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Precise genome-editing in human diseases: mechanisms,
strategies and applications
Yanjiang Zheng1, Yifei Li 1, Kaiyu Zhou1, Tiange Li2, Nathan J. VanDusen3✉ and Yimin Hua1✉

Precise genome-editing platforms are versatile tools for generating specific, site-directed DNA insertions, deletions, and
substitutions. The continuous enhancement of these tools has led to a revolution in the life sciences, which promises to deliver
novel therapies for genetic disease. Precise genome-editing can be traced back to the 1950s with the discovery of DNA’s double-
helix and, after 70 years of development, has evolved from crude in vitro applications to a wide range of sophisticated capabilities,
including in vivo applications. Nonetheless, precise genome-editing faces constraints such as modest efficiency, delivery challenges,
and off-target effects. In this review, we explore precise genome-editing, with a focus on introduction of the landmark events in its
history, various platforms, delivery systems, and applications. First, we discuss the landmark events in the history of precise
genome-editing. Second, we describe the current state of precise genome-editing strategies and explain how these techniques
offer unprecedented precision and versatility for modifying the human genome. Third, we introduce the current delivery systems
used to deploy precise genome-editing components through DNA, RNA, and RNPs. Finally, we summarize the current applications
of precise genome-editing in labeling endogenous genes, screening genetic variants, molecular recording, generating disease
models, and gene therapy, including ex vivo therapy and in vivo therapy, and discuss potential future advances.
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INTRODUCTION
Among the approximately 25,000 annotated genes in the human
genome, over 3000 mutations have been identified in connection
with diseases, and ongoing research is revealing additional
genetic variations relevant to various disorders.1 Thus, a primary
goal of biomedical research is to identify, characterize, and correct
these mutations, in order to cure disease. The rapid progress in the
diagnosis of genetic diseases has been driven by the decreasing
costs of genome sequencing, advancements in computational
techniques for comparing human genome sequences,2 and the
expanded utilization of high-throughput genomic screening.3–5

Nevertheless, the scarcity of treatments, let alone cures, for
genetic diseases, has led to an increasing gap between diagnostic
capabilities and therapeutic options.6 This emphasizes a pressing
need for the development of effective treatments. The prospect of
mitigating or rectifying disease-causing mutations is an enticing
objective with the potential to save and enhance countless lives,
while the recent emergence of precise genome-editing technol-
ogy provides a pathway to making the dream a reality.
An ideal gene-editing technology should be able to transform a

target DNA sequence into any other desired sequence while
achieving high on-target editing rates (efficiency), and minimal
off-target edits (specificity).7 The life sciences have long aspired to
create gene-editing tools that possess exceptional efficiency,
adaptability, product purity, and precision in targeting specific
genetic sequences. In the nearly 70 years since the discovery of
DNA’s double-helix structure,8–10 scientists have employed a

variety of methods for genome modification, including homo-
logous recombination,11–13 the Cre/LoxP system,14–16 zinc-finger
nucleases (ZFNs),17–19 transcription activator-like effector
nucleases (TALENs),20–22 and the CRISPR/Cas system and CRISPR/
Cas-derived base editors (BEs) and prime editors (PEs)23–27 (Fig. 1).
This continuous improvement and diversification of genome-
editing technologies suggests that widespread correction of
genetic disease via precise genome-editing is only a matter of
time, and that progress towards this goal is rapidly accelerating.
This review seeks to offer a comprehensive overview of precise

genome-editing modalities and their underlying mechanisms. We
briefly introduce the history of precise gene editing in human
disease, ranging from the earliest experiments to the develop-
ment of modern techniques. Next, we discuss a variety of modern
precise genome-editing strategies, highlighting the limitations
and challenges of each. Lastly, we focus on therapeutic applica-
tions of precise gene editing in human disease.

HISTORY EVENTS OF PRECISE GENOME-EDITING IN HUMAN
DISEASE
The concept of utilizing gene editing for the purpose of disease
treatment or trait modification can be traced back to as early as
the 1950s, coinciding with the momentous uncover of DNA’s
double-helix structure by Watson and Crick.28 In the subsequent
1960s, scientists discovered restriction endonucleases, which
specifically recognize short stretches of nucleotides in DNA and

Received: 17 May 2023 Revised: 15 January 2024 Accepted: 17 January 2024

1Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University,
Chengdu, Sichuan 610041, China; 2Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China and 3Department of
Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
Correspondence: Nathan J. VanDusen (nvanduse@iu.edu) or Yi-Min Hua (nathan_hua@163.com)
These authors contributed equally: Yanjiang Zheng, Yifei Li

www.nature.com/sigtransSignal Transduction and Targeted Therapy

© The Author(s) 2024

1
2
3
4
5
6
7
8
9
0
()
;,:

http://crossmark.crossref.org/dialog/?doi=10.1038/s41392-024-01750-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41392-024-01750-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41392-024-01750-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41392-024-01750-2&domain=pdf
http://orcid.org/0000-0002-3096-4287
http://orcid.org/0000-0002-3096-4287
http://orcid.org/0000-0002-3096-4287
http://orcid.org/0000-0002-3096-4287
http://orcid.org/0000-0002-3096-4287
mailto:nvanduse@iu.edu
mailto:nathan_hua@163.com
www.nature.com/sigtrans


