and reversible
RNA modifications extensively exist in gene regulation and cellular
states. The extensive catalog of nonreversible RNA modifications
includes RNA editing, splicing, and transcript-content modification
(such as intron retention). Contrary to the reversible type, these
modifications directly alter the sequence information, magnifying
plasticity and diversity of transcriptome. The chemical structure
and distribution of eight RNA modifications were showed in Fig. 2
and Table 1.

Adenosine modification
N6-methyladenosine (m6A): m6A modification refers to the
methylation of the adenosine base at the N-6 position. m6A
targeted at consensus sequences DRACH (D= G, A, or U; R= G or
A; H= A, C, or U), which are mainly enriched in CDS and 3’UTR
region of mRNA,26 as well as most non-coding RNAs, including
rRNAs, lncRNAs, circular RNAs (circRNAs), microRNAs (miRNAs),
small nuclear RNAs (snRNAs), small nucleolar RNAs (snoRNAs).27

Fig. 2 The chemical structure, distribution, and molecular functions of eight RNA modifications. Chemical modification occurs on many types
of RNA and modulate every links of RNA metabolism. m6A N6-methyladenosine, m6Am N6,2′-O-dimethyladenosine, m5C 5-methylcytosine,
m1A N1-methyladenosine, m7G 7-methylguanosine, ac4C N4-acetylcytidine, ψ pseudouridine, A-to-I editing adenosine-to-inosine RNA
editing, CDS coding sequence, UTR untranslated regions, pri-miRNA primary microRNA, pre-miRNA precursor microRNA. The figure is
generated with BioRender (https://biorender.com)
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Table 1. The general characteristics of main RNA modification types

Type Contribution Class Regulator Function Ref.

m6A mRNA, rRNA, snRNA, snoRNA,
miRNA, lncRNA, circRNA, eRNA

writer METTL3 Catalyzes most of the m6A modifications via forming
methyltransferase complex (MTC) with METTL14

34

METTL14 Provides structural support in MTC 35

METTL16 Catalyzes m6A in U6 snRNA 40

eraser FTO Removes m6A/m6Am/m1A modifications 44,45

ALKBH5 Demethylates m6A modification exclusively 50

reader YTHDF1 Stabilizes transcripts and initiates translation 56,57

YTHDF2 Promotes degradation 56,57

YTHDF3 Facilitates translation and degradation 56,57

YTHDC1 Mediates RNA splicing, nuclear export and degradation 54

YTHDC2 Promotes translation efficacy and decay 55

IGF2BP1/2/3 Stabilizes transcripts and facilitates translation 58,59

HNRNPs Mediate splicing of pre-mRNAs and/or pri-miRNAs 60

m6Am mRNA, snRNA writer PCIF1 Catalyzes m6Am next to the 5′ cap of mRNAs and in snRNAs 77

METTL4 Catalyzes m6Am at position 30 in human U2 snRNA 80

eraser FTO Removes m6A/m6Am/m1A modifications 49

m1A tRNA, rRNA, lncRNA, and mRNA writer TRMT61B Catalyzes mA at positions 58 (m1A58) 92

TRMT10C Catalyzes mA at positions 9 (m1A9) 92,93

TRMT6/61A Catalyzes m1A in tRNA at A58 and mRNA 94

TRMT61B Mediates m1A in mitochondrial 16S rRNA 95

eraser ALKBH1 Catalyzes demethylation of most m1A in cyto-tRNAs 97

ALKBH3 Demethylates m1A in both tRNAs and mRNAs 98,99

ALKBH7 Demethylates m1A within mitochondrial Leu1 pre-tRNA regions 100

FTO Demethylates m1A in tRNA 49

reader YTHDF1/2/3
YTHDC1

Mediates stabilization, degradation, splicing, translation 101,102

m5C writer NSUN1 Catalyzes m5C at position 4413 of 28S rRNA 114

NSUN5 Catalyzes m5C at position 3761 of 28S rRNA 115

NSUN2 Methylates C34, C40, C48, C49, and C50 in several tRNAs 116

NSUN6 Methylates C72 in particular tRNAs 117

DNMT2 Methylates C38 in particular tRNAs 118

NSUN3 Catalyzes m5C in mitochondrial tRNA 119

NSUN4 Catalyzes m5C in 12S rRNA 120

eraser ALKBH1 Demethylates m5C at position 34 of cytoplasmic and
mitochondrial tRNA

126,127

TET1/2/3 Catalyzes first step of m5C demethylation 128

reader ALYREF Promotes the nuclear export of m5C-modified rRNAs 129

YTHDF2 Modulates the maturation of m5C-modified rRNAs 130

ac4C mRNA, tRNA, rRNA writer NAT10 THUMPD1 and snoRNP are necessary assistants for modifying
tRNA and 18S rRNA, respectively

141,140,141

m7G mRNA, tRNA, rRNA, miRNA writer METTL1 Forms complex with WDR4 to catalyze m7G on tRNA, miRNA,
and mRNA

147

RNMT Catalyzes m7G on recapped mRNAs, cooperated with RAM 149

WBSCR22 methylate G1639 in human 18S rRNA, cooperated with TRMT112 150

TGS1 Catalyzes hypermethylation of m7G caps into m2,2,7G in snRNAs
and snoRNAs

151

reader eIF4E, CBC recognizes m7G cap and further affect RNA maturation, nuclear
export, and translation

152

Ψ writer DKC1 Forms a complex with box H/ACA snRNA to pseudouridylates
rRNA

160

A-to-I Pre-mRNA, pri-miRNA writer ADAR1-3 ADAR1 and ADAR2 could catalyze all known A-to-I editing
events, while ADAR3 has no deaminase activity

186
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Growing studies have confirmed that m6A could exert significant
impacts on various biological processes in mammals, including
DNA damage response, cell cycle, circadian rhythm, heat shock
response, meiotic progression, development of hematopoietic,
central nervous and reproductive systems, myogenesis, and fat
differentiation.28–33

m6A deposition in mRNA is dependent on methyltransferase
complex (MTC), of which the methyltransferase-like 3/14 (METTL3/
14) heterodimer is the key component.34 Therein, METTL3 exerts
catalytic role via transferring methyl group of S-adenosyl
methionine (SAM) and METTL14 provides structural support. In
METTL3, two methyltransferase domains (MTD) bind to methyl
donors, CCH-type zinc finger domain (ZFD) recognizes targets,
while nuclear localization signal (NLS) domain and leading helix
structure (LH) domain coordinately mediate the interaction
between METTL3 and METTL4.35,36 There are several auxiliary
subunits for localizing and initiating methylation, including Wilms’
tumor 1-associating protein (WTAP), RNA-binding motif protein
15/15B (RBM15/15B), zinc finger CCCH-type containing 13
(ZC3H13) and vir-like m6A methyltransferase-associated (VIRMA,
also known as KIAA1429).37–39 METTL16 is responsible for m6A
formation in U6 snRNA, targeting a conserved UACAGAGAA
sequence.40 METTL16 also participates in maintaining homeostasis
of SAM in a m6A-dependent manner.41

Zinc Finger CCHC-Type Containing 4 (ZCCHC4) and METTL5
mediate m6A modification of 28 S and 18 S rRNA at A4220 and
A1832 region, respectively.42,43 Both m6A demethylases, Fat mass
and obesity-associated protein (FTO) and AlkB homolog 5
(ALKBH5), belong to AlkB family of the Fe (II)/α-ketoglutarate-
dependent dioxygenase superfamily. FTO is the first discovered
m6A eraser for mRNA and snRNA, which also mediates
demethylation of N6,2′-O-dimethyladenosine (m6Am) and N1-
methyladenosine (m1A).44,45 Which one of m6A and m6Am is the
principal substrate of FTO remains controversial. It was reported
that FTO catalyzed m6A demethylation at a concentration at least
twice that of m6Am.46,47 But Zhang et al. proposed that FTO
equivalently demethylated m6A and m6Am deposited on the
same RNA sequence.48 Significantly, Wei et al. discovered that
nuclear FTO showed an affinity bias towards m6A, which tends to
be inconspicuous in cytoplasm, due to altered abundance of
m6A.49 Whereas, ALKBH5 exclusively catalyzes m6A demethyla-
tion in mRNA.50

The most studied readers are the YT521-B homology (YTH)
domain family members, including YTHDF1/2/3 and YTHDC1/2,
most of which localize to cytoplasm except for YTHDC1 in
nucleus.51,52 The prevailing idea is that YTHDFs bind to different
m6A-modified RNAs, but Zaccara et al. hold that all m6A-modified
RNAs are subjected to YTHDFs and they act redundantly in
mediating RNA degradation.53 YTHDC1 contributes to RNA
splicing, nuclear export and degradation, while YTHDC2 promotes
translation efficacy and decay.54,55 YTHDF1 could stabilize
transcripts and initiate translation via interacting with eIF3,
YTHDF3 not only facilitates translation but works in synergism
with YTHDF2 in inducing mRNA degradation.56,57 The insulin-like
growth factor 2 mRNA-binding protein family, IGF2BP1/2/3, is
another group of readers. IGF2BPs possess 4 repetitive KH
domains and bind to m6A sites with KH3/4 to stabilize transcripts
and facilitate translation.58,59 The heterogeneous nuclear ribonu-
cleoprotein (HNRNP) family includes HNRNPC, HNRNPG, and
HNRNPA2B1. HNRNPs can mediate splicing of precursor (pre)-
mRNAs and/or primary (pri)-miRNAs through ‘the m6A-switch’
mechanism, in which m6A alters the local structure of mRNA or
lncRNA to facilitate the binding of HNRNPs.60 HNRNPA2B1 directly
binds to pri-miRNAs to mediate alternative splicing. Meanwhile, its
interaction with the miRNA microprocessor complex protein
DGCR8 promoted primary miRNA processing.61 And HNRNPG
could elicit co-transcriptional m6A-dependent alternative splicing
regulation via directly binding to RNA polymerase II (RNAPII).62

Besides, proline rich coiled-coil 2 A (PRRC2A) and Staphylococcal
nuclease and tudor domain-containing 1 (SND1) could serve as
readers to stabilize m6A-modified RNAs.63,64

To sum up, m6A modification extensively influences fate of
different RNA classes, consequently regulates various cellular
processes. In mRNAs, m6A methylation can affect splicing,
exportation, stabilization, degradation, and translation.65 In rRNAs,
the A1832 methylation in 18 S rRNA and A4220 methylation in
28 S rRNA are essential for translation.42,43 In miRNAs, m6A could
facilitate pri-miRNA processing via recruiting DGCR8,61 or down-
regulate several miRNAs via some exclusive mechanism.66 In
lncRNAs, m6A modification could serve as a structural switch to
regulate RNA-protein interactions,67 or stabilize lncRNAs to ensure
its function.68 In cirRNAs, m6A could facilitate cytoplasmic
export,69 translation70 and degradation.71 Moreover, m6A partici-
pates in modulating splicing and biogenesis of snRNA.72 Although
m6A methylation has been widely investigated, the underlying
rationales are far from clarified. For example, m6A modification
could modulate RNA life via diverse mechanisms, but how these
selective effects are determined in different cellular contexts
remains unclear. While previous studies notably focus in mRNAs,
the interplay between m6A and non-coding RNAs deserves more
attention. The same is true for m6A readers, which are unheeded
compared to writers and erasers. And the significance of
methodology development cannot be stressed enough, as bona
fide m6A mapping and elaborate edition on specific m6A sites will
provide a wide scope for future researches.

N6,2′-O-dimethyladenosine (m6Am): m6Am is produced at a 2′-
O-methylated adenosine which is methylated co-transcriptionally
at the N6 position. It is discovered in the first position adjacent to
the 5′ cap structure in many mRNAs and snRNAs in mammals, and
also found as internal modification in the snRNA U2.73 According
to quantification studies, m6Am content ranges from 10% to
almost 50% in mRNAs of different organisms and cell types.74

Previous studies have shown that m6Am installed by host PCIF1
on viral RNA mediated immune evasion, while host m6Am
exhibited both anti-viral and pro-viral roles.75,76

The enzyme catalyzes m6Am next to the 5′ cap of mRNAs and
in snRNAs is “phosphorylated CTD-interacting factor 1” (PCIF1),
also known as “cap-specific adenosine methyltransferase”
(CAPAM).77 The core region of PCIF1 contains the methyltransfer-
ase domain and helical domain that functions as the RNA-binding
surface,78 and a specific site (m7Gsite) located between the two
domains mediated the specific recognition of the m7G cap.79 It
was revealed that knockout of PCIF1 altered cell proliferation
under oxidative stress conditions in human HEK293T cell line.79

Another m6Am writer, METTL4 methylated the internal 2′-O
methylated adenine, at position 30 in human U2 snRNA.80 METTL4
contains a C-terminal domain that is similar to METTL3, a middle
domain (MID) and a N-terminal domain (NTD), which enables
METTL4 works as a monomer with no need for METTL14.81 It was
indicated that METTL4 was highly conserved and exclusive for
U2 snRNA.82 However, overexpressed METTL4 tends to modify A
instead of Am in mRNAs with consensus HMAGKD (H= A/C/U,
M= A/C, K= G/U, D= A/G/U).83 Also, METTL4 was found to
catalyze mt-DNA m6A in human cell line.84 Ablation of METTL4 did
not influence viability of HEK293T cell line, but altered adipocyte
differentiation of mouse 3T3-L1 cells.83,85

To date, FTO is the only known demethylase for m6Am, which,
as mentioned above, show a substrate preference between m6A
and m6Am depending on its cellular localization.49 In cytoplasm,
FTO preferentially demethylates cap-adjacent m6Am and internal
m6A on mRNAs, while nuclear FTO acts on m6Am in RNA Pol II-
transcribed snRNAs, and internal m6Am and m6A in the snRNAs
U2 and U6.49 Studies have identified that FTO distribution was
correlated with cell cycle phase and regulated by casein kinase II-
mediated phosphorylation.86 To be mentioned, structural analysis
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demonstrated that the catalytic activity of FTO was mediated by
recognizing N6-methyl of adenine rather than the 2′-O methyl
group of the ribose.48

There are discrepancies exist in present studies on influences of
m6Am modification on gene expression, as an inherited issue from
the past immature m6Am mapping methodologies. For instance,
m6Am methylation was initially suggested to play a positive role in
mRNA stability in a cell-type-specific manner.45 However, a recent
study, developing the specific sequencing method m6Am-seq, has
clarified that PCIF1 was not required for stabilization of m6Am-
modified mRNAs.77 There are other studies implicated that m6Am
did not have direct effects on mRNA stability.77,79 As for translation,
the current cognition is that m6Am modifications in mRNA cap
exert a cell-specific influence on translation.79,87 And such effects
are dependent on 2′-O-methylation modification in the second
nucleotide of the cap-structure.88 Moreover, the effect of m6Am
modification in splicing need more verification. It was suggested
that METTL4 had no direct influence on U2 snRNA expression levels
but rather altered splicing regulation.80,82

To sum up, the cap-adjacent location endows m6Am modifica-
tion with potential to regulate stability and translation. The
significant discovery of PCIF1, specifically catalyzes m6Am in the
cap structure, drives relevant exploration. However, methodologi-
cal deficiency is the major problems in m6Am researches. Most of
previous studies adopted m6A mapping protocols instead of
specific m6Am mapping methods, which led to poor reproduci-
bility and controversial results. Thus, more specific and efficient
methods are in urgent need to clarify the regulatory roles of
m6Am modification in gene expression.