create double-strand DNA breaks (DSBs) at or near the recognition
locus (also known as a restriction site).29–31 This discovery of
restriction enzymes would prove to be pivotal to the development
of recombinant DNA techniques when, in 1972, Paul Berg used
restriction enzymes to create the first recombinant DNA molecule,
marking the birth of genetic engineering.8,32 In the 1980s,
bacteriophage P1 Cre recombinase was discovered,33 and
scientists soon developed mechanisms to control recombinase
activity, namely through the strategic insertion of 34-nucleotide
DNA sequences called “loxP” sites (locus of crossing, P1), which Cre
will recognize and facilitate site-specific recombination between,
resulting in the removal of intervening DNA.34–37 By the 1990s,
researchers had started using the Cre/loxP system to engineer
genomic modifications in mice.38,39 These ventures in genetic
engineering were facilitated by the discovery that DNA sequences
could be inserted into the specific loci of mammalian cells via
homologous recombination (HR).40–42 This gene targeting tech-
nology was subsequently used on mouse embryonic stem (ES)
cells which in turn were used to generate large numbers of
genetically modified mouse strains.43–48 However, these efforts
were hindered by the very low frequency of natural HR between
exogenous donor DNA and target DNA.49

In the 1980s, scientists identified the potential to engineer zinc-
finger proteins, allowing them to selectively bind to specific DNA
sequences and opening the door to the design of customized
DNA-binding proteins.50–53 The next stage in the evolution of this
technology came in the late 1990s when researchers developed
ZFNs capable of introducing DSBs in a sequence-specific manner.
This was achieved by fusing engineered zinc-finger domains to
the FokI endonuclease domain.54 Subsequently, ZFNs were used
to produce targeted genome edits in various model organisms,
including human cell lines.55–59 The utilization of ZFNs to induce a
DSB at the target site substantially increased the efficiency of HR,
with cellular success rates reported to be as high as 20%,60 thus
greatly promoting the widespread application of gene editing.
This approach of homology-directed repair (HDR) of DSBs would
later become standard practice for several different genome-
editing modalities. Despite the successes of ZFNs, their design and
production are time-consuming, laborious, and expensive, and
these factors prevented widespread adoption. In 2009, researchers
discovered transcription activator-like effectors (TALEs), which,
similar to zinc-finger proteins, can specifically bind to DNA
sequences.61,62 In 2011, scientists engineered TALEs that fused
to the nonspecific FokI cleavage domain (TALENs), allowing for the
introduction of targeted DSBs in human cells with high
efficiency.63 TALENs show multiple advantages over engineered
ZFNs, including an easier design process, and their potential
ability to be targeted to a wider range of sequences.64 However,
this approach still suffers from the complexities associated with
needing to engineer a new protein for each target.
This barrier to progress in the gene editing field would not be

surmounted until 2012 when Doudna, Charpentier, et al.23

developed CRISPR/Cas9 gene editing systems. Unlike ZFNs and
TALENs, which both specifically bind to DNA through complex

engineered proteins, the CRISPR/Cas9 system relies on the specific
binding of an engineered single guide RNA (sgRNA) with
homology to the target DNA. These easily programmable sgRNAs
bind to Cas9 and guide the Cas9 nuclease to the DNA target site,
where a DSB is created. Following this discovery, Feng et al.24 and
Church et al.65 employed the CRISPR/Cas9 system to achieve
accurate cleavage at endogenous genomic loci in human and
mouse cells. The advent of the CRISPR/Cas9 system significantly
streamlined genome-editing, resulting in rapid adoption. Com-
mon simple use cases include inactivating gene function by
introducing small, partially random insertions and deletions
(indels), which are formed during the repair of DSBs. As with
ZFNs and TALENs, precise editing can be achieved via HDR when a
donor template is provided along with the guide RNA and Cas9
nuclease. However, HDR is typically restricted to dividing cells due
to overlaps in the cellular machinery required for cell cycle
progression and HDR.62,66–68 To bypass this limitation, in 2016,
Belmonte et al.69 developed Cas9-mediated homology-indepen-
dent targeted integration (HITI), enabling efficient DNA knock-in in
both dividing and non-dividing cells in vitro, and notably, in vivo.
While HITI can achieve robust insertion efficiencies, indel
frequencies are relatively high at the junctions between the
insertion and native locus, as well as at targets where insertion
fails.70 In comparison, HDR typically results in low indel rates at
positions flanking the insertion, while indels are commonly found
at target sites where HDR fails.71,72 In addition to these limitations,
all of the precise editing techniques discussed above involve the
creation of DNA breaks which can trigger strong DNA damage
responses, which may impact cell phenotypes.73,74

In 2016 and 2017, Liu et al.25,26 developed BEs, which are
capable of chemically converting one DNA nucleotide to another
at a target locus. This was achieved by fusing a nuclease-dead
mutant Cas9 (dCas9) protein to a cytidine or an adenosine
deaminase enzyme. The fusion protein retains the ability to be
programmed with a sgRNA, but does not induce DSBs; instead, the
editing complex mediates the direct conversion of C•G to T•A or
A•T to G•C. This system demonstrated gene editing efficiencies up
to 55%, with minimal off-target edits.26 However, this exciting
technology is not without limitations. While BEs have the capacity
to induce transition mutations, converting purine to purine (A to
G) or pyrimidine to pyrimidine (C to T), they currently cannot
perform the eight transversion mutations (purine to pyrimidine)
and cannot perform targeted deletions or insertions. In 2019, Liu
et al.27 further modified CRISPR/Cas9 and developed the PE
system, allowing for precise modifications to DNA sequences at a
specific locus through the fusion of dCas9 or nickase Cas9 with an
engineered reverse transcriptase, guided by a PE guide RNA
(pegRNA) specifying the target site and desired edit. This system
can perform targeted insertions, deletions, and any type of point
mutation, without requiring DSBs or donor DNA templates.27

During the same time period, Zhang et al.75 and Sternberg et al.76

characterized a CRISPR-associated transposase (CAST) that utilizes
Tn7-like transposase subunits and type V-K or type I-F CRISPR
effectors, enabling RNA-guided DNA transposition with

Fig. 1 Timeline of the development of precise genome-editing tools. Key milestones in precise genome-editing are indicated. HR
Homologous recombination, ZFNs Zinc-finger nucleases, TALENs Transcription activator-like effector nucleases, HITI Homology-independent
targeted integration, CAST CRISPR-associated transposase. This figure was produced using BioRender.com
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unidirectional insertion of DNA segments at specific loci. Work by
Kleinstiver et al.77 and Sternberg et al.78 would later demonstrate
that CASTs could be engineered to precisely integrate large DNA
sequences in human cells with improved integration product
purity and genome-wide specificity. After nearly seventy years of
development, these diverse systems showcase the rapidly
evolving nature of precise genome-editing, as well as the ever-
expanding number of use cases, and substantial improvements in
editing efficiency and specificity (Fig. 1).

OVERVIEW OF PRECISE GENOME-EDITING STRATEGIES
Currently, precise genome-editing is achieved using various
molecular tools and techniques that activate DNA repair path-
ways. These techniques can be roughly divided into DSB and non-
DSB mediated repair mechanisms. DSBs primarily contribute to
precise genome-editing via the HDR DNA repair pathway, while a
variety of genome-editing modalities utilize non-DSB DNA repair
pathways (Table 1).

HDR-mediated precise genome-editing
Early methods of HR-based precise genome-editing involved the
introduction of exogenous double-stranded DNA template into
cells. Recombination between the target locus and the template
would occasionally occur, resulting in precise editing, which was
successfully used to generate knock-in cell lines and gene-
modified mice. However, the frequency of HR between exogenous
donor DNA and target DNA in the absence of a DSB is very low,49

and this shortcoming precluded the use of the approach in
therapeutics. However, in the presence of both an exogenous
donor template and a DSB in the target locus, HR efficiency can be
improved by many orders of magnitude.57,79 This HDR-mediated
approach to genome-editing is dependent on efficient introduc-
tion of nuclease for target-specific dsDNA cleavage. Currently, the
most widely used site-specific nucleases include ZFNs, TALENs,
and CRISPR/Cas9 (Fig. 2).

ZFNs-mediated HDR. ZFNs are chimeric proteins formed by
linking the endonuclease domain of the bacterial FokI restriction
enzyme with an array of site-specific DNA-binding domains,
sourced from zinc-finger–containing transcription factors.54 The
zinc-finger protein, possessing DNA-binding specificity, was
initially identified in 1985 within transcription factor IIIa in
Xenopus oocytes.52 An individual zinc-finger domain, consisting
of approximately 30 amino acids, recognizes a 3 base pair (bp)
DNA sequence.80 When arranged in tandem, these zinc-finger
domains can potentially adhere to a longer DNA sequence 9 to
18 bp in length.81 By leveraging an 18 bp DNA sequence,
specificity could be attained within an immense 68 billion-bp
DNA pool. Thus, this breakthrough enabled the precise targeting
of specific sequences within the human genome, marking a
significant advancement.82,83

Since the FokI nuclease necessitates dimerization for DNA
cleavage, ZFNs are structured as a pair that identifies two
sequences bordering the target site—one on the forward strand
and another on the reverse strand. When the ZFNs bind on both
sides of the site, the FokI domains within the pair dimerize,
leading to DNA cleavage at the target site. This process results in
the creation of a DSB with 5’ overhangs.18,84 These DSBs can be
used in combination with exogenous or endogenous donor
templates to achieve precise genome-editing via the HDR
pathway. Given the modular design of ZFNs, it’s possible to fine-
tune the zinc-finger and nuclease domains independently. This
capability empowers scientists to create new modular combina-
tions, optimizing their affinity and specificity for applications in
genome engineering.85