N1-methyladenosine (m1A): m1A, the methylation of adenosine
at position N1 identified in 1960s, has been found in tRNA, rRNA,
lncRNA, and mRNA, among which tRNA is the most heavy-
modified class.89,90 Particularly, m1A can transfer to m6A after
“Dimroth rearrangement” under alkaline conditions and they also
share some regulators.49 m1A has been identified and enriched in
specific regions of viral RNA, but its influences in innate immunity
is not yet clear.91

In mitochondrial tRNA, m1A methylation is catalyzed by tRNA
methyltransferase (TRMT61B) and TRMT10C at positions 58
(m1A58) and 9 (m1A9), respectively.92,93 TRMT61A and TRMT6
form a heterotetrameric complex to methylate both cytoplasmic
tRNA at A58 and mRNAs with GUUCRA tRNA-like motifs, as
TRMT61A functions as the catalytic subunit.94 TRMT61B mediates
m1A in mitochondrial 16 S rRNA,95 and nucleomethylin (NML, also
known as RRP8) methylates 28 S rRNA in nuclei.96 And no specific
m1A writer for mRNA has been reported yet. ALKBH1 catalyzes
demethylation of most m1A in cyto-tRNAs, while m1A58 is the
major substrate.97 ALKBH3 demethylates m1A in both tRNAs and
mRNAs.98,99 ALKBH7 can demethylate m1A within mitochondrial
Leu1 pre-tRNA regions in the nascent polycistronic mitochondrial
RNAs.100 And FTO was also proved to demethylated m1A in
tRNA.49 YTHDF1/2/3 and YTHDC1 have been confirmed to directly
bind to m1A marks, with weaker affinity than that of m6A.101,102

The evolutionarily conversed YTH domain was suggested to be
the key to methyl recognition, but the mechanistic research
remains deficient.102

The methyl group of m1A carries a positive electrostatic charge,
which affects RNA base pairing, and subsequently influences
molecule structure and function of modified RNAs. Notably, the
electro-chemical interaction of m1A is supposed to play roles in
maintaining or stabilizing the T-loop-like structure, and further
strengthening the structure.103 As for translation, m1A modifica-
tion has effects on initiation or elongation process via regulating
tRNA, mRNA and rRNA. Several studies have indicated that m1A
on either tRNA or mt-tRNA could facilitate translation.97,104

Whereas, m1A modification on mRNA plays diverse roles in
protein synthesis, as m1A in 5’UTR correlates with enhanced

translation initiation and efficiency,105 but m1A in the CDS exerts
inhibitory effects.92,106 In rRNA, m1A is likely associated with
translation initiation, as loss of yeast RRP8-catalyzed m1A led to
incompetent formation of the 80 S initiation complex.107 More-
over, m1A modification participates in the structural thermo-
stability of tRNAs108 and the nascent polycistronic mt-RNA
processing.100

As one of the most abundant internal RNA modifications, the
machinery and biological functions of m1A remain largely
unknown. The roles of YTH domain-containing proteins as m1A
readers may provide novel scientific prospects. And whether its
impact on RNA base pairing influences RNA interaction, such as
miRNA with mRNA, lncRNA, and circRNA, requires more exploration.

Cytosine modification
5-methylcytosine (m5C): For decades, methylation of cytosine
residues at the position 5 in DNA have been quite familiar. Ever
since it was identified in RNA in 1958, m5C has been revealed to
distribute widely in RNAs, including tRNA, rRNA, mRNA, enhancer
RNA (eRNA), and miRNA.109,110 Studies figured out that m5C
modification extensively occurred on maternal mRNA in zygotes
of different eukaryotic species, regulating embryogenesis in
mouse, zebrafish and Drosophila.111–113

In eukaryotes, m5C modification is catalyzed by members of the
NOL1/NOP2/SUN domain (NSUN) family of proteins, NSUN1-7 and
DNA methyltransferase (DNMT) homolog DNMT2. For rRNA,
NSUN1 and NSUN5 introduce m5C at position 4413 and 3761 of
human 28 S rRNA, while their homologs in yeast methylate 25S-
C2870/25S-C2278.114,115 For tRNA, NSUN2 could modify several
sites in various tRNAs, including C34, C40, C48, C49, and C50.116

NSUN6 and DNMT2 methylate C72 and C38 in particular tRNAs,
respectively.117,118 NSUN3 and NSUN4 are responsible for
methylation of mitochondrial tRNA and 12 S rRNA.119,120 And
NSUN4 forms a complex with the mitochondrial transcription
factor MTERF4 for lack of RNA recognition motif.121 The m5C
methyltransferase specific for mRNAs has not been confirmed yet,
but NSUN2 was described to target mRNAs in several stu-
dies.122,123 Besides, m5C modifications of ncRNA and eRNA are
modified by NSUN2 and NSUN7, respectively.124,125 The identified
m5C erasers include ten-eleven translocation (TET) proteins
(TET1–3) and ALKBH1. ALKBH1 can successively catalyze m5C into
5-hydroxymethylcytidine (hm5C), 5-formylcytosine (f5C), and 5-
carboxylcytosine, at position 34 of cytoplasmic and mitochondrial
tRNA,126,127 whereas TETs has been only reported to complete the
first step for RNA m5C.128 Aly/REF Export Factor (ALYREF) is the
first identified m5C reader in mRNA, a well-known complex that
promotes the nuclear export.129 Y-box-binding protein 1 (YBX1) is
located in cytoplasm and could recruit stability maintainer ELAV
like RNA binding protein 1 (ELAVL1) to stabilize m5C-modified
mRNAs.112 Also, YTHDF2 has been reported to modulate the
maturation of m5C-modified rRNAs.130

Collectively, m5C modification plays a crucial role in RNA
stabilization, exportation, and translation. m5C at C2278 of 25 S
rRNA stabilizes the structural conformation of the ribosome.115

Hypermethylated mRNAs with m5C are stabilized via YBX1-
dependent manner.131 NSUN2-mediated m5C modifications in
vault RNA are significant for its processing into derived small RNAs
and protect eRNAs from degradation.132 Also, NSUN2 modified
cyclin-dependent kinase inhibitor 1 A (CDKN1A) mRNA and
promoted its nuclear export and translation.133

As mentioned above, the dizzying matchup between m5C
modifiers and their specific targets brings out challenges as well as
opportunities. Targeting certain writers or manipulating specific
modification sites reserve great therapeutic potential.

N4-acetylcytosine (ac4C): ac4C, acetylation of the N4 position of
cytosine, is the first acetylation event described. As initially found
in tRNA and rRNA, ac4C was also confirmed to be widely present

RNA modifications in cellular metabolism: implications for. . .
Liu et al.

6

Signal Transduction and Targeted Therapy            (2024) 9:70 



on mRNAs.134 In tRNA, ac4C is located at the wobble of tRNAMet

and the D-arm of tRNASer/Leu.135 In eukaryotic 18 S rRNA, ac4C is
deposited in helix 34 and helix 45 near the decoding site.136 In
mRNA, ac4C is detected in the CDS region and 5ʹUTR, enriched in
the third codon encoding amino acid.134 Advances in the study of
RNA ac4C modification in cell cycle, inflammatory stress, tumors,
premature diseases and viral infection have been
reported.91,137,138

Currently, N-acetyltransferase 10 (NAT10) is the only identified
ac4C writer, with acetyl-CoA providing acetyl and ATP/GTP
hydrolysis supplying energy.139 When modifying tRNA, the
assistance of THUMP domain containing 1 (THUMPD1) is
necessary,140 while box C/D snoRNPs act as antisense to guide
18 S rRNA acetylation.141 For now, no ac4C eraser has been
identified and it remains unknown whether ac4C modification is
reversible.
The presence of ac4C on tRNA helps maintain the thermal

stability of tRNA and a high heat tolerance of cells, and improves
fidelity and efficiency of translation.134,142 ac4C on mRNA CDS
region significantly enhance mRNA stability and facilitate transla-
tion, probably by preserving codon-anticodon interaction.143

However, ac4C on 5ʹUTR mainly regulates translation initiation in
a location-specific manner, as ac4C downstream a weak transla-
tion initiation site could promote translation, but the one adjacent
to a strong AUG start codon disturbs translation.144 In 18 S rRNA,
ac4C modification is crucial for maintaining translation accuracy,
pre-rRNA processing and ribosome synthesis.140

The cognition of ac4C modifiers and molecular functions
remains largely unknown. Since cofactors of NAT10 have been
identified during ac4C formation in human rRNA or tRNA, whether
novel cofactors exist in catalyzing mRNA ac4C is noteworthy.
Particularly, no erasers or readers has been found yet, whether a
deacetylation mechanism exist require more validation.

Guanosine modification
N7-methylguanosine: m7G, referring to the RNA methylation of
guanine at position N7, was first found at the 5′ cap (m7GPPPN) of
mRNA, stabilizing transcripts and further mediating cap-related
biological functions.145 Until now, m7G has been discovered at
internal position within mRNA, tRNA, and rRNA,146,147 and tRNA
nucleotide position 46 (m7G46) in the variable loop region is the
most prevalent m7G methylation site.148

The most well-characterized m7G writer is METTL1, which forms
a functional complex with WD repeat domain 4 (WDR4) to install
m7G on tRNA, miRNA, and mRNA.147 RNA guanine-7 methyl-
transferase (RNMT) is responsible for m7G on recapped mRNAs,
cooperated with RNMT-activating mini-protein (RAM).149

Williams–Beuren syndrome chromosome region 22 (WBSCR22)
methylate G1639 in human 18 S rRNA, requiring tRNA methyl-
transferase activator subunit 112 (TRMT112).150 Trimethylguano-
sine synthase 1 (TGS1) might also function as a modifier,
catalyzing hypermethylation of m7G caps into m2,2,7 G in snRNAs
and snoRNAs.151 The eukaryotic translation initiation factor eIF4E
and the cap-binding complex (CBC) can recognize m7G cap and
further affect RNA maturation, nuclear export, and translation.152

Notably, m7G modification is extensively involved in various
biological processes. For mRNA, the m7G cap could regulate pre-
mRNA slicing, nuclear export, translation,152 and indirectly
enhance translational capacity by driving ribosome biogenesis.153

And internal m7G also influences translation.154 For tRNA, METTL1/
WDR4-mediated m7G methylome plays pivotal roles in maintain-
ing tRNA structural integrity, thereby facilitating translation and
reducing ribosome pausing.155 For rRNA, m7G modification
participates in 18 S rRNA precursor biogenesis and nuclear export
of the 40 S rRNA.150,156 Moreover, m7G on G-quadruplex structures
in pri-miRNA could promote miRNA processing.157

At present, our understanding of m7G regulators is apparently
limited. No specific demethylase has been identified to regulate

the global balance of m7G. And whether m7G modification
regulating gene expression via affecting the secondary structure
of RNA or recruiting RNA binding proteins remains unclear.
Furthermore, the interplay among m7G and other post-
transcription attracts growing attention, more explorations are
imperative to unravel the underlying mechanism.

Uridine modification
Pseudouridine (Ψ): Ψ, the 5–riboside isomer of uridine, is the first
discovered and most abundant RNA modification.17,158 The C5
atom, instead of N1, forms a new carbon-carbon bond (C5–C1′)
with pentose at its non-Watson-Crick edge, endowing Ψ with
unique chemical properties. Ψ is present in a wide range of RNAs,
including tRNA, rRNA, and various snRNAs, which is highly
conserved among species.158,159 The widespread distribution
determines its importance in regulating gene expression, steering
cellular programs both in development and disease.
The pseudouridylation is mainly catalyzed by pseudouridine

synthases (PUSs), via RNA-dependent or -independent manner.
The RNA-dependent mechanism involves Dyskerin pseudouridine
synthase 1 (DKC1), which forms a complex with box H/ACA snRNA
to pseudouridylates rRNA.160 The RNA-independent PUSs includes
PUS1, PUSL1, PUS3, TRUB1, TRUB2, PUS7, PUS7L, RPUSD1–4, and
PUS10.161–163 Regrettably, no Ψ eraser or reader has been
documented. And it was speculated that C5–C1′ bond render
pseudouridylation irreversible.164

Ψ on tRNA is critical for stabilizing tRNA structure and tRNA
codon–anticodon base pairing, further affecting translation
processes. Also, Ψ-modified tRNA-derived fragments could restrain
aberrant protein synthesis.165 Besides, Ψ is also involved in pre-
mRNA processing, structure and stability of mRNA, translational
fidelity and termination.166,167 The rRNA Ψ plays a functional role
in rRNA processing and protein synthesis.168 It was demonstrated
that hypo-pseudouridylated rRNAs decreased affinity for tRNA of
ribosomes, impairing translational fidelity.169 snRNP Ψ participates
in its biogenesis and splicing.170 Ψ35 in the 5′ end of the
U2 snRNA was considered as necessary for early spliceosome
formation.171

Although discovered 70 years ago, there are still plenty of
vacancies in knowledge on the mechanisms and functions of Ψ.
Elucidating whether pseudouridylation is reversible will be one of
the key directions in the future. Since efforts to approach
inducible pseudouridylation have generated exciting results,
which open up new avenues for exploring potential therapeutics.
Remarkably, Ψ has already been validated to make critical
contribution to COVID-19 mRNA vaccines.172

RNA editing
A-to-I editing: RNA editing modifies primary mRNA and miRNA
in posttranscriptional level, altering coding information of DNA. It
was first discovered in trypanosome mitochondrial mRNA in
1986.173 So far, RNA editing has been found in tRNA, rRNA and
miRNA.174–176 The most prevalent type is conversion of adenosine
into inosine (A-to-I editing),177 and then inosine is recognized as
guanine by the translational machinery. It has been implicated
that ADAR1-mediated A-to-I editing was involved in stem cell
pluripotency and maintenance, neurological development and
function, and immune response.178,179

A-to-I editing only occurs in the double-stranded regions of
RNAs made from inverted Alu repetitive elements (Alu dsRNAs),
and is far less frequent in coding sequences than noncoding
sequences such as UTRs and introns.180 Precursors of certain
miRNAs are also common targets.181 The editing levels dramati-
cally vary in cell and tissue type of different origins and
development stages, ranging from 2%-100%.182,183 The conver-
sion is catalyzed by adenosine deaminase acting on RNA (ADAR)
protein.184 In vertebrates, the isoforms of ADAR protein, ADAR1-3
have identified. These ADAR enzymes possess a C-terminal
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conserved catalytic deaminase domain, and double-stranded RNA
binding domain (dsRBD) at the N-terminus, three for ADAR1 and
two for ADAR2-3.185 Functionally, ADAR1 and ADAR2 are
responsible for all known A-to-I editing events, while ADAR3 has
no documented deaminase activity.186 The mechanism of ADAR
substrate specificity remains unclear, in which length and
structure of dsRNA was suggested to play an important role,187

and editor modulators like snoRNAs also participated in.188 The
consequences of A-to-I editing in coding sequences includes
alternative splicing, nonsynonymous amino acid substitutions,
nuclear retention and degradation of mRNA. Also, these editing
could regulate gene expression via influencing splicing enhancers/
silencers recognition sites of ncRNAs in non-coding sequence.189

For several miRNAs, A-to-I editing negatively affects the expres-
sion and function of the mature miRNAs.181 In opposition, ADAR1
could facilitate miRNA processing and RNA interference (RNAi)
efficacy via forming a complex with Dicer.190

Recently, RNA editing, represented by A-to-I editing, has
emerged as a powerful tool to correct pathogenetic mutations,
modulate gene expression and protein function. And its transient
pharmacodynamic effects could be applied in treatment of several
diseases like viral infection, obesity, inflammation, and acute pain.
In addition, the transient modulation of protein functions opens
up new avenues for oncology and regenerative drugs.