Nevertheless, ZFNs as first-generation gene editing tools have
limitations. Assembling zinc-finger domains to bind an extended Ta
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DNA sequence is a challenging task. The complexity of this
process has hindered the dissemination of the approach beyond a
small, specialized field.86 An additional drawback lies in the
restricted target site selection, as the existing ZFN components
can only address sites occurring at approximately 200 bp intervals
in a random DNA sequence.87 This may present challenges for
targeting particular sites, thus limiting the technique’s potential as
a therapeutic tool.87

TALENs-mediated HDR. TALENs are also chimeric site-specific
nucleases, in which an engineered array of TALE-specific DNA
binding domains are fused with FokI endonuclease.63,88 TALEs,
derived from plant pathogenic bacteria of the Xanthomonas
genus, consist of repetitive sequences with 10 to 30 tandem
arrays, enabling them to bind and identify extended DNA
sequences.61,89 Each repeat comprises 33–35 amino acids, and
specificity for one of the four DNA base pairs is determined by two
adjacent amino acids, known as the repeat-variable di-resi-
due.90–92 Thus, each repeat corresponds precisely to a base pair
within the target DNA sequence. TALENs, akin to ZFNs, have the
capability to induce DSBs at a specific target locus, facilitating
precise genome-editing through the HDR pathway.
In comparison with ZFNs, TALENs have several potential

advantages. First, recognizing individual bases with TALE–DNA
binding repeats provides more design flexibility compared to
triplet-confined zinc-finger proteins. TALENs can be rapidly
designed and assembled in as little as two days and can be
produced in large quantities, reaching into the hundreds at
once.64,93,94 Second, the TALE repeat array can be easily extended
to any desired length, in contrast to engineered ZFNs, which
typically bind sequences of 9 to 18 bp.87 Additionally, TALENs offer
more flexibility in selecting target sites, as theoretically, numerous
TALEN pairs can be designed for each base pair within any

arbitrary DNA sequence.94 Nonetheless, widespread TALEN adop-
tion faces multiple challenges, one of which is the repetitive
structure of TALENs, which may hinder their efficient packaging
and delivery using certain viral vectors.95 Another commonly
agreed limitation with TALE arrays is that TALE binding sites need
to be initiated with a thymine base in order to achieve maximal
binding.96

CRISPR/Cas-mediated HDR. The classical CRISPR/Cas system,
which was first developed as a gene-editing tool in 2012,23

employs the Cas9 endonuclease. CRISPR/Cas9 system has two
components: an engineered sgRNA derived from the mature
tracrRNA:crRNA complex, which forms base pairs with target DNA,
and the Cas9 endonuclease, which cuts the target dsDNA to create
DSBs.23 The sgRNAs have two key features: a 20 bp sequence at
the 5’ end that determines the target DNA site via Watson-Crick
base-pairing, and the remaining 3’ sequence that recruits Cas9.
After being guided to the target DNA sequence by the sgRNA,
Cas9 recognizes the protospacer adjacent motif (PAM), an NGG
sequence motif adjacent to the target, and subsequently, uses its
RuvC and HNH domains to cleave the two single-strand DNA
(ssDNA) sequences, forming a DSB.28 The HNH domain of Cas9
cleaves the DNA strand complementary to the sgRNA, and the
RuvC domain cleaves the remaining strand, leading to a blunt-
ended break, although DSBs with 5’ overhangs have also been
proposed.97,98

Unlike ZFNs and TALENs, which demand protein recoding with
substantial DNA segments (ranging from 500 to 1500 bp) for each
unique target location, CRISPR-Cas9 offers great adaptability, as
targeting is achieved by simply modifying the 20 bp protospacer
sequence in the sgRNA. This is often accomplished via single-step
cloning of the 20 bp segment into a plasmid encoding the
sgRNA.65 Another potential benefit of CRISPR-Cas9 is its capability

Fig. 2 Precise genome-editing with site specific nucleases. ZFNs create double-strand breaks (DSBs) using the FokI restriction enzyme paired
with specific zinc-finger DNA-binding domains. TALENs induce DSBs using the FokI restriction enzyme in conjunction with specific TALE DNA-
binding domains. Cas9 nuclease, targeted by guide RNAs, creates DSBs using two distinct domains of nuclease. Genome-editing utilizing
nucleases relies on two primary DNA repair pathways. The first pathway consists of end-joining mechanisms, which can be divided into
classical nonhomologous end-joining (c-NHEJ), which can be used to produce targeted semi-random indels, and homology-independent
target integration (HITI), which can be used to insert an exogenous sequence at a desired genomic target in the absence of homology arms.
The second major repair mechanism is homology-directed repair (HDR), which primarily occurs in dividing cells, and can be used to create
precise targeted edits via a single-strand or double-strand DNA donor template. ZFNs Zinc-finger nucleases, TALENs Transcription activator-
like effector nucleases. This figure was produced using BioRender.com
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for multiplexing—utilizing multiple sgRNAs concurrently to target
numerous sites simultaneously within the same cell, which is
particularly valuable for assessing genetic interactions, and when
generating an extensive array of vectors for targeting numerous
sites or even entire genome-wide libraries.99–102 Thus CRISPR/
Cas9-mediated HDR has been widely applied in various cultured
cell lines,103–106 mice,107–109 pig,110,111 rabbit,112,113 and
zebrafish.114