Main database of RNA modifications
To our knowledge, there have been 15 databases established for
RNA modifications, two of which are concentrated on biochemical
features of RNA modifications, and the rest aimed at elucidating
the biological roles. The latter part includes reversible RNA
modification database, which can be further classified as
comprehensive and type-specific, and nonreversible RNA mod-
ification database, namely RNA editing database (Table 2).

Sequencing methods of RNA modification profiling
With the advances in next-generation sequencing (NGS) technol-
ogies, many experimental methods have been designed to profile
RNA modifications. Generally, the principles of sequencing
methods could be classified as two types. The first type is based
on antibody or chemical label to capture modified RNA fragments,
such as MeRIP-seq for m6A profiling. Another strategy is using
enzyme-assisted reaction or a specific chemical reaction on the
modified bases, such as Pseudo-seq for Ψ. And these reactions
bring about base deletions, substitutions, or truncations, either
before or after the modified bases. Here we briefly introduce
characteristics of current sequencing methods in Table 3.

RNA MODIFICATIONS AND CELLULAR METABOLISM
Cellular metabolism is a flexible network that allows cells to satisfy
their bioenergetic and biosynthesis requirements. In malignant
cells, metabolism reprogramming is implicated in tumorigenesis,
progression, metastasis and chemoresistance. Aside from the well-
concerned cancer metabolism, metabolic adoptions extensively
exist in various diseases, including diabetes, obesity, nonalcoholic
fatty liver disease (NAFLD), and atherosclerosis. In these pathol-
ogies, dysregulated RNA modifiers significantly participate in
metabolic alterations via targeting metabolic enzymes, transpor-
ters, metabolism-related transcription factors or pathways. Here
we summarize current knowledge of how dysregulated RNA
modifiers influence glucose, lipid, amino acid, and mitochondrial
metabolism, and then, discuss the metabolic effects on RNA
modifications.

Glucose metabolism
Glucose is the main energy source of cells, the metabolic
pathways principally include aerobic oxidation, anaerobic

Table 2. Databases of RNA modifications

Name Description URL

Biochemical RNA modification database

RNAMDB A databse of basic chemical characterizations of 109 RNA modified nucleosides https://mods.rna.albany.edu/

MODOMICS the most comprehensive RNA modification pathway source http://modomics.genesilico.pl

Comprehensive reversible RNA modification databases.

m6A-Atlas a comprehensive knowledgebase for unraveling the m6A epitranscriptome www.xjtlu.edu.cn/biologicalsciences/atlas

m7GHub v2.0 a resource deciphering the location, regulation, and pathogenesis of internal
mRNA m7G epitranscriptome

www.xjtlu.edu.cn/biologicalsciences/m7ghub

m5C-Atlas a database for decoding and annotating the m5C epitranscriptome https://www.xjtlu.edu.cn/biologicalsciences/m5c-
atlas

MeT-DB v2.0 a database for investigation of m6A and its previous version is the first
comprehensive resource for m6A in transcriptome

http://compgenomics.utsa.edu/MeTDB/

RMBase v2.0 a database deciphering the map of RNA modification from epitanscriptome
sequencing data

http://rna.sysu.edu.cn/rmbase/

REPIC an atlas of m6A methylome with cell lines or tissue specificity https://repicmod.uchicago.edu/repic

Specialized reversible RNA modification database

CVm6A a visualization and exploration database for global m6A patterns across cell lines http://gb.whu.edu.cn:8080/CVm6A

RMVar a database of functional variants involved in RNA modifications http://rmvar.renlab.org

RMDisease a database unveiling the association between disease-associated variants and
their epi-transcriptome disturbance

www.xjtlu.edu.cn/biologicalsciences/rmd

RNA Editing Database

REDIdb a specialized database for RNA editing modifications in plant organelles http://srv00.recas.ba.infn.it/redidb/index.html

RADAR a rigorously annotated database of A-to-I RNA editing in humans, mice and flies http://RNAedit.com

DARNED a repository for RNA editing in humans, centralized on A-to-I editing https://darned.ucc.ie/

REDIportal the largest and specialized repository for A-to-I editing occurring in a variety of
human tissues

http://srv00.recas.ba.infn.it/atlas/
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digestion, pentose phosphate pathway (PPP), glycogen synthesis
and gluconeogenesis. Glycolysis is the fundamental energy-
producing process in organisms, in which glucose is decomposed
into pyruvate with free energy released into ATP.191 Normally,
glycolysis in the cytosol is followed by mitochondrial oxidative
phosphorylation (OXPHOS) to produce a large amount of ATP
under aerobic condition. While in cancer cells, glycolysis had
priority over mitochondrial respiration even with sufficient oxygen
supply, known as Warburg effect or aerobic glycolysis.192 The key
glycolytic enzymes, such as hexokinase (HK), enolase (ENO),
Aldolase A (ALDOA), pyruvate kinase isozyme M1/2 (PKM1/2),
pyruvate dehydrogenase kinase (PDK), lactate dehydrogenase
(LDH) and glucose transporter (GLUT) are crucial targets of RNA
modifications in various pathological processes. The pentose
phosphate pathway (PPP) is next to glycolysis and the tricarboxylic
acid (Krebs) cycle, subdivided into two branches, known as the
oxidative and non-oxidative PPP. The non-oxidative PPP is virtually
ubiquitous and can occur non-enzymatically, supporting biosynth-
esis of aromatic amino acid and RNA backbone with ribose
5-phosphate and erythrose 4-phosphate.193 The oxidative branch
depends on glucose-6-phosphate (G-6-P) to produce ribulose-5-
phosphate, carbon dioxide, and nicotinamide adenine dinucleo-
tide phosphate (NADPH), absent in many aerobic and thermo-
philic organisms.194 Glycogen synthesis is catalyzed by glycogen
synthase under balanced phosphorylation/de-phosphorylation of
various kinases, exemplified by glycogen synthase kinase 3 (GSK-
3). In fasting state, GSK-3 is activated through de-phosphorylation,
thus inhibits glycogen synthesis and facilitates glycogenolysis.
While normal feeding inactivated GSK-3 and promotes glycogen
synthesis.195 Gluconeogenesis refers to the process that cells

synthesize glucose or glycogen from non-sugar precursors such as
lactic acid, glycerol, and amino acids. The liver gluconeogenesis is
enhanced by decreased insulin and increased glucagon. Remark-
ably, RNA modifications have been confirmed to play crucial roles
in glucose metabolic pathways via directly or indirectly regulating
expression of glycolytic-related genes (Fig. 3 and Table 4).

Diabetes mellitus. Type 2 diabetes (T2D) is characterized by
insulin resistance and hyperglycemia. And functional integrity of
β-cell in pancreatic islet is indispensable for glucose homeostasis.
It has been demonstrated that high glucose concentrations
reduce m6A level in human and mouse islets.196 Notably, m6A
modification played a vital role in pancreatic beta-cell biology. In
β-cell specific METTL14-knockout mice, dysfunction of islet,
manifested as reduced β-cell proliferation and insulin degranula-
tion, was observed, accelerating the occurrence of diabetes.197

Accordingly, Wang et al. revealed the essential role of METTL3/14
in beta-cell functional maturity. Depletion of METTL3/14 in
endocrine progenitors implicated that METTL3/14 were dispen-
sable for beta-cell differentiation but modulated expression of an
essential transcription factor MAFA, leading to hypo-insulinemia
and hyperglycemia.198 The m6A reader IGF2BP2 is identified as
crucial for β-cell proliferation, PDX1 expression level, insulin
secretion, and further related with T2DM susceptibility. Mechan-
istically, IGF2BP2 could stimulate PDX1 translation in an m6A
dependent manner and orchestrate IGF2-AKT-GSK3beta-PDX1
signaling to stabilize PDX1 polypeptides.199 And IGF2BP2 is
involved in restraining cardiac fibrosis in diabetic heart through
LncRNA Airn /IGF2BP2/p53 axis in an m6A-dependent manner.200

Sun et al. figured out that YTHDF2-mediated m6A modification

Table 3. Sequencing methods of RNA modifications

Technologies Year Resolution Description Ref.

MeRIP-seq (m6A-seq) 2012 100-200nt m6A-specific sequencing method based on antibody-mediated capture and massively parallel
sequencing

442

miCLIP 2015 single nucleotide individual nucleotide resolution cross-linking and immunoprecipitation method for m6A and
m6Am

443

PA-m6A-seq 2015 23nt m6A sequencing assisted by photo-crosslinking 444

m6A-REF-seq 2019 single nucleotide antibody-independent m6A mapping based on the m6A-sensitive RNA endoribonuclease 445

DART-seq 2019 single nucleotide an antibody-free method for m6A targeting deamination adjacent to modification sites 446

m6ACE-seq 2019 single nucleotide m6A cross-linking exonuclease sequencing method 447

m6A-SEAL-seq 2020 single nucleotide FTO-assisted m6A selective chemical labeling method 448

m6A-label-seq 2020 single nucleotide a metabolic labeling method for m6A 449

m1A-seq 2016 50-200nt a protocol for mapping m1A at single-nucleotide resolution 101

m1A-ID-seq 2016 \ a m1A profiling method based on immunoprecipitation and the inherent ability of m1A to stall
reverse transcription

450

m1A-MAP 2017 single nucleotide a misincorporation- assisted profiling method for m1A 451

Aza-IP 2013 \ 5-azacytidine-mediated RNAimmunoprecipitation 452

Bisulfite sequencing 2017 single nucleotide a RNA bisulfite sequencing method of m5C 453

m5C-RIP-seq 2017 \ a m5C profiling using RNA immunoprecipitation followed by a deep sequencing 454

Pseudo-seq 2014 single nucleotide a genome-wide, single-nucleotide-resolution method for pseudouridine 167

Ψ-seq/Psi-seq 2014 single nucleotide a protocol for transcriptome-wide quantitative mapping of Ψ 455

CeU-seq 2015 single nucleotide N3-CMC–enriched Ψ sequencing method 456

m7G-MeRIP-Seq 2019 100-200nt m7G-methylated immunoprecipitation sequencing method 154

m7G-MaP-seq 2019 single nucleotide high-throughput m7G mutational profiling sequencing 457

m7G-miCLIP-Seq 2019 single nucleotide m7G individual-nucleotide-resolution cross-linking and immunoprecipitation with sequencing
method

458

ac4C-RIP-seq 2018 \ transcriptome-wide ac4C-targeted RNA immunoprecipitation sequencing 134

ac4C-seq 2021 single nucleotide a protocol for the quantitative single-nucleotide resolution mapping of ac4C 459

ICE-seq 2011 \ inosine chemical erasing method with deep sequencing method 460
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suppress the expression of poly (ADP-ribose) polymerase 1
(PARP1), which is indispensable in the progression of diabetic
retinopathy (DR).196 Moreover, METTL14-mediated m6A mitigates
diabetic cardiomyopathy via promoting the degradation of
LncRNA TINCR dependent on YTHDF2.201 Particularly, FTO gene
polymorphism rs9939609 and rs9940128 are closely associated
with hyperglycemia, insulin resistance and diabetes mellitus in
different populations.202–204 In T2D patients, FTO, METTL3,
METTL14, and WTAP are upregulated and global m6A level was
reduced. And FTO was positively correlated with serum glucose
and expression level of several glucose-metabolic genes, such as
forkhead box protein O1 (FOXO1), glucose-6-phosphate (G6P) and
diacylglycerol O-acyltransferase 2 (DGAT2).205 Thereinto, FOXO1,
as an essential transcription factor in gluconeogenesis, has been
verified as a direct substrate of FTO. And the potential FTO
inhibitor entacapone elicits glucose-lowering function in vivo.206

Moreover, unregulated activating transcription factor 4 (ATF4) was
found in FTO-overexpressed transgenic mice, which could
augment glucose production by modulating G6P.207,208 Moreover,
m6A modification exerts regulatory roles in insulin resistance (IR).
Hu et al. proposed that inhibition of FTO aggravates the insulin
resistance and adipose tissue inflammation in T2D mice.209

Cancer. Abnormal glucose metabolism, manifested as enhanced
glycolytic activity and lactic acid fermentation, is a fundamental
part of tumor metabolic reprogramming. Numerous studies have
revealed that METTL3-induced m6A directly upregulated expres-
sion of various glycolytic enzymes in different cancers. In cervical
cancer (CC) cells, METTL3 promotes the translation elongation and
mRNA stability of PDK4 depending on YTHDF1/eEF-2 complex and
IGF2BP3, respectively.210,211 In lung adenocarcinoma (LUAD),

METTL3/m6A/YTHDF1 augment the stability of ENO1 mRNA.212

In colorectal cancer (CRC), METTL3 catalyzes m6A on 5’/3’UTR of
HK2 and 3’UTR of GLUT1 (SLC2A1), further stabilizing the
transcripts through IGF2BP2 or IGF2BP2/3, respectively.213 Con-
sistently, Chen et al. identified that METTL3/m6A/GLUT1/mTORC1
axis, and overexpression of METTL3 could predict poor survival of
CRC patients.214 In esophageal carcinoma (ESCA), the multivariate
analysis confirmed the positive association between METTL3 level
and expression of GLUT1 and HK2.215 And Li et al. have verified its
enhancement on HK2 expression in PDAC cells.216 In 5-FU
resistant CRC cells, overexpressed METTL3 not only promoted
the transcription of LDHA via stabilizing mRNA of HIF-1α, but also
triggered its translation in a YTHDF1-dependent manner.217 And
METTTL3 could indirectly activate expression of GLUT1, ALDOA,
PKM2, and LDHA in CRC cells via IGF2BP2-mediated stabilization
of PTTG3P mRNA.218 Similar indirect activation on GLUT4 and
ENO2 was achieved via IGF2BP3-mediated stabilization of HDGF
mRNA in GC cells.219

Aside from above glycolytic-related key enzymes or transpor-
ters, METTL3 exerts extensive regulation on other metabolic-
related targets to motivate glycolysis. Known as a wide-ranging
oncogenic determinant, c-MYC was found to be upregulated by
METTL3 via m6A/DLGAP1-AS2/YTHDF1 in non-small cell lung
cancer (NSCLC)220 and m6A/YTHDF/APC/β-catenin in ESCA, further
advancing glycolytic metabolism.221 HIF-1α is responsible for
hypoxia conditions in tumor environment, which form mutual
feedback with tumor growth. METTL3-induced m6A modification
positively regulates HIF-1α level, leading to enhanced aerobic
glycolysis.222 METTL3 could also regulate glycolysis and tumor-
igenesis of breast cancer (BRCA) via YAP, the downstream of
Hippo pathway. In mechanism, YTHDF2 accelerated degradation

Fig. 3 The roles of RNA modifications in glucose metabolism. The schematic diagram shows the direct regulation of RNA modification on
glucose metabolism pathways. The key glycolytic enzymes, such as hexokinase (HK), enolase (ENO), Aldolase A (ALDOA), pyruvate kinase
isozyme M1/2 (PKM1/2), pyruvate dehydrogenase kinase (PDK), lactate dehydrogenase (LDH) and glucose transporter (GLUT) are crucial
targets of dysregulated RNA modifiers, and are generally upregulated in various pathologies. The figure is generated with BioRender (https://
biorender.com)
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Table 4. RNA modifications in glucose metabolism

Regulator Disease Target Mechanism Ref.