Nevertheless, A clear disadvantage of CRISPR/Cas9 is off-target
nuclease activity, which can lead to serious adverse effects. To
address this deficiency, one strategy involves utilizing a modified
Cas9 variant capable of inducing a single-strand nick in the target
DNA, as opposed to a DSB. By employing a pair of these “nickase”
CRISPR-Cas9 complexes, each with binding sites on opposite DNA
strands flanking the target site, allows for the generation of an
outcome similar to a DSB with 5’ overhangs.115–117 Since a DSB is
only formed when both distinct sgRNA/Cas9 complexes act at the
same target, off-target activity is much less likely to result in a DSB.
In another similar approach, fusion of dCas9 with the catalytic
domain of Fok1 has been employed to enhance the precision of
DSB creation.118,119 The catalytic domain of the Fok1 nuclease is
only active when it forms a homodimer. Consequently, the
synchronized recruitment of two Fok1 catalytic domain monomers
to adjacent DNA sites is crucial for efficient and precise DNA
cleavage in human cells, leading to minimal off-target editing
efficiency for these systems.118,119 In addition to these nuclease-
focused optimizations, engineering approaches for sgRNA, such as
truncation or chemical modification, have demonstrated the
ability to decrease off-target editing efficiency by up to three
orders of magnitude while preserving high levels of on-target
editing.120,121 Another challenge of utilizing the CRISPR/
Cas9 system is the size of the Cas9 protein. The cDNA that
encodes classical S. pyogenes Cas9 (spCas9) is approximately 4.2
kilobases (kb) in size, slightly larger than a TALEN or ZFN. This
makes spCas9 challenging to deliver via commonly used viral
vectors, such as adeno-associated virus (AAV), which has a cargo
size limited to less than 4.7 kb.122 To address this shortness, novel
Cas variants have been developed, such as S. aureus Cas9
(saCas9),123 Cas12a,124 Cas12e,125 Cas12f,126,127 Cas12j,128,129 and
Cas12n.130 These new Cas variants usually have a small molecular
weight. For instance, Cas12f is one of the most compact Cas
variants, consisting of ~400–700 amino acids. Several groups have
developed a series of Cas12f proteins, which showed efficient
gene editing.131–133 This size reduction makes it possible to
package the Cas nuclease, a guide RNA, and a donor template for
HDR all within a single AAV vector.

The Mechanism of HR. DSBs can undergo repair through the
endogenous repair machinery, involving either the non-
homologous end joining (NHEJ) or HDR pathways. NHEJ
introduces semi-random indels; however, when a donor DNA
template, either double-stranded or single-stranded, is available
and possesses homology to the adjacent sequences surrounding
the DSBs, the HDR pathway may be taken, resulting in a DSB repair
that follows the base sequence of the donor template, and thus
achieving a precise edit. The most common form of HDR is HR,
which includes two sub-pathways of double-strand break repair
(DSBR) and synthesis-dependent strand annealing (SDSA).134,135

The initial process of HR involves the resection of a DSB to
provide long 3’ single-stranded DNA overhangs. The Mre1, Rad50,
and Nbs1 proteins form a three-subunit Mre1-Rad50-Nbs1(MRN)
complex that recognizes and binds to the DSB ends through
facilitated diffusion. The MRN complex recruits and activates the
ataxia-telangiectasia mutated (ATM) protein kinase.136,137 Acti-
vated ATM can phosphorylate the C-terminal binding protein
interacting protein (CtIP),138 which then interacts with breast
cancer-associated protein 1 (BRCA1) to form a BRCA1/MRN/CtIP
complex.139 The complex is then involved in 5’ end cleavage near

the DSB site to expose long 3’ ssDNA overhangs.140–142 The
overhangs are then recognized and bound by the replication
protein A (RPA), which protects and stabilizes them.143 Subse-
quently, RAD51 interacts with BRCA2 to form a presynaptic
nucleoprotein filament complex which replaces RPA on the ssDNA
and searches for endogenous or exogenous homologous
DNA.144,145

An intermediate displacement loop (D-loop) is formed when
one of the long 3’ ssDNA overhangs invade the double stranded
donor template. Next, DNA polymerase δ (Poly δ) uses the 3’ end
of the invading strand to prime the synthesis of a new
strand.146–148 In DSBR, after one strand invasion and new DNA
synthesis, the second 3’ ssDNA overhangs will be captured to form
two intermediates with Holliday junctions (HJs).149 These are
accompanied by gap-filling DNA synthesis and ligation.150 Finally,
the resolution of HJs is processed to generate either non-crossover
or crossover products.151 Alternatively, in SDSA, the invaded
template strand dissociates from the D-loop during new DNA
synthesis.152 The newly synthesized ssDNA pairs with the
complementary ssDNA strand at the opposite end of the DSBs,
and the resulting ends are extended through gap-filling DNA
synthesis and ligated, generating only non-crossover products.151

Since HDR utilizes donor templates for guiding repair, it can be
harnessed to achieve precise DNA editing. However, the activation
of the key protein ATM in the HDR pathway is cell cycle-
dependent.153 Therefore, HDR is restricted in the S/G2 phases of
the dividing cells.
Although HDR-mediated precise genome-editing has tremen-

dous use cases and potential in biology and medicine, there are
still limitations and challenges that need to be addressed. First,
HDR is a less efficient DNA repair pathway than NHEJ.79,154–156

Even with recent advancements, current approaches for rectifying
point mutations through HDR in therapeutically relevant settings
still suffer from inefficiency.28 The efficiency of HDR repair
depends on several factors, such as the NHEJ and HDR pathways,
the length of the donor template, and the location of the target
site. Moreover, achieving efficient delivery of the donor template
to target cells or organisms poses a challenge, particularly for
certain cell types. Second, the availability of the cellular machinery
involved in HDR is typically limited to the S and G2 phases of the
cell cycle.157,158 The cell cycle dependence of HDR can limit the
efficiency of genome-editing, particularly in cells with a short S/G2
phase or in vivo applications, which often involve cells with low
proliferation rates. Intriguingly, we and other teams have found
that postmitotic cells can also repair DSBs through HDR when
donor templates are delivered via AAV.72,159,160 More importantly,
we found that HDR efficiency in postmitotic cells is considerable
and can be comparable with mitotic cells.72 These findings
broaden the potential applications of HDR, although further
research is required to comprehensively elucidate the mechan-
isms involved in AAV-mediated HDR in non-dividing cells. A third
limitation of HDR-mediated precise genome-editing is the
requirement for DSBs, which are associated with undesired
outcomes. Nuclease-induced DSBs can lead to various genomic
alterations, including large deletions, retrotransposon insertions,
chromosomal translocations, chromothripsis, and activation of
p53, potentially resulting in the formation of oncogenic
cells.161–168 Furthermore, the delivery of nuclease reagents to
target cells or tissues is a crucial step for successful genome-
editing. Delivery efficiency depends on the cell or tissue type, the
delivery method used, and the stability of the reagents in vivo. For
example, in select cell lines, the delivery of RNPs can generate
higher concentrations of nuclear Cas9/gRNA complex, and higher
editing efficiencies, than is achieved through the delivery of
plasmids or viral vectors.169 Unfortunately, the delivery of
components in vivo remains challenging for many tissues.
Efforts have been made to enhance the efficiency of

HDR-mediated precise genome-editing, aiming to address
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the associated challenges and limitations. These strategies
include inhibition of the NHEJ DNA repair pathway,79,170,171

activation of the HDR DNA repair pathway,172–176

modification of the DNA donor templates,72,160,177–179 and
delivery of nuclease reagents.180–182 While the primary
emphasis is on improving the accuracy and effectiveness of
DSB-mediated editing, these challenges encourage the

exploration of alternative strategies for precise genome-
editing.

Non HDR-mediated precise genome-editing
Non HDR-mediated precise genome-editing uses a diversity of
DNA repair mechanisms. These strategies include site-specific
recombinase systems, HITI, BEs, PEs, and CAST (Fig. 3).

Fig. 3 Strategies of non HDR-mediated precise genome-editing. a Cre/loxP system, consisting of Cre recombinase and loxP sites, facilitates
DNA recombination through excision (removing a DNA segment between loxP sites in the same orientation), inversion (flipping a segment
between loxP sites in opposite orientations), and translocation exchanging segments between two loxP sites in the same orientation on
different DNA strands. b Base editing involves the introduction of C•G-to-T•A or C•G-to-G•C point mutations using cytosine base editors (CBEs),
which employ Cas9 nickase or dCas9 fused to cytidine deaminase. Additionally, A•T-to-C•G point mutations can be reversed through adenine
base editors (ABEs), utilizing a fusion of dCas9 or Cas9 nickase and evolved TadA* deoxyadenosine deaminase. c Prime editors comprise a
Cas9 nickase domain fused to a reverse transcriptase domain. A prime editing guide RNA (pegRNA), engineered for specificity, directs the
prime editor to its target on genomic DNA, including the desired edit within an extension. Following nicking the PAM-containing strand, the
freed genomic DNA 3’ end engages in a primer–template complex with the pegRNA extension. Subsequently, the reverse transcriptase
domain copies the template from the pegRNA extension into the genomic DNA directly, facilitating the addition of point mutations, small
deletions, or small insertions at the target locus. d CAST combines Cas proteins with transposase-associated components. Transposase
proteins (Tns) bind to transposon DNA, while Cas proteins are guided to the target locus in a PAM-dependent, RNA-directed manner. This
localization facilitates transposon DNA integration at the target site, with each Cas-transposase complex having a specific guide RNA length
and a preferred integration distance 3’ of the PAM. This figure was produced using BioRender.com
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Site-specific recombinase system. The classical site-specific recom-
binase system is Cre/loxP, which is widely employed for
introducing conditional changes to transgenes and integrating
DNA cassettes into eukaryotic chromosomes.15,16,183,184 The Cre/
loxP system consists of two components: a Cre recombinase and
specific 34 bp sequences known as loxP sites (Fig. 3a). Cre, a
38 kDa bacterial enzyme derived from P1 bacteriophage, has the
ability to recognize and cut loxP sites.185 The loxP sequence
consists of two recombinase-binding elements, each spanning
13 bp, arranged as near-perfect inverted repeats on opposing
sides of an uneven 8 bp crossover region, which plays a critical
role in establishing the orientation of loxP sites.186,187 Cre initiates
the recombination event by binding to the 13 bp inverted repeat
regions at the loxP sites. This action facilitates the formation of
synaptic complexes, which consist of four Cre molecules that
bridge two loxP sites oriented in the same direction.188 Subse-
quently, the Cre complex facilitates the exchange of DNA strands
between the two sites, occurring within an asymmetrical 8 bp
central spacer sequence.189 The asymmetrical central spacer
serves as a template that unequivocally dictates the ultimate
orientation of the DNA product, ensuring that the chromosomal
rearrangements resulting from Cre-mediated recombination are
entirely foreseeable.189,190 Hence, depending on how the loxP
sites are oriented, Cre-mediated recombination can achieve
excision (deletions), inversions, or translocations (Fig. 3a).191 In
addition to the Cre/loxP system, various recombinase systems,
such as Flp/FRT,34 Dre/rox,192 and Vika/vox193 have been devel-
oped as precise genome-editing tools.
Since site-specific recombinases mediate highly efficient and