IGF2BP2 DM PDX1 Stabilizes the transcripts in a m6A-dependent manner 199

p53 Stabilizes the transcripts in a m6A-dependent manner 200

YTHDF2 PARP1 Reduce its expression 196

METTL14 LncRNA TINCR Promote its degradation via YTHDF2 201

FTO FOXO1/G6P/DGAT2 Upregulates the expression 205

METTL3 CC PDK4 Promotes its translation elongation and mRNA stability of PDK4 via YTHDF1/eEF-2
complex and IGF2BP3

210

LUAD ENO1 Stabilizes the transcripts via YTHDF1 212

CRC HK2/GLUT1 Stabilizes the transcripts via IGF2BP2/3 213,214

CRC LDHA Promotes its transcription via stabilizing HIF-1α mRNA, and triggers its translation via
YTHDF1

217

CRC GLUT1/PKM2/LDHA/ALDOA Indirect activation via IGF2BP2-mediated stabilization of PTTG3P mRNA 218

ESCA HK2/GLUT1 Promotes the expression 215

PDAC HK2 Upregulates its expression 216

GC ENO2/GLUT4 Indirect activation via IGF2BP3-mediated stabilization of HDGF mRNA 219

NSCLC MYC Upregulates its expression via m6A/DLGAP1-AS2/YTHDF1 axis 220

ESCA MYC Upregulates its expression via m6A/YTHDF/APC/β-catenin axis 221

BRCA YAP Activates it via YTHDF2-mediated decay of LATS1 223

METTL14 CRC SLC2A3/PGAM1 Decreases the expression through YTHDF2-mediated processing of pri-miR-6769b and
pri-miR-499a

231

HCC SIRT6 Stabilizes USP48 to mediate deubiquination of SIRT6 232

RCC ENO2/SRC Destabilizes BPTF to activate ENO2 and SRC 233

GC LHPP Upregulates its expression 234

WTAP GC HK2 Stabilizes the transcripts 235

OVC HK2 Indirectly upregulates HK2 via interacting with DGCR8 to boost miR-200 maturation 236

BRCA ENO1 Facilitates the expression 237

COAD SMARCE1 Stabilizes FOXP3 via YTHHDF1 to transcriptionally activate SMARCE1 238

CRC HKDC1 Suppresses NT5DC3 expression to upregulate HKDC1 239

KIAA1429 CRC HK2 Upregulates the expression 240

GC GLUT1 Upregulates LINC00958 to stabilize GLUT1 mRNA 241

RBM15 OS HK2/GPI/PGK1 Upregulates the expression 242

ZC3H13 HCC PKM2 Destabilizes its transcripts 243

FTO HCC PKM2 Promotes its expression 244

GBM PDK1 Promotes its expression 245

AML PFKP/LDHB Upregulates the expression via YHTDF2 247

CC HK2 Partially reverses E6E7-induced improvement 249

LUAD MYC Suppresses m6A/YTHDF1-mediated translation 250

PTC APOE Attenuates m6A/IGF2BP2-dependent stabilization 251

ALKBH5 Glioma G6PD Stabilizes its transcripts 252

BRCA GLUT4 Protects GLUT4 from YTHDF2-mediated decay 253

PTC PKM2 Decreases circNRIP1 to suppress PKM2 expression 254

HCC HK2 Elevates UBR7 to suppress HK2 expression via Nrt/Bach1 255

YTHDF2 LC G6PD Promotes its translation 257

CRC G6PD Reduces its ubiquitination via circ_0003215/miR-663b/DLG4 axis 258

CRC GSK3 Enhances its stability 259

CRC GSK3 Promotes degradation of STEAP3 to protect GSK3 from phosphorylation 260

YTHDF3 HCC PFKL Promotes its expression 261

PDAC LDHA/HK2/PGK1/SLC2A1 Mediates destabilization of lncRNA DICER1-AS1 to upregulate glycolytic genes 262

IGF2BP1 GC MYC Mediates stabilization role 264

ccRCC LDHA Mediates stabilization role 265

IGF2BP2 CC MYC Stabilizes the transcripts 266

OSCC HK2 Stabilizes the transcripts 267

HCC HK2/GLUT1 miR4458HG interacts with IGF2BP2 to promote HK2 and GLUT1 expression 268

IGF2BP3 OSCC GLUT1 Interacts with circFOXK2 to stabilize GLUT1 mRNA 269

GC MYC LOC101929709 binds to LIN28B and IGF2BP3 to stabilize MYC mRNA 270

ALKBH3 HeLa cells ATP5D Upregulates it expression 271

ALYREF BLCA PKM2 Stabilizes the transcripts 272

METTL1 ACC HK1 Promotes its expression 273

METTL3 HF AR Reduces its expression via YTHDF2 275

Metabolic bone disease ACLY/SLC25A1 Stabilizes the transcripts via IGF2BP2 and IGF2BP3 276
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of m6A-modified LATS1 mRNA, thus reduced phosphorylation of
YAP/TAZ and activated it.223 In addition to these compelling
transcription factors (TFs), METTL3 boosted expression of NDUFA4
in GC,224 AKR1B10 in cholangiocarcinoma (CCA),225 NCAPH in clear
cell renal cell carcinomas (ccRCC),226 thus promoted glycolysis and
malignant phenotypes. Notably, METTL3-induced m6A interacted
with ncRNAs to improve glycolysis, such as stabilizing effects on
lncRNA ABHD11-AS1 in NSCLC,227 lncRNA SNHG7 in prostate
cancer (PC),228 circQSOX1 in CRC,229 and linc-UROD in PC,230

which are generally mediated by IGF2BPs.
Interestingly, METTL14 seems to exert negative influences on

tumor glucose metabolism. In CRC, METTL14 repressed glycolysis
via YTHDF2-dependent processing of pri-miR-6769b and pri-miR-
499a, which attenuated SLC2A3 and PGAM1 expression, respec-
tively.231 In HCC, METTL14 stabilizes USP48 mRNA, which
mediated deubiquitination at the K33 and K128 sites of SIRT6,
thus hindered glycolytic reprogramming.232 In RCC, METTL14
attenuated stability of BPTF mRNA, which constituted super-
enhancers that activated downstream glycolysis-related genes like
ENO2 and SRC.233 Lin et al. proposed that METTL14 positively
regulated LHPP expression to restrain aerobic glycolysis of GC.234

WTAP, another m6A writer, was identified to promote Warburg
effect in several cancers. WTAP targets 3′-UTR of HK2 mRNA and
increased its stability in GC,235 while it indirectly upregulates HK2
via interacting with DGCR8 to boost miR-200 maturation in Ovarian
Cancer (OVC).236 Ou et al. supplemented that WTAP-induced m6A
methylation could facilitate expression of ENO1 in BRCA.237 In Colon
adenocarcinoma (COAD), WTAP stabilizes FOXP3 mRNA via
YTHDF1, and FOXP3 bound to SMARCE1 promoter to exert
transcriptional activation.238 In CRC, WTAP modifies NT5DC3 to
suppress the tumorigenesis under hyperglycemia via repressing
Hexokinase domain component 1 (HKDC1).239 Besides, writer
KIAA1429 upregulates HK2 and GLUT1 level in methyltransferase
activity-dependent manner, facilitating glycolytic process of CRC
and GC,240,241 and RBM15 catalyzes m6A modification to accelerate
expression of HK2, glucose-6-phosphate isomerase (GPI) and
phosphoglycerate kinase1 (PGK1) in OS,242 while
ZC3H13 significantly destabilizes PKM2 mRNA to weaken glycolytic
reprogramming and enhance cisplatin sensitivity of HCC.243

FTO, the m6A eraser, demonstrates an ambiguous role in
regulating glycolytic metabolism. FTO-triggered demethylation
was found to enhance glycolysis of HCC and GBM via directly
facilitating expression of key enzymes PKM2 and PDK1.244,245

Especially, studies have confirmed the suppressive effect on
glycolysis of some selective FTO inhibitors. In SCLC cell line,
meclofenamic acid (MA) treatment significantly induced attenu-
ated glycolysis and enhanced mitochondrial metabolism.246 R-2-
hydroxyglutarate (R-2HG) represses aerobic glycolysis of leukemia
cells via abrogating m6A/YTHDF2-mediated upregulation of PFKP
and LDHB, thus inhibiting leukemogenesis in vivo.247 Besides, FTO
elevates TFs c-Jun, JunB, and C/EBPβ to upregulate glycolysis-
related genes in melanoma, contributing to escaping immune
surveillance. Targeting FTO with a small compound
Dac51 successfully stimulated therapeutic benefit of anti-PD-L1
blockade.248 Nevertheless, several researchers proposed opposite
conclusions. Recently, Liu et al. reported that overexpression of
FTO could partially reverse E6E7-induced improvement on HK2 in
CC.249 In LUAD, Wnt signaling induces downregulation of FTO,
thus increased m6A level leads to enhanced YTHDF1-mediated
translation of c-MYC and subsequently increases glycolysis.250 FTO
diminishes IGF2BP2-dependent stabilization of APOE mRNA, thus
restrains glycolysis and growth of papillary thyroid cancer (PTC).251

Likewise, another m6A eraser, ALKBH5 also have dual regulatory
effects. ALKBH5 enhanced stability of G6PD mRNA, thereby
activating PPP and promoting proliferation of glioma cells.252 In
HER2 resistant BRCA cells, ALKBH5 stimulated glycolysis via
protecting GLUT4 mRNA from YTHDF2-mediated decay.253 How-
ever, in PTC, knockdown of ALKBH5 accelerates glycolysis through

upregulating circNRIP1 and consequently increased PKM2 expres-
sion.254 Zhao et al. discovered that overexpressed ALKBH5
elevated expression level of UBR7, which inhibited glycolysis by
indirectly suppressing HK2 expression through Nrf2/Bach1 axis.255

Particular attention has been given to m6A readers, which
recognize m6A marks and mediate highly context-specific
regulation on glycolytic process. Generally, YTHDF1 positively
controls glycolysis through stabilizing transcripts or initiating
translation in a wide range of cancers.210,212,256 Consistent to its
binary regulation on gene expression, YTHDF2 indeed plays
diverse roles in reprogramming glycolytic metabolism, with
underlying rationale to be further elucidated. For instance,
YTHDF2 accelerates decay of GLUT4 mRNA in BRCA,253 while
facilitates expression of PFKP and LDHB in leukemia,247 leading to
opposite effects. Meanwhile, YTHDF2 participates in modulating
other glucose metabolic pathways of glucose like PPP and
glycogen synthesis. In LC, overexpressed YTHDF2 binds to m6A
sites on 3′-UTR of G6PD mRNA to promotes its translation,
enhancing PPP flux,257 and Chen et al. proposed that YTHDF2
enhanced PPP via reducing G6PD ubiquitination by circ_0003215/
miR-663b/DLG4 axis.258 In CRC, YTHDF2 is capable to stabilize
mRNA of GSK3 to inhibit glycogen synthesis and facilitate
glycogenolysis.259 Also, YTHDF2-mediated degradation of STEAP3
mRNA attenuated STEAP3-induced phosphorylation and inactiva-
tion of GSK3β in CRC.260

YTHDF3 facilitated aerobic glycolysis of HCC cells by elevating
PFKL expression, and PFKL in turn upregulated YTHDF3 through
reducing its ubiquitination.261 In PDAC, YTHDF3-mediated desta-
bilization of lncRNA DICER1-AS1 contributes to enhancing
expression of glycolytic genes like LDHA, HK2, PGK1, and
SLC2A1,262 while YTHDF3 targeted m6A-modified PGK1 mRNA to
exert a stabilizing role in OS.263 IGF2BP1 was highly expressed in
GC tissue and associated with poor prognosis for GC patients.
IGF2BP1 promoted the migration and aerobic glycolysis of GC cells
via directly interacting with c-MYC mRNA to stabilize it.264 The
gain/loss functional assays proved IGF2BP1-mediated stabilization
of LDHA mRNA in ccRCC.265 Moreover, upregulated IGF2BP2 has
been found as a predictor of poor prognosis in CC and OSCC,
which improved stability of c-MYC and HK2 mRNA, respec-
tively.266,267 Recently, Ye et al. suggested that miR4458HG
interacted with IGF2BP2 and activated the improvement of HK2
and GLUT1 expression in HCC.268 In OSCC, IGF2BP3 interacted with
circFOXK2 to stabilize GLUT1 mRNA.269 And LOC101929709 bound
to LIN28B and IGF2BP3, facilitating LIN28B to stabilize m6A-
modified c-MYC mRNA in GC.270

Recently, Wu et al. demonstrated the interplay between m1A
modification and tumor glycolytic metabolism. In HeLa cells,
ALKBH3 promoted glycolysis by upregulating ATP5D, a subunit of
mitochondrial ATP synthase. Mechanistically, the m1A marks on
ATP5D mRNA hinders its translation elongation via recruiting
YTHDF1/eRF1 complex, and m1A modification destabilizes E2F1
mRNA to block the initiation of ATP5D transcription. ALKBH3-/-

HeLa cells displayed reduced glycolysis and weakened growth,
both depletion m1A of ATP5D by dm1ACRISPR and overexpres-
sion of ATP5D could recede the suppression effect.271 In bladder
cancer (BLCA), m5C reader ALYREF bound to 3′-UTR of PKM2
mRNA to stabilize it, and HIF-1α exerted indirect activation on
ALYREF in this process.272 Bioinformatics studies have preliminarily
implicated that m7G modification participated in glycolytic
metabolism. In adrenocortical carcinoma (ACC), a novel m7G risk
signature consisted of METTL1, NCBP1, NUDT1 and NUDT5 was
constructed, and the risk score presented significant correlation
with enrichment of glycolysis. Especially, METTL1, was found to
positively regulate the expression of HK1.273

Other diseases. Epigenetic influence of RNA modification on
dysregulated glycolysis has been noted in several other patholo-
gical processes. Zhang et al. first investigated the role of FTO as a
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m6A eraser in cardiac metabolism and suggested that FTO could
attenuate cardiac dysfunction by regulating glucose uptake and
glycolysis with pressure overload-induced heart failure (HF) in
mice. Future studies are warranted to systematically assess the
potential of FTO for HF prevention and treatment.274 For cardiac
fibrosis, METTL3 could repress androgen receptor (AR) expression
in a YTHDF2-dependent manner, which activates HIF-1α signaling,
thus enhancing glycolysis and cardiac fibroblast proliferation.275

Cai et al. revealed the potential metabolic-related regulation of
RNA modification in osteogenic differentiation, inspiring future
clinical applications in metabolic bone diseases and stem cell
therapy. The mechanistic study showed that METTL3 enhanced
stability of ATP citrate lyase (ACLY) and a mitochondrial citrate
transporter (SLC25A1) mRNA mediated by IGF2BP2 and IGF2BP2/
3, respectively.276 In palmitate (PA)-induced IR C2C12 cells and
high-fat diet (HFD)-fed mice model, Quercetin downregulated
METTL3, lead to decreased phosphorylated insulin receptor
substrate 1 (p-IRS1) levels, increased serine-threonine kinase
protein kinase D2 (PRKD2), GLUT4 and p-AKT, further enhancing
glucose uptake and alleviating oxidative stress.277

Lipid metabolism
Lipids are essential components of biological membranes, building
blocks of biosynthesis, and significant energy storage. According to
the comprehensive classification system, lipids are categorized into
fatty acyls (FA), glycerolipids (GL), glycerophospholipids (GP),
sphingolipids (SP), sterol lipids (ST), prenol lipids (PR), saccharolipids
(SL), polyketides (PK).278 FA could be esterified and stored in lipid
droplets during high nutrient availability, while hydrolyzed to
generate ATP by FA oxidation (FAO), also called β-oxidation, under
energy stress conditions. FA synthesis is under control of sterol
regulatory element-binding protein 1c (SREBP1c). Stimulated by
growth factors, the precursor is processed into mature SREBP1c, and

then translocated into nucleus to improve the transcription of target
genes, including fatty acid synthase (FASN), acetyl-CoA carboxylase
(ACC), stearoyl-CoA desaturase1 (SCD1), and ACLY.279,280 Cholesterol
is the material for synthesis of fat-soluble vitamins and steroid
hormones, and also the constitution of membranes, together with
GL, GP and SP.281 Dysregulated lipid metabolism is implicated in
several pathologies, with RNA modifications participating in various
metabolic links (Fig. 4 and Table 5).

Obesity. In current cognition, obesity is the result of genetic and
environmental factors, thereinto, epigenetic regulation such as
RNA modifications play significant roles.
Transcriptome profile of human adipose tissue displayed that

several m6A modifiers, including WTAP, VIRMA, ALKBH5, and
YTHDC1, are associated with obesity and clinical variables, while
single nucleotide polymorphisms of METTL3 correlates with body
mass index (BMI).282 In brown adipose tissue (BAT), METTL3 is
essential for the postnatal maturation and BAT-specific depletion
of METTL3 accelerated development of HFD-induced obesity.283

Hepatocyte-specific ablation of METTL3 could promote fatty acid
metabolism in mice fed with HFD through regulating fatty acid
synthase (FASN), enhancing insulin sensitivity.284 METTL3/m6A/
YTHDF2 mediate decay of cyclin D1 (CCND1) mRNA to block cell-
cycle progression and inhibit adipogenesis.285

Since FTO was initially discovered as an obesity-related protein
before as an eraser, its correlation with obesity has been widely
reported in different populations.33,286,287 Significantly, FTO plays
a critical role in lipogenesis and obesity susceptibility dependent
on m6A demethylase activity. FTO could adjust exonic splicing of
adipogenic regulatory factor runt-related transcription factor 1
(RUNX1T1) through eliciting m6A modifications around splice
sites, further induces the differentiation of mouse 3T3-L1
preadipocytes.288 FTO could restrain cell cycle progression of

Fig. 4 The roles of RNA modifications in lipid and amino acid metabolism. For lipid metabolism, key enzymes in FA synthesis, including fatty
acid synthase (FASN), acetyl-CoA carboxylase (ACC), stearoyl-CoA desaturase1 (SCD1), and ACLY, are significant targets of RNA modifications.
Relevant studies on amino acid metabolism are limited. The figure is generated with BioRender (https://biorender.com)
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preadipocytes and adipogenesis via YTHDF2-dependent decay of
cyclin A2 (CCNA2) and cyclin dependent kinase 2 (CDK2).289,290

Also, Zinc finger protein (ZFP217) regulate adipogenesis via FTO/
m6A/YTHDF2 axis.291

FTO-mediated demethylation facilitates the expression of
peroxisome proliferator-activated receptor gamma (PPARG)
mRNA, which promotes the differentiation of bone marrow stem
cells (BMSCs) into adipocytes.292 Although depletion of

endothelial FTO has no effect on the development of obesity
and dyslipidemia, it could promote AKT (protein kinase B)
phosphorylation in endothelial cells and skeletal muscle to
preserve myogenic tone in resistance arteries, which ultimately
alleviates obesity-induced hypertension.293 In accordance, AMP-
activated protein kinase (AMPK) was found to regulate lipid
metabolism of skeletal muscle via FTO-dependent m6A demethy-
lation.294 Moreover, betaine-mediated downregulation of FTO

Table 5. RNA modifications in lipid, amino acid and mitochondrial metabolism

Regulator Disease Target Mechanism Ref.

Lipid metabolism

METTL3 Obesity FASN Upregulates its mRNA level 284

CCND1 Promotes degradation of CCND1 mRNA via YTHDF2 285

FTO RUNX1T1 Controls the exonic splicing by regulating the RNA binding ability of SRSF2 288

CCNA2/CDK2 Reduces the YTHDF2-mediated decay of mRNA 289,290

YTHDF1 MTCH2 Facilitate its translation 296

METTL3/14 NAFLD ACLY/SCD1 Upregulates the expression 299

METTL3 Rubicon Promotes Rubicon expression via YTHDF1 300

FTO SREBP1/SCD1 Upregulates the expression via m6A demethylation 303

IL-17RA Upregulates its expression via m6A demethylation 307

ALKBH5 LINC01468 Stabilizes LINC01468 to promote degradation of INPPL1 308

PTCH1 promotes its expression via m6A demethylation 309

YTHDF3 PRDX3 Facilitates its translation 310

METTL14 AS p65 Promotes the expression of p65 314

lncRNA ZFAS1 Downregulates ZFAS1 level 315

FTO PPARγ Downregulates expression level of PPARγ and promotes phosphorylation of AMPK 317

METTL14 BLCA PPARs METTL14 elevates level of lncDBETm, which interacts with FABP5 to activate PPARs 321

- BRCA/HCC CPT1B Elevated m6A level triggers the splicing of precursor ESRRG mRNA to improve ERRγ,
which upregulate CPT1B

323

METTL5 HCC ACSL4 Promotes ACSL4-mediated FAO 324

FTO HCC FASN Protects the mRNA from YTHDF2-mediated decay 325

FTO EC HSD17B11 Enhances its translation 326

ALKBH5 CESC ACC1 Attenuates IGF2BP1-mediated stabilization of SIRT3, further reduces ACC1 level by
repressing its deacetylation

327

YTHDF2 GBM LXRA/HIVEP2 Facilitates decay of mRNAs to suppress cholesterol synthesis, efflux, and uptake 329

CRC DEGS2 Mediates its degradation to induce lipidomic dysregulation 330

IGF2BP2 AML MFSD2A Stabilizes PRMT6 mRNA to suppress MFSD2A expression 331

HNRNPA2B1 GC RPRD1B Stabilizes the transcripts .332

ESCA ACLY/ACC1 Promotes the expression 333

NSUN2 OS FABP5 Stabilizes the transcripts 335

TRMT6/TRMT61A HCC PPARδ Facilitates its translation 337

Mitochondrial metaboliam

FTO ccRCC PGC-1α Upregulates its expression 341

METTL3 NSCLC DCP2 Accelerates its degradation 342

BRCA AK4 Upregulates AK4 to ROS production and p38 phosphorylation 343

METTL14 CRC miR-17-5p Induces degradation of miR-17-5p via YTHDC2, which downstream suppress MFN2 345

IGF2BP1 GC NDUFA4 Upregulates NDUFA via stabilization to enhance oxidative metabolism 224

IGF2BP2 GBM SHMT2 Stabilizes its mRNA to promote OXPHOS 350

RALY CRC ETC-related genes Augments processing of pri-miRNA to further downregulate ETC-related genes 352

Amino acid metabolism

FTO ccRCC SLC1A5 Promotes its expression 357

CRC ATF4 Upregulates ATF4 to activate DDIT4, and then suppress mTOR signaling 358

YTHDF1 CRC GLS induces translational promotion of GLS 360

IGF2BP2 AML GPT2/SLC1A5/MYC Enhances mRNA stability and translation of several glutamine metabolism-related genes 361

METTL16 AML BCAT1/2 Facilitates its expression to regulate branched-chain amino acid metabolism 363
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contributes to dysfunctional adipose tissue induced by high-fat
diet.295 YTHDF1 was identified to enhance translation of
mitochondrial carrier homology 2 (MTCH2) mRNA and in an
m6A-dependent way, which promoting lipogenesis.296 And
YTHDF2 facilitated degradation of cyclin D1 mRNA to mediate
adipogenesis inhibition.297

NAFLD. Metabolic disorders, manifested as dysregulated de novo
lipogenesis, fatty acid uptake, fatty acid oxidation, and triglycer-
ides export, are essential part of pathological mechanism of
NAFLD.298 In NAFLD mice model, targeting METTL3/14 upregu-
lated level of ACLY and SCD1, promoting cholesterol production
and lipid droplet deposition.299 METTL3/m6A/YTHDF1 exerts a
stabilizing effect of Rubicon mRNA and promotes its expression,
leading to hepatic lipid deposition.300 m6A hypomethylation state
and increased FTO level are detected in HFD-induced NAFLD mice,
and FTO participates in the hepatoprotective effects of betaine.301

Overexpressed FTO significantly enhanced lipogenesis and
oxidative stress in vitro.302 In the glucocorticoid (GC)-induced
NAFLD model, glucocorticoid receptor (GR)-mediated FTO trans-
activation promotes hepatocyte adipogenesis and lipid accumula-
tion via m6A demethylation of SREBF1 and SCD1.303 Exposure of
endocrine disrupting chemicals (EDCs) was confirmed to induce
NAFLD, in which process decreased global m6A level and altered
expression of m6A modulators was observed.304 Inhibition of FTO
effectively alleviates progression of dexamethasone-induced fatty
liver in mice.305 Reduced FTO expression mediates the ameliorat-
ing effect of exenatide therapy on lipid accumulation and
inflammatory responses in NAFLD.306 Moreover, FTO-mediated
m6A demethylation increases interleukin-17 receptor A (IL-17RA)
level in tumor adjacent tissues with chronic inflammation,
suggesting the potential role of FTO in inflammation-
carcinogenesis transformation of HCC.307

And ALKBH5-dependent demethylation drives lipogenesis and
NAFLD-HCC progression via stabilizing LINC01468, which accel-
erates cullin4A (CUL4A)-linked degradation of inositol polypho-
sphate phosphatase-like 1 (INPPL1, SHIP2).308 Nevertheless,
another study demonstrated that overexpressed ALKBH5 could
ameliorate liver fibrosis and inactivate Hepatic stellate cells (HSCs)
via upregulating Patched 1 (PTCH1).309 Moreover, YTHDF3 was
also reported to restrain liver fibrosis and HSC activation via
facilitating peroxiredoxin 3 (PRDX3) translation in an m6A-
dependent manner.310

Atherosclerosis. During the development and progression of
atherosclerosis (AS), RNA modifications play critical roles in lipid
deposition and fiber cap formation.311 Growing evidences showed
that RNA modifications participate in development of AS via
modulating inflammatory cell infiltration and immune response,
including vascular endothelial cells, macrophages, and vascular
smooth muscle cells (VSMCs).312

In an ox-LDL-induced AS model, highly expressed METTL3 in
VSMCs facilitates the binding of DGCR8 to pri-miR-375 and further
improved miR-375-3p expression, which targets PDK1 transcription,
inducing phenotypic transformation of VSMCs and rendering AS
plaques more vulnerable.313 In ox-LDL-treated human umbilical
vein endothelial cells (HUVEC), upregulated METTL3 and METTL14
were detected, and METTL14 modified p65 mRNA to facilitate
lipoprotein synthesis and AS development.314 METTL14 was found
to reduce cholesterol efflux and enhanced atherosclerotic plaque
inflammation via modifying lncRNA ZFAS1.315 FTO exerts various
effects on vascular homeostasis properties via influencing lipid
metabolism. Researchers have reported the anti-atherosclerotic
properties of FTO. In-vivo experiments showed that overexpressed
FTO induced by Adeno-associated virus serotype 9 (AAV9)
obviously decreased the lipidic profiles including plasma total
cholesterol and LDL cholesterol, and mitigated the formation of
atherosclerotic plaques.316 Yang et al. demonstrated that FTO

inhibits macrophage lipid influx by downregulating PPARγ expres-
sion and facilitating cholesterol efflux via phosphorylation of AMPK,
thereby meliorating foam cell formation and AS development.317

Also, Kruger et al. found that endothelial-specific knockdown of FTO
could prevent obesity-induced vascular dysfunction.293

Cancer. Activated de novo synthesis of fatty acids serves as an
essential energy source, while enhanced FAO contributes to ATP
production, intracellular ROS reduction. Except for bioenergetic
demand, remodeled lipid metabolism could assist tumor devel-
opment through modulating ferroptosis, enabling metastasis and
invasion, and crosstalk with other hallmarks in TME.318–320

In BLCA, METTL14-mediated m6A elevates level of lncDBETm,
which interacts with Fatty acid-binding protein 5 (FABP5) to
activate peroxisome proliferator-activated receptors (PPARs),
markers of lipid metabolism-related signaling pathways.321 And
previous study suggested that METTL3 could recruit YTHDF2 to
stabilize PPARα mRNA, regulating circadian rhythms of hepatic
lipid metabolism.322 In breast and liver cancer cell, elevated m6A
modification upregulated ERRγ by triggering the splicing of
precursor ESRRG mRNA, subsequently improved expression of
carnitine palmitoyl transferase 1B (CPT1B), a rate-limiting enzyme
of FAO, conferring to chemoresistance.323 Peng et al. confirmed
that METTL5 promoted de novo lipogenesis and HCC progression
via ACSL4-mediated FAO. Targeting ACSL4 and METTL5 coopera-
tively suppresses HCC tumorigenesis in vivo.324