controlled DNA recombination, these systems have found wide-
spread use in creating genetically engineered mouse mod-
els.194–196 However, they also have significant drawbacks. First,
this recombination system cannot be used to precisely correct
mutations, or to insert exogenous DNA sequences, and therefore
cannot be used for gene therapy. Another drawback is that the
target recognition site, such as loxP and rox, must be initially
inserted into the genome, usually through techniques based on
HR. Hence, the process is costly and time-consuming, and these
challenges are exacerbated when aiming for more complex
models involving multiple alleles.197

HITI. HITI is a NHEJ-based targeted gene knock-in method, which
requires a site-specific nuclease such as Cas9 for DSB creation (Fig.
2). During NHEJ-mediated DSB repair, an exogenously supplied
donor sequence gets inserted into the break site.198,199 In the HITI
approach, the donor plasmids are designed without homology
arms, preventing DSBs from being repaired via the HDR pathway.
Instead, the donor DNA is designed to contain Cas9 cleavage sites
flanking the donor sequence.69 Cas9 subsequently induces DSBs
in both the genomic target sequence and the donor plasmid,
resulting in blunt ends for both the target and donor sequences.
The linearized donor DNA plasmid is then utilized for repair via the
NHEJ pathway, facilitating its integration into the DSB site.69 Upon
successful integration of the donor DNA into the genome in the
desired orientation, it disrupts the Cas9 target sequence, thereby
preventing subsequent Cas9 cleavage. In cases where the
genomic DSB is repaired through error-free NHEJ without the
insertion of donor DNA, the Cas9 target sequence remains intact,
leading to a second round of Cas9 cleavag.200 As NHEJ is active
throughout the cell cycle, it is noteworthy that even non-dividing
cells retain their NHEJ capabilities. Therefore, HITI-mediated
precise genome-editing can be used in terminally differentiated
and post-mitotic cells, such as cardiomyocytes of the heart, or
neurons of the brain. Indeed, HITI has been widely used for both
in vitro and in vivo precise genome-editing, including gene
therapy,69,201,202 and cell tracking.199,203,204 Nevertheless, HITI still
has several major barriers to further adoption. A significant hurdle
lies in the efficiency of current HITI methodologies. While HITI can

integrate DNA at specified target sites in numerous non-dividing
tissues, its efficiency often falls below 5%.200 Additionally, HITI can
only be applied for the insertion of exogenous DNA at a target
locus, but cannot be used for DNA substitution, which is necessary
for correction of many mutations.200 Consequently, the range of
genetic anomalies that HITI technology can address remains
restricted. Furthermore, as discussed above, HITI also involves the
creation of DSBs and off-target effects which may result in adverse
consequences for genome stability.

BEs. BEs are capable of accurately introducing specific point
mutations without requiring DSBs, DNA templates, or reliance on
HDR.25,26,205 BEs consist of a CRISPR-Cas nuclease that has been
rendered catalytically inactive, such that it only acts as a genome
targeting module. These nuclease components are linked with a
ssDNA deaminase enzyme and, in certain circumstances, asso-
ciated with proteins that modulate DNA repair mechanisms (Fig.
3b).25,26 The categories of BEs are cytosine BEs (CBEs), which
enable the alteration of C•G-to-T•A base pairs,25 adenine BEs
(ABEs), which facilitate the conversion of A•T-to-G•C base pairs,26

and recently developed C-to-G BEs (CGBEs), which cause C•G-to-
G•C base transversions (Fig. 3b).206–208 In BEs, the catalytically
deficient Cas nuclease precisely positions an ssDNA deaminase
enzyme at a specified genomic target sequence. When Cas binds,
the sgRNA spacer pairs with the target DNA strand, causing the
displacement of the genomic DNA strand containing the PAM and
forming a ssDNA R-loop.209,210 CBEs employ cytidine deaminases
to change cytosine bases found in the R-loop into uracils, which
are then recognized by polymerases as thymine.25,211 ABEs utilize
engineered TadA* deoxyadenosine deaminases to convert ade-
nosine bases within the R-loop into inosines, which are recognized
by polymerases as guanines.26 CGBEs function similarly to CBEs
but promote the substitution of deaminated cytosine with
guanine in the R-loop, although typically with lower efficiencies
and product purities in comparison to CBEs and ABEs.206–208