Overexpressed FTO enhances lipogenesis and lipid droplet
enlargement in liver, and inhibits CPT1-mediated FAO via the
SREBP1c pathway. FTO-dependent m6A demethylation indirectly
elevates SREBP1c expression, thus activating downstream lipo-
genic genes.303 Knockdown of FTO markedly enhanced m6A
abundance of FASN mRNA and promoted YTHDF2-mediated
decay, further reduced protein levels of ACC1 and ACLY, which
suppressed de novo lipogenesis in HepG2 cells.325 In EC,
mechanism study revealed that FTO promoted the formation of
lipid droplets by enhancing HSD17B11 expression.326 ALKBH5 was
downregulated in cervical squamous cell carcinoma (CESC) and
predicted an unfavorable prognosis. ALKBH5 attenuated stability
of SIRT3 mRNA in an IGF2BP1-dependent manner, further reduced
ACC1 level repress its deacetylation, thus suppresses fatty acid
synthesis to modulate CESC lipid metabolism.327

YTHDF2 was reported to targets m6A-marked transcripts of key
lipogenic genes to induce their degradation, thus suppressing
liver steatosis.328 In GBM, YTHDF2 facilitates decay of LXRA and
HIVEP2 mRNA, negatively regulating cholesterol synthesis, efflux,
and uptake.329 In CRC, reduced m6A methylation promoted
DEGS2 expression via attenuating YTHDF2-mediated decay, which
contributed to dysregulated lipid metabolism, especially sup-
pressed ceramide synthesis.330 In AML, IGF2BP2 stabilizes PRMT6
mRNA through m6A-dependemt manner, which catalyzes
H3R2me2a and suppresses lipid transporter MFSD2A expression,
thus decreasing docosahexaenoic acid levels and promoting LSC
maintenance.331 HNRNPA2B1 participates in enhancing fatty acid
metabolism of GC via stabilizing RPRD1B mRNA, which facilitated
uptake and synthesis of FA by transcriptionally activating c-Jun/c-
Fos, further upregulated SREBP1.332 Abrogation of HNRNPA2B1
inhibits de novo fatty acid synthesis in ESCA cells though
downregulating expression of ACLY and ACC1.333

Several studies have dictated the regulatory functions of m5C
modification in lipid metabolism. Function analysis demonstrated
that highly m5C-marked genes were enriched in pathways
correlated with decreased adipogenesis and improved myogen-
esis. Particularly, reader ALYREF recognized m5C targets on YBX2
and SMO and mediated the shuttling from nucleus to cytoplasm,
thereby regulating adipogenesis and myogenesis, implicating a
novel therapeutic approach for metabolic disorder diseases.334

The m5C writer NSUN2 has been found to advance adipogenesis
through targeting CDKN1A mRNA and recruiting ALYREF to
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facilitate its nuclear export, thus accelerating cell cycle progression
to promote lipid accumulation in preadipocytes.133 In OS, NSUN2-
induced m5C modification stabilized FABP5 mRNA to positively
regulated FA metabolism, further enhancing OS progression.335 In
silico analysis identified that two clusters OVC samples with
different m5C modification pattern exhibited distinct metabolic
characteristics, with distinct expression profile of lipid metabolism-
related pathways.336 In HCC, the m1A methyltransferase complex,
TRMT6/TRMT61A facilitate PPARδ translation, which augmented
cholesterol synthesis to initiate Hedgehog signaling, eventually
driving self-renewal of liver CSCs and tumorigenesis.337

Mitochondrial metabolism
Mitochondrion, the metabolic center in cells, plays an indispen-
sable role in oncogenesis. Although aerobic glycolysis occupies an
essential position in tumor bioenergetic metabolism, the OXPHOS
and mitochondria-dependent energy supply were considered as
key to maintain the stemness of some tumor cells.338 Besides,
providing materials for anabolism, producing ROS, and maintain-
ing regulated cell death (RCD) signaling significantly conduce to
tumor progression.339

Peroxisome proliferator-activated receptor gamma coactivator
1-alpha (PGC-1α) is an essential cofactor for mitochondrial
biogenesis and energy metabolism, which play significant parts
in pathologies of monocyte-macrophage inflammation-associated
diseases, such as atherosclerosis and rheumatoid arthritis.
METTL3/m6A/YTHDF2 mediated degradation of PGC-1α, as well
as cytochrome c (CYCS) and NADH ubiquinone oxidoreductase
subunit C2 (NDUFC2), inducing mitochondrial dysfunction and
oxLDL-induced inflammation in monocytes.340 During myoblasts
differentiation, FTO positively modulates mTOR-PGC-1α pathway-
mediated mitochondria biogenesis depending on its m6A
demethylase activity.32 Consistently, ectopic expression of FTO
in VHL-deficient ccRCC cells upregulated expression of PGC-1α to
regain mitochondrial activity, exhibiting anti-proliferation
effect.341

In NSCLC, METTL3-induced m6A methylation on DCP2 mRNA
accelerates its degradation, which activates mitochondrial autop-
hagy through the Pink1-Parkin pathway, inducing resistance to
cisplatin and etoposide.342 In amoxifen-resistant BRCA cells,
METTL3 was overexpressed and contributed to upregulation of
AK4, which stimulating ROS production and p38 phosphorylation,
further suppressing mitochondrial apoptosis to desensitize
tamoxifen. Additionally, METTL3 knockdown abrogated AK4
expression and drug resistance.343 Also, METTL3 exerts inhibitive
role in mitochondrial apoptosis via AKT signaling pathway in
EC.344 METTL14 plays a pivotal part in regulating mitochondrial
homeostasis in CRC via m6A/YTHDC2/miR-17-5p/MFN2 axis. Low
expression of METTL14 ultimately led to less apoptosis and 5-FU
chemoresistance in CRC.345 METTL14-catalyzed m6A increases
expression of Fission 1 (FIS1), contributing to cadmium (Cd)-
induced mitochondrial fission and dysfunction.346

FTO-mediated demethylation exerts protective roles in progres-
sion of hepatic ischemia-reperfusion injury (HIRI) via targeting
dynamin-related protein 1 (Drp1) to alleviate liver oxidative stress
and mitochondrial fragmentation in vivo and in vitro.347 Moreover,
in silico analysis showed that overexpressed FTO and METTL5
were significantly associated with OXPHOS in NSCLC and GC,
respectively.348,349 IGF2BP1 augmented stability of m6A-modified
NDUFA4, and upregulated NDUFA4 enhanced oxidative metabo-
lism in GC cells, whereas suppression of mitochondrial fission
could switch the NDUFA4-induced mitochondrial activities and
tumor growth of GC.224 In GBM, IGF2BP2 was involved in
maintaining stability of SHMT2 mRNA, which played a crucial role
in OXPHOS activities, as a significant driving force of GBM
tumorigenesis.350 Elevated m6A level and IGF2BP2 expression
conduced to maintenance of hematopoietic stem cells (HSCs) via
restricting mitochondrial activity. IGF2BP2 deficiency accelerated

degradation of Bmi1 mRNA, relieving its depression on
mitochondria-related genes, thus impaired quiescence state and
functions of HSCs.351 A novel RNA-binding protein, RALY, a
member of HNRNPC subfamily, augmented pri-miRNA processing
via the METTL3-mediated m6A modification, further repro-
grammed mitochondrial metabolism by downregulating the
electron transport chain (ETC) genes in CRC cells. Depletion of
RALY demonstrated effective inhibition of tumor growth and
development in vivo and in organoid models.352 In glioma,
YTHDF1 participated in c-MYC-induced restraint on mitochondrial
autophagy by directly interacting with FDX1 and upregulated its
expression, which was closely correlated with malignant pheno-
types and clinical prognosis.353 Highly-expressed
HNRNPA2B1 served as an adverse prognostic factor in MM.
HNRNPA2B1 recognized m6A sites at TLR4 and elevated its
expression in post-transcriptional level, which protecting mito-
chondria under proteasome inhibitor exposure.354

Amino acid metabolism
Except for serving as substrates for synthesizing proteins or
peptides, amino acids are decomposed through deamination or
transamination to generate building blocks for anabolism, like α-
ketoacids utilized to release energy in TCA cycle. Particularly,
glutamine has multiple biofunctions beyond a metabolic fuel or
protein precursor. Glutamine decomposition is another significant
feature of tumor metabolism remodeling.355 Given that cancers
are normally auxotrophic for some non-essential amino acids,
targeting the supply of these amino acids have been validated as
an effective therapeutic intervention.356

Previous studies have substantiated the regulatory effects of
m6A modification in glutamine metabolism. FTO-mediated m6A
demethylation upregulated expression of the glutamine transpor-
ter SLC1A5, and FTO inhibition exclusively suppressed the
proliferation and vitality of VHL-deficient ccRCC cells independent
of HIF.357 Han et al. suggested that m6A modification exerted a
significant role in the antitumor efficacy of glutaminolysis
inhibition in CRC cells. FTO was upregulated upon glutaminolysis
inhibition to promote expression of ATF4 via abrogating m6A/
YTHDF2-mediated RNA degradation, and ATF4 activated pro-
survival autophagy via transcriptionally upregulating DDIT4 to
suppress mTOR signaling.358 Actually, it was found earlier that
m6A modifications in the 5′ UTR of ATF4 mRNA modulated its
alternative translation to mediate re-initiation independent of
eIF2α signaling pathway, in response to amino acid starvation,
implicating the translation regulation of m6A in integrated stress
response.359 In CRC, YTHDF1 bound to 3′ UTR of glutaminase (GLS)
mRNA and induced translational promotion, leading to enhanced
glutamine uptake, further mediating chemoresistance, and
targeting YTHDF1 effectively re-sensitizes CRC cells to cisplatin.360

IGF2BP2 positively modulated glutamine metabolism in AML cells
via advancing mRNA stability and translation of several metabolic-
related genes, such as GPT2, SLC1A5, and MYC, thereby
accelerating AML development.361

Recently, Chen et al. have proposed that m6A methylation was
involved in WZ35-mediated enhanced radiotherapeutic sensitivity
via Glutathione (GSH) exhaustion. Mechanistically, WZ35 con-
sumed GSH through the ROS-YAP-AXL-ALKBH5-GLS2 loop, indu-
cing metabolic remodeling and further repressing GC cell
metastasis.362 Moreover, METTL16 participated in regulating
branched-chain amino acid (BCAA) metabolism by facilitating
expression of BCAT1 and BCAT2 in an m6A-dependent manner,
serving as an oncogene in leukemogenesis and LSC maintenance
of AML.363

In summary, as shown in Fig. 5, Numerous proteins and RNA
modification mediated metabolism are implicated in the progres-
sion of various diseases. To put into practice the preventive and
treatment options for these diseases, a thorough understanding of
RNA modification and metabolic disorders is needed.
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RNA MODIFICATION AND IMMUNOMETABOLISM
Generally speaking, the immunometabolism concerns distinc-
tions between activated and resting immune cells. The former
metabolizes in a manner similar to malignant cells, Warburg
effect without obvious OXPHOS, while the latter obtains energy

from FAO and the Krebs cycle. Corresponding metabolic
patterns of different immune cell subgroups have been
described.364 Herein, we focus on the contributions of RNA
modifications on immunometabolism in diverse immune
responses (Fig. 6).

Fig. 5 Epigenetic regulation of RNA modification on metabolism in diseases. RNA modifications broadly regulated metabolic pathways in diverse
diseases, covering glucose (green box), lipid (blue box), amino acid and mitochondrial (yellow box) metabolism. As intuitively shown in the picture,
Gastric cancer (GC), Colorectal Cancer (CRC), Hepatocellular Carcinoma (HCC), Acute Myeloid Leukemia (AML), and Breast Cancer (BRCA) are
especially related to RNA modifications-mediated metabolic deregulations. The figure is generated with BioRender (https://biorender.com)
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Anti-tumor immunity
The concept of tumor immune microenvironment (TIME) empha-
sizes the interplay between immune cells, tumor cells, and other
components in immunity system, which profoundly influences the
immune responses, via nutrients depletion and metabolites
release. To sustain the rapid proliferation, tumor cells consume
large amounts of glucose, glutamine and other amino acids like
arginine, generally constituting an adverse residential environ-
ment for immune cells. The universal recognition is that glucose
exhaustion induced by tumor cells contributes to immunosup-
pressive TME.
Nevertheless, the pioneering work of Reinfeld et al. showed that

glucose is not a limiting factor in the TME, and resident
immunocytes were capable to enhance glucose uptake in
compensation for depleted glutamine. Indeed, multiple pathways
are conducive to the impaired glucose metabolism of T cells from
TME, but the effects are likely to be context-dependent.
Mechanism study about epigenetic regulation on glycolytic
reprogramming of T cells remains deficient, but the glycolytic-
epigenetic interplay has been found in development of Tfh cells.
VHL deficiency induced expression of glycolytic enzyme GAPDH,
which acted as an epigenetic regulator to enhance METTL3/
METTL14-catalyzed m6A modification on ICOS mRNA, thereby
suppressed ICOS expression led to attenuated Tfh cell
differentiation.365

Glucose depletion in TME predisposes the differentiation of
macrophages to M2-like TAM, which preferentially employs
OXPHOS for ATP synthesis rather than consuming glucose.366

Recently, METTL3 was considered as the top candidates for
regulating M1 macrophages activation via targeting mTOR/NF-κB-
mediated metabolic adaptation.367 However, Ning et al. proposed
that m6A modification was responsible for inhibited glycolysis and
M1 macrophage polarization, through YTHDF2-mediated degra-
dation of m6A-modified STAT1 mRNA, further attenuating
glycolysis-related genes expression.368

Distinct glutamine acquisition is another essential aspect of
nutrient partitioning. Tumor cells tend to have advantage in
glutamine consumption over those immune cells, as tumor cells

have over-expressed methionine transporter Slc43a2, thereby
restricts methionine metabolism and the antitumor function of
T cells.369 However, whether RNA modifications participate in
glutamine metabolism of immune cells remains to be explored.
Except for nutrient competition, metabolites secreted by tumor

cells also exert immunosuppressive effects on anti-tumor immu-
nity. Tumor cells produce large amounts of lactic acid to generate
highly acidic regions, as a hallmark of immunosuppressive TME.
High concentration of extracellular lactic acid significantly inhibits
the survival and activation of T and NK Cells, further blocks the
immunosurveillance.370 m6A-mediated stabilization of circQSOX1
enhance lactic acid accumulation in CRC, thus supports Treg cells
and facilitate immune escape, which further impacts efficacy of
anti-CTLA-4 therapy in vivo.229 As mentioned above, the
intratumoral myeloid cells have vigorous glycolytic activity, but
whether myeloid-derived lactate limits T cell effector functions,
remains to be explored.371

Lactate also negatively influences functions of macrophage and
skews the differentiation of macrophages toward the M2
phenotype. M2 macrophage infiltration in endometriosis was
positively correlated with lactate accumulation. Mechanism study
showed that lactate promoted M2 macrophage polarization via
METTL3-mediated m6A modification on Trib1 mRNA, which
enhanced its stability.372

Tumor cell is a significant source of intratumoral lipids,
including cholesterol, fatty acid or oxidized lipids, which have a
deleterious effect on T cells, DCs, and macrophages. Several
studies have confirmed that m6A methylation was involved in
maintaining the functional homeostasis of macrophages via
targeting the balance between lipid uptake and cholesterol efflux.
Elevated METTL3 in oxidized low-density lipoprotein (oxLDL)-
treated macrophages facilitates lipid uptake via interacting with
DDX5 to target MSR1 mRNA and stabilize it in m6A-dependent
manner.373

FTO is upregulated in macrophages loaded with ox-LDL, which
enhances cholesterol efflux via motivating AMPK/ACC phosphor-
ylation to promote ABCA1/G1-mediated efflux, and attenuates
cholesterol ester accumulation through restricting PPARγ to

Fig. 6 Effects of RNA modification on immunometabolism. This figure shows current findings about how RNA modifications regulate
immunometabolism. On the one hand, RNA modifications are involved in the intrinsic metabolic adaptation of immune cells, further affecting
function and state of immunocytes. On the other hand, m6A modification could mediate several phenotype alterations of immunocytes
induced by glucose deficiency and high lactate in TME. The figure is generated with BioRender (https://biorender.com)
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reduce CD36 expression.316 More direct and convincing evidences
are expected to elucidate the epigenetic regulation on TAMs.
Besides, cholesterol uptake activates PD-1 expression in tumor-
infiltrating CD8+ T cells, which in turn facilitates FAO and
lipolysis.374 Extracellular fatty acids are more effectively consumed
by Treg cells than effector T cells, which eventually supports Treg
accumulation.375 Oxidized lipids restrain cross-representation in
DCs376 and enhanced uptake of fatty acids and peroxidation lead
to dysfunctional state of tumor-derived DCs.377 But the role of RNA
modifications in these cellular processes has not been
identified yet.

Antiviral immunity
The pathogenesis of infectious diseases is consisted of two parts,
deficiency of immune system itself and immune escape of
pathogens. On one hand, specific RNA modifications on viral
RNAs have been described, including m6A, m5C ac4C, Ψ, and RNA
editing, thus affecting viral RNA sensing and signaling.378 On the
other hand, RNA modifications influence host responses to viral
infection via regulating immune cell functions. The interferon
pathway is the major target of m6A modification to modulate
antiviral innate immunity. METTL3/14 enhances the turnover rate
of IFNB mRNAs via YTHDF2-mediated manner and accelerates viral
propagation.379,380 The coordination between m6A methylation
and other RBPs also mediate the negative effects on immunity.
DEAD-box helicase 5 (DDX5), hijacked by viruses to promote
replication, could interact with METTL3 to facilitate formation of
the METTL3/14 complex during vesicular stomatitis virus infec-
tion.381 In addition to interferon pathway, ALKBH5 could promote
viral propagation relying on metabolic rewiring. It was showed
that viral infection impaired the enzymatic activity of ALKBH5 in
posttranslational level and thus downregulated expression of α-
ketoglutarate dehydrogenase (OGDH), leading to reduced itaco-
nate production, a metabolite that inhibits viral replication.382

Beyond that, the association between RNA modification and
metabolic processes remains largely unknown.

Inflammation and autoimmune disorders
Inflammatory response is achieved through a coordinately
regulated gene expression program, including acute and chronic
type.383 In response to microorganisms, autoimmunity, allergies,
dysregulated metabolism, and physical damage, different types of
inflammation are produced.384 Until recently, regulatory roles of
RNA modification in inflammation and anti-inflammation gene
expression have been verified. Previous studies have shown that
m6A modification is involved in pathogenesis of autoimmune
diseases. For instance, METTL3 is significantly upregulated in RA
patients and positively associated with CRP and ESR, the two
common markers of RA disease activity.385 In systemic lupus
erythematosus (SLE), decreased m5C level and low NSUN2
expression are found in CD4+ T cells, and hypermethylated
m5C-modified upregulated genes in SLE are enriched in
inflammatory pathways.386 Significantly, in DC-dependent inflam-
matory response, m6A-mediated glycolytic reprogramming is
critical for feedback-control of DC migration. Mechanistically, in
response to microbial products or inflammatory signals, upregu-
lated CC-chemokine receptor 7 (CCR7) stimulated lnc-Dpf3 via
removing its m6A modification to prevent degradation, and lnc-
Dpf3 could negatively modulate HIF-1α pathway via binding to
HIF-1α and suppressing HIF-1α-dependent transcription of the
glycolytic gene Ldha.387 Also, m6A modification modulates
macrophage phenotype in inflammatory responses. Previous
study has reported that METTL3 was notably elevated in M1
macrophages and modulated polarization via metabolism repro-
gramming. In mechanism, m6A methylation contributes to
enhanced expression of HDGF, which increases glycolysis and
lipids accumulation in M1, therefore aggravating the progression
of atherosclerosis.388 And METTL3-meidated m6A of PGC-1α

mRNA is involved in mitochondrial dysfunction and oxLDL-
induced inflammation in monocytes.340 Although there are few
studies on RNA modifications regulating inflammatory and
autoimmune diseases in the aspect of immunometabolism.

CLINICAL IMPLICATIONS OF RNA MODIFICATIONS
RNA modifications and therapeutic responses of metabolic
therapy
For the currently approved metabolic drugs, an impending
challenge of clinic application is development of chemo-
resistance owing to rewiring or compensatory metabolic path-
ways. Thus, the multiple pathways blockade or combined therapy
may have superiority over the single-agent therapy. Notably,
multiple studies have supported that combined utilization of
targeting RNA modifications could improve chemo-resistance to
some metabolism-targeted drugs.
The influences of m6A modification on CRC resistance to 5-FU is

a representative example. Mechanism studies have demonstrated
that METTL3 could induce 5-FU resistance of CRC cells via m6A/
DGCR8/miR181d/NCALD axis,389 m6A/IGF2BP1/SEC62/β-catenin
axis.390 Also, m6A methylation facilitates preferential splicing of
p53 pre-mRNA to produce p53 R273H mutant protein, leading to
multidrug resistance in CRC cells.391 Moreover, suppressing c-Myc-
driven YTHDF1 transactivation was revealed to re-sensitize CRC
cells to some anticancer drugs, including 5-FU.392 Consistently,
Jiang et al. found that miR-136-5p could downregulated YTHDF1
to suppress tumor progression and chemoresistance to 5-FU,
while miR-136-5p was declined in CRC cell lines and tissues.393

Moreover, METTL3 was identified to positively modulate
gemcitabine (GEM) sensitivity of PC via DBH-AS1/miR-3163/
USP44, and low expression level of METTL3 was closely related
with GEM resistance.394 Upregulated METTL14 was observed in
GEM-resistant PC cells, which was induced by p65 and down-
stream facilitated cytidine deaminase (CDA) expression to
inactivate GEM in PC. Inhibition of METTL14 effectively re-
sensitized GEM in vitro and in vivo, indicating a promising
approach for circumvent chemo-resistance.395 Intriguingly,
ALKBH5-mediated demethylation also exerts a positive role in
GEM sensitivity of pancreatic ductal adenocarcinoma (PDAC)
through suppressing Wnt pathway.396

RNA modifications and therapeutic responses of immunotherapy
Growing researches revealed that m6A regulators markedly
affected therapeutic responses against checkpoint blockade.
Wang et al. reported that depletion of METTL3/14 enhanced
infiltration and cytokines secretion of CTL, augmenting anti-PD-1
therapy efficacy of CRC in vivo, through m6A/YTHDF2/STAT1/IRF1
axis.397 However, METTL14 could sensitize cholangiocarcinoma to
ICB via YTHDF1-mediated degradation of SIAH2 mRNA.398 Knock-
down of YTHDF1 enhances cross-presentation of DCs to
CD8+ T cells by suppressing cathepsins expression, further
increased IFN-γ secretion of T cells upregulates PD-L1 level in
tumor cells.399 FTO was identified to negatively regulate ICB
therapeutic efficacy in melanoma. Ablating FTO decreases
expression of several significant melanoma-promoting genes
and sensitized anti-PD-1 treatment in vivo.400 However, FTO was
revealed to promote PD-L1 expression in an IFN-γ-independent
manner of CRC cells, thus improving ICB treatment.401 Su et al.
demonstrated that inhibition of FTO obviously downregulated
immune check point gene LILRB4 in AML cells, with superiority
over PD-L1/2, further repressing leukemia stem cell maintenance
and immune evasion.402 In melanoma, FTO participates in rewiring
tumor glycolysis metabolism to suppress T cell effector functions,
and FTO inhibition synergizes with anti-PD-L1 therapy.248 Addi-
tionally, the silico analysis identified that high FTO level was
associated with poor prognosis and unfavorable immunotherapy
effect of GC patients.403 And ALKBH5 was supposed to be a
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potential predictor for anti-PD-1 blockade efficacy in melanoma.
Deficiency of ALKBH5 induced downregulation of MCT4 expres-
sion and intra-tumoral lactate content, which negatively influ-
enced polymorphonuclear myeloid derived cells and Tregs.404

Several bioinformatic studies have underlined the intimate
connection between m6A modification and immunotherapy
resistance.405 Moreover, loss of A-to-I editor ADAR1 significantly
augmented anti-PD-1 treatment in melanoma and CRC. In
mechanism, the interaction of tumor intrinsic type I and type II
IFN signaling contribute to sensitize ADAR1-null cells to ICB.406

Except for checkpoint blockade therapy, targeting m6A
modification has demonstrated promising potential in improving
adoptive cell therapy. Marvelous progresses have been made in
modulating METTL3 and YTHDF2 to enhance the proliferation and
cytotoxicity of NK cells in vitro, which might inspire future
protocols for NK cell-based immunotherapy.407,408 No attempt to
modulate m6A methylation in CAR T cells has been reported yet,
but considering the significant roles of m6A regulators in
determining functions and fate of T cell, novel therapeutic
strategies are expected.

Development of RNA modification-targeted agents
Targeting the dysregulated m6A regulators, which are over-
expressed in tumor on most occasions, plentiful specific inhibitors
have demonstrated exciting anti-tumor effects in vitro and in vivo
(Table 6). FTO is considered as the most promising target. Within a
decade, a series of selective inhibitors have come out, ranging
from natural substance to small-molecule compound. The first
natural inhibitor Rhein displayed therapeutic activity in leukemia
mice,409 meclofenamic acid 2 (MA2) was observed to suppress
glioblatoma progression.410 Small-molecule compounds CHTB and
N-CDPCB were identified with novel binding sites by crystal
structure screening.411 R-2-hydroxyglutarate (R-2HG) exerts anti-
leukemia and anti-glioma effects, synergizing with current first-
line chemotherapy agents.412 FB23-2 also significantly attenuates
the progression of AML in vitro and in xeno-transplanted mice.413

Subsequently, more potent inhibitors with potential to improve
anti-tumor immunity was developed. CS1/2-induced FTO inhibi-
tion not only attenuates leukemia stem cell self-renewal, but
reprograms immune responses by downregulating expression of
immune checkpoint gene, which overcomes HMA-induced
immune evasion and sensitizes leukemia cells to T cell

cytotoxicity.402 Also, Dac15 restores functions of CD8+ T cells,
blocks FTO-mediated immune evasion, and synergizes with anti-
PD-1 blockade.248 Recently, progresses have been made in more
tumor types rather than AML and glioma. A small molecule
inhibitor 18097 significantly restrained in vivo growth and lung
colonization of breast cancer cells.414 Oxetanyl class demonstrated
antiproliferative effects in GC, glioblastoma and AML models,
while FTO-43 has potency comparable to 5-FU.415 Compound C6,
a 1,2,3-triazole analogs, was suggested as a potential orally
antitumor agent for esophageal cancer.416

Exploitation of inhibitors against other regulators, including
METTL3 and ALKBH5, is also proceeding steadily. The ALKBH5
inhibitor ALK-04 effectively sensitized melanoma cells to anti-PD-1
blockade, as ALKBH5 attenuated immunotherapy responses via
regulating lactate content and immunosuppressive cell infiltration
in the TME.404 Selberg et al. discovred two compouds, 2-[1-
hydroxy-2-oxo-2-phenylethyl]sulfanyl acetic acid and 4-[furan-2-yl]
methyl amino-1,2-diazinane-3,6-dione, demonstrated cancer-cell-
type-selective antiproliferative effects in selected leukemia cell
lines.417 Targeting SAM binding sites, adenosine was first
identified as METTL3 inhibitors. Non-nucleoside inhibitors with
higher selectivity and permeability have been developed, such as
UZH1a and UZH2.418,419 A novel METTL3 inhibitor STM2457
effectively blocked AML progression and prolonged survival in
AML mouse models, without disturbing normal hematopoiesis.420

Furthermore, RNA m1A methylation is also a potential
therapeutic target. The m1A methyltransferase complex, TRMT6/
TRMT61A is highly expressed in HCC and correlated with poor
prognosis. Wang et al. screened out three potential drugs
targeting the interaction of TRMT6 and TRMT61A, thimerosal,
phenylmercuric acetate (PMA), and thiram. Among them, the
administration of thiram significantly attenuated HCC growth in
preclinical models.421

RNA modifications in RNA-based therapeutics
Though RNA medicine has been facing challenges like efficacy
and immunogenicity since from birth, the most recent hit of
mRNA vaccines against COVID-19 provide new momentum to this
field and bring RNA modifications back into to spotlight. Chemical
modification of RNA could protect RNA from hydrolysis and
nucleases, and decrease off-target cytotoxic effects. Once
therapeutic RNAs form duplexes with targeted sequences,

Table 6. Specific inhibitors against RNA modification regulators

Target Drug Cancer Effect Ref.

FTO Rhein AML Anti-leukemia efficacy in vitro and in vivo 409

MA2 GBM Suppresses cell proliferation and tumor progression 410

R-2HG AML/GBM Antitumor effect, synergizing with first-line chemotherapy agents 412

FB23-2 AML Anti-leukemia efficacy in vitro and in vivo 413

CS1/2 AML Potent anti-leukemia efficacy in mouse models, sensitize leukemia cells to T-cell cytotoxicity,
overcomes immune evasion

402

Dac15 Melanoma Promotes activation and effector state of T cell, improving anti-PD1 blockade 248

18097 BRCA Restrain in vivo growth and lung colonization 414

FTO-43 GC/AML/GBM Potent anti-tumor effects in mouse model 415

C6 ESCC Anti-tumor efficacy in vitro and in vivo 416

ALKBH5 ALK-04 Melanoma Improve anti-PD-1 therapy efficiency 404

Compound 1/2 AML Anti-proliferative effects in specific AML cell lines 417

METTL3 UZH1a AML Suppress proliferation and viability of tumor cells 418

UZH2 AML/PC More potent anti-proliferative effects in vitro 419

STM2457 AML Anti-leukemia efficacy in vitro and in vivo 420

TRMT6/TRMT61A Thiram HCC Suppresses HCC growth in preclinical models 421
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modifications lowering the melting temperature could destabilize
the complex and improve target specificity via reducing base-
paring with non-target RNAs. Moreover, RNA modifications are
utilized for RNA delivery and strengthen the pharmaceutical
activity of RNA.422

Base modifications have been successfully applied in improving
the performance of therapeutic RNA, for example, replacement of
uridine with the modified base 1-methylpseudouridine (N1-Me) in
COVID-19 vaccines (Pfizer’s Comirnaty and Moderna’s Spikevac)
effectively facilitates translation and reduces off-target side effects
and immunogenicity of therapeutic mRNA.423 Additionally, m7G
cap linked by a 5′-triphosphate to the 5′ end of the mRNA, which
replicates the naturally occurring mRNA caps to prevent degrada-
tion of the 5′ end of mRNA, has been introduced into mRNA
vaccines BNT162/Comirnaty and mRNA-1273/Spikevax.424 As for
ribose modifications, modified hydroxyl group on the C-2′ position
of the ribose could protect RNA against nuclease digestion and
lower the thermal stability of duplexes. N-acetylgalactosamine
(GalNAc) groups or lipophilic moieties attached cleavable linkers,
including ester-based, peptide-based cleavable groups, could
localize therapeutic RNA to target tissue.425 Moreover, modifica-
tions to the phosphate group in the sugar-phosphate backbone
shelter RNAs from nucleases, represented by phosphorothioate.
And eliminating the negative charge via replacing the oxygens on
the phosphates with neutral groups or cations can assist the
delivery into cell.426

Based on CAS Content Collection, a recent study summarized
the modification content in approved RNA medicines, including
antisense oligonucleotide (ASO), siRNA, aptamer, and mRNA.427

Thereinto, N1-Me is prominently abundant in two mRNA vaccines,
along with 2′-O-methyl, 3′-methyl, m7G, 5′-5′-triphosphate. And 2′
-oxy-methoxyethylguanosine (2′-MOE) is exclusive in ASOs, which
protects ASOs from degradation. The approved siRNAs have 2′-
fluoro and 2′-O-methyl modification of the ribose, and three of
them are 3′-glycosylated with the GalNAc conjugate, which
specifically targets siRNAs to hepatocytes.428

Combination of targeting RNA modification and current therapy
Some gratifying results have been acquired in combined
application of m6A regulators inhibitors with current anticancer
therapy. The involvement of m6A modification in underlying
mechanisms of resistance has been systematically summarized.429

Herein, we put emphasis on the combined utility of targeting RNA
modification to circumvent resistance and improve individualized
cancer treatment.
A mass of evidences showed that overexpressed METTL3 widely

participated in the acquisition of various therapeutic resistance in
many cancer types. Knockdown of METTL3 using short hairpin
RNA improved sensitivity to anticancer reagents such as
gemcitabine, 5-fluorouracil, cisplatin and irradiation in pancreas
cancer (PC).430 Suppression of METTL3 restored chemosensitivity
and attenuated CML cells viability.431 Nevertheless, few studies
have ever investigated the utility of METTL3 inhibitors in
overcoming chemoresistance. Targeting FTO also shed new light
on improving chemoresistance. Upregulated FTO in oral squa-
mous cell carcinoma played a pivotal part in arecoline-induced
stemness and chemoresistance to cisplatin.432 Depletion of FTO
sensitized breast cancer to doxorubicin via suppressing de novo
synthesis of fatty acid.433 Specifically, FTO was revealed to
facilitate GBM resistance to temozolomide (TMZ), and the inhibitor
R-2HG demonstrated a synergistic effect with TMZ in suppressing
proliferation of FTO-high glioma cells.412

Moreover, the feasibility of administrating m6A regulators
inhibitors to improve immunotherapy effectiveness needs further
investigation. Depletion of METTL3/14 was found to augment ICB
therapeutic responses in mismatch-repair-proficient or microsa-
tellite instability-low (pMMR-MSI-L) CRC and melanoma.434 In
accordance, a recent study confirmed that targeting METTL3 by

inhibitor STM2457 potentiate ICB efficacy in various CRC mouse
models.435 Knockdown of FTO reduced PD1 expression in
melanoma via m6A/YTHDF2-dependent manner, thus sensitized
anti-PD-1 blockade.400 FTO was supposed to enhanced PD-L1
expression independent on IFN-γ in CRC.436 In AML, FTO inhibition
induced by small-molecule compounds CS1/2 leads to down-
regulation of checkpoint gene LILRB4, reigniting the interest of
introducing ICB to AML.402 Besides, Li et al. reported that the
specific inhibitor to ALKBH5, ALK-04 markedly enhanced the
efficacy of anti-PD-1 blockade in CRC model.404

Clinical trials targeting RNA modifications
We surveyed ClinicalTrials.gov as of October 20, 2023, to keep up-
to-date with clinical implications of RNA modifications, basically
including therapeutic effectiveness of agents targeting modifiers,
potential as predictive biomarkers, and combined application with
current treatment. However, hardly any above-mentioned specific
inhibitor has progressed into clinical stage, in spite of the
encouraging antitumor results of FTO-targeted agents in various
cancers. Most recently, a phase 1, first-in-human study is designed
to systematically evaluate the pharmacokinetics, pharmacody-
namics and clinical activity of STC-15 in adult subjects with
advanced malignancies (NCT05584111).
Several studies have evaluated the association between FTO

polymorphisms (rs9939609 and rs1558902) and obesity in
different populations, including Turkish population
(NCT04205318), Indonesian obesity women (NCT04740528), as
well as weight loss in overweight carriers induced by calorie
restriction (NCT02940197), and intermittent or moderate contin-
uous high intensity training programs (NCT03568773). Further-
more, there are projects aim at assess the correlation between FTO
polymorphisms and risk of developing diabetes in Mexican
adolescents with overweight and obesity (NCT02886013), and
features of metabolic syndrome in children with T1D
(NCT01279161). Considering that variants in FTO showed high
correlation with body weight and also interact with dopamine
signaling in the brain, a clinical trial was designed to develop a
genotype-specific and individualized therapy approach for obesity
targeting FTO (rs8050136) variant (NCT03525002). Genotyping for
FTO was also incorporated into tailored therapeutic model for
azathioprine-induced myelosuppression in inflammatory bowel
disease patients (NCT03719118).

CONCLUSION AND FUTURE PERSPECTIVES
State-of-the-art methods for RNA modification sequencing
With advent of high-throughput methodologies, precision and
sensitivity of RNA modification sequencing invented in an
unprecedented space. Currently, mainstream MeRIP- and
miCLIP-based methods have been widely accepted, yet with
several disadvantages to be overcome. The poor sensitivity of
antibody-based methods is first limitation, and chemical-
assisted labeling is recognized as a promising approach. On
account of the strong affinity of biotin-streptavidin binding, the
m6A seal (m6A selective chemical labeling) method dramatically
enhance enrichment efficiency via introducing a biotin tag to
modified bases.437 In addition, to solve the incapability of
quantifying modification ratio, m6A-LAIC-seq (m6A-level and
isoform-characterization sequencing), originated from MeRIP-
seq, could quantify m6A levels for all isoforms of transcripts for
each gene via isolating m6A-positive and m6A-negative post-RIP
fractions and sequencing full-length transcripts.438 Adding
synthetic modification-free RNA molecules as internal reference
is another strategy to realize quantitative sequencing.439 To be
noted, single-cell sequencing technologies is an emerging
hotspot in tumor immunology, which could effectively profile
the intricate immune landscape in tumor TME. For instance,
DART-seq (deamination adjacent to RNA modification target
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sequencing) is designed to monitor m6A at the single-cell level,
which successfully reveal the heterogeneity in m6A scenarios
across individual cells and identify differentially methylated
mRNAs across the cell cycle.440 However, further application of
DART-seq in clinics is limited by its dependency on over-
expression of the APOBEC1-YTH fusion protein in cells. Hence, a
free of genetic manipulation single-cell method for deciphering
RNA modification is warranted.

Advancement of RNA modification databases
With advanced methodologies of detecting and profiling RNA
modifications, rapid-accumulated enormous epi-transcriptome
data call for centralized bioinformatics platforms to mine the
underestimated treasure. For both experimental and computa-
tional studies of RNA modifications, such valuable resources will
be of great help. Researchers focus on structural biology could
take full advantage of comprehensive databases like RNAMDB and
MODOMICS, while computational biologists perform their
researches based on relational databases such as MetDBv2.0,
m6A-Atlas, RMBase v2.0 etc. Exploration of novel types or
modifiers of RNA modification fully relies on current knowledge-
bases. For clinics, these databases advance understanding of the
role epi-transcriptomics plays in disease pathology. Not a few
databases have provided information about relationship between
disease-related varients with RNA modifications, such as m6A-
Atlas, RMVar, and RMDisease.
Meanwhile, epitranscriptomics-disease links are highlighted in

newest update of MODOMICS. The new section exhibits associa-
tion between malfunction or misregulation of a given RNA-
modifying enzymes with specific disease conditions. To better
elucidate the post-transcriptional regulatory networks, multi-
omics analysis is highly rated. Moreover, context-specificity of
RNA modification should be taken into consideration via
distinguishing species, cell type, and tissues. Finally, more user-
friendly interface and webserver tools are significant for improving
accessibility of these resources.

RNA modifications and immunology
During differentiation and development of immune cells, various
clusters of functionally coordinated genes are under sophisticated
control of RNA modifications. The highly selectivity and specificity
of RNA modifying machinery still remains largely defined. The top
priority is to distinguish different targeted transcripts according to
a framework of classical immunological systems such as polariza-
tion of macrophages and CD4+ T cell differentiation. It was
suggested that additional factors such as region-enriched cis-
regulatory elements exerted a certain effect on selectivity of RNA
marking. Besides, increasing evidences have implicated the
crosstalk between RNA modifications on non-coding chromo-
some-associated regulatory RNA (carRNA) and chromatin mod-
ifications, thus RNA modifications may control immune responses
to environmental stimuli via shaping the chromatin environment
of immune cells.
In the aspect of tumor immunology, the discrepancy of epi-

transcriptome between tumor and immune cells is acknowledged
as an essential influencing factor of antitumor immune responses.
However, relevant research is still in its infancy. Thus, rigorous
dissection of RNA modification marks and regulators in tumor cells
and immune cells is considered as a fundamental and crucial for
developing effective interventions. Following marker-informed
sorting of cell populations of interest, methods like mass
spectrometry are used for profiling dynamic RNA modifications.
Furthermore, integration of single-cell scale and transcriptome
methods with RNA modification sequencing may provide valuable
insights into dysregulated RNA modification in the TME. Aside
from highly-specific RNA modification-targeted inhibitors, mod-
ification editing in immune cells is another promising direction for
treating immune-related diseases.

Established on the understanding of metabolism, the applica-
tion prospects of targeting m6A methylation in immunotherapy
mainly consisted of two possibilities. One is to circumvent
therapeutic resistance mediated by the metabolic antagonism in
TME, the other is to potentiate proliferation efficiency and effector
functions of immune cells for adoptive cell therapy. Recent
advances clued some potential strategies: 1) a programmable
m6A editing machinery to fine-tune RNA modifications of specific
genes with minimal off-target alterations, 2) effective manners to
manipulate m6A system ex vivo for optimal generation of NK cells
and T cells, 3) efficient targeted delivery of m6A editors into cells,
like nanoparticles, 4) inhibitors against m6A regulators with
potential to modulate anti-tumor immunity.

RNA modifications and cancer metabolism, metabolic diseases
The current understanding is that metabolic phenotypes evolve as
cancers process from premalignant lesions, localized invasive
malignancies to metastatic cancers, even therapy-resistant states.
The dynamic RNA modification along with emerging metabolic
vulnerabilities in evolutionary process provide attractive clinical
opportunities. In some cases, tumors exhibited stereotyped
metabolic alterations without detectable mutations or DNA
methylation abnormities,441 implicating the presence of other
epigenetic regulation like RNA modifications. Delineating the
evolving genetic, epigenetic, immune-metabolic landscape is
quite necessary for designing effective strategies to preclude
metastasis. Progresses in spatial-omics techniques and system
biology research may help to address it.
Hyperactive metabolic pathways lead to brisk adaptation to

nutrient deprivation, contributing to resistance to antimetabolic
chemotherapy agents like antifolates. Metabolic coupling, char-
acterized by catabolites transfer, is common in tumor for
overcoming nutrient deficiency. Thus, combination of targeting
glycolysis and OXPHOS was proposed as a promising strategy.
Considering the underlying toxicity, the alternative is suppressing
dysfunctional signals to indirectly target glycolysis, while directly
targeting OXPHOS.
Increasing studies have indicated the significance of epigenetic

regulation in metabolic diseases. Up to now, none of epigenetic
drugs have been approved for metabolic diseases, and the
efficacy of RNA modification-targeted agents have not been
verified in metabolic diseases. Thus, investigation whether
inhibition of RNA modifiers can be used for treatment of
metabolic diseases is requested. Given that environmental factors
shed influences on epi-transcriptome via intracellular metabolic
changes, molecular insights of RNA modification in development
of metabolic diseases remains largely unknown.

Superiority and challenges of targeting RNA modifications
Indeed, the universal distribution and broad functionality of RNA
modification is a double-edged sword. For anticancer treatment,
targeting a single identified driver sometimes turns out an
unfavorable result, as a consequence of various reasons including
the development of resistance and intra- or intertumoral
heterogeneity. From this point, targeting RNA modification is
advantageous to cover a network of targets. Especially, these RNA
modifiers tend to be overexpressed or more active in cancerous
tissue compared to matched normal control tissue. However, the
essentiality and specificity of these RNA modifiers remain
significant concerns.
For currently developed agents targeting RNA modifying

enzymes, poor specificity and selectivity remain the main obstacle
in their progression into clinical researches. And such deficiency is
anticipated to be improved via optimized bioinformatic prediction
models and high-throughput enzymatic tests. Here are several
other outstanding questions to be further investigated. If
pharmacologic inhibition of RNA modification enzyme is capable
to reproduce the phenotypic activity induced by genetic deletion?
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If redundance in modifying enzymes, like METTL3/14 complex and
METTL6, potentially induce resistance to pharmacological inhibi-
tion. Given that RNA modifiers tend to be overexpressed in tumor
tissue but still present in normal tissues, an appropriate
therapeutic window in a certain therapeutic context may be
necessary. Aside from specific inhibitors or activators to those
modifiers, RNA modifications have been applied to improve the
stability, efficacy and target specificity of RNA-based therapies.
Common strategies include utilizing synthetic chemical or
naturally occurring modifications, and modulating sequence
context or location of these modifications. For all current
therapeutic RNA, RNA modifications are extensively present and
poised to further enhance their effectiveness.
In summary, epigenetic regulation of RNA modifications exerts a

crucial role in cellular metabolism in diverse physiological and
pathological situations. Growing evidences suggest that such
metabolic-epigenetic interplay significantly affects immune
responses, via modulating biological activities of immune cells
and remodeling immune context. Thus, delineating the evolving
genetic, epigenetic, immune-metabolic landscape is quite neces-
sary for designing effective strategies to preclude pathogenesis,
including various metabolic disorders, immune-related diseases,
and cancer. Recent years have witnessed remarkable advance-
ments in methods for detecting and profiling RNA modifications,
accompanied with a series of serviceable databases and tools
springing up. At present, attempts to targeting RNA modification
for improving current therapy have obtained some inspiring
advances, but relevant researches are still in its infancy. And we
can count on further in-depth exploration to accelerate the
development of RNA modification-targeted therapy, metabolism-
targeted therapy and immunotherapy.
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