Effective modification of target nucleotides situated within the
R-loop depends on the successful interactions between the
deaminase enzyme and the substrate nucleotides. This interaction
within the R-loop defines the “base editing activity window”, as it
is crucial for achieving efficient base editing results. In situations
involving typical CBEs and ABEs employing Cas9, this activity
window generally encompasses positions 4 to 8 within the
protospacer (with the first nucleotide of the protospacer
designated as position 1 and the PAM found at positions
21–23).25,26

Compared to Cas nucleases, BEs demonstrate significantly
higher efficiency, generate few indel byproducts, and result in
considerably fewer unintended effects associated with DSBs in
direct side-by-side assessments.161,163,168,212–214 Thus, BEs have
been widely applied in diverse cell types and organisms to
introduce or reverse transition point mutations.215–222 Never-
theless, several limitations of BEs should be addressed. First, BEs
typically deaminate nucleotides within a limited 4–5 nucleotide
(nt) window, and this can lead to “bystander editing”, where
adjacent C or A nucleotides near the target C or A may also
undergo conversion.25,26 When BEs are used to modify the coding
sequence, the changes typically lead to synonymous mutations
within the usual base editing activity window, mainly because
transition mutations often don’t affect the genetic code. Second,
the effectiveness of BEs is constrained by the Cas domain’s
targeting scope, which necessitates the existence of a PAM
sequence at a particular distance range (usually 13 to 17
nucleotides) from the target base. Third, it’s worth noting that
certain BEs may lead to off-target mutations in both DNA and
RNA.223–225 Although engineering endeavors have alleviated
numerous of these limitations.226–231 Additionally, current BEs
are capable of inducing only 6 out of the 12 potential categories of
point mutations, which means that the majority of transversions,
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and numerous other types of DNA edits, including insertions and
deletions, remain beyond the scope of BEs.25,26,206

PEs. PEs are chimeric proteins formed by combining a Cas9
nickase domain, which is a deactivated HNH nuclease, with a
laboratory-evolved Moloney murine leukemia virus reverse
transcriptase (MMLV-RT) domain (Fig. 3c).27 The PEs are directed
to the editing site using an engineered pegRNA, which includes
the Cas9-binding spacer sequence, and a reverse transcriptase (RT)
template that carries the intended modification and a primer
binding site (PBS).27 Upon binding of the PE to the target site, the
Cas9 nickase generates a cut in the non-target DNA strand,
revealing a 3’ ssDNA segment that forms a hybrid with the PBS.
This hybridized structure allows the associated RT to elongate the
nicked 3’ ssDNA through the RT template (Fig. 3c). This RT activity
leads to the formation of two redundant ssDNA flaps: a 5’ flap
containing the original unedited sequence and a 3’ flap with the
edited sequence. Although the thermodynamically favored
pairing of the fully complementary 5’ flap with the unedited
strand is anticipated, its vulnerability to excision by endogenous
structure-specific endonucleases frequently leads to the hybridi-
zation of the edited 3’ flap, producing a heteroduplex. Eventually,
the resolution of the heteroduplex involves ligation and DNA
mismatch repair mechanisms, which replicate information from
the edited strand to the unedited strand, ensuring the enduring
integration of the desired modification. The PE system comprises
three characterized versions. PE1 involves the fusion of the Cas9
nickase with the regular MMLV-RT. In PE2, the conventional
MMLV-RT is replaced with an engineered pentamutant MMLV RT,
resulting in a 3-fold enhancement in editing efficiency. Lastly, PE3
combines the PE2 fusion protein with pegRNA and an extra sgRNA
that directs the nicking of the non-edited strand, leading to an
additional 3- to 4-fold increase in editing efficiency.27

PEs present a distinctive array of benefits for precise genome-
editing. In contrast to BEs that can only create 6 specific types of
point mutations, PEs can generate all 12 varieties of single- or
multi-base substitutions, small insertions, small deletions, and
combinations of these modifications.27 Furthermore, PE has the
capability to modify bases located at a considerable distance (at
least 33 bp) from the initial nick created by the prime editing.
Consequently, PE offers increased adaptability in contrast to base
editing, as it does not require the existence of a PAM sequence
near the targeted editing site. Compared to HDR, which mainly
workes in the S/G2 phase of mitotic and meiotic cells, PE can be
employed in non-dividing cells, which is necessary for many
in vivo applications. Additionally, PE typically results in signifi-
cantly fewer indel byproducts, and notably, it infrequently causes
alterations in DNA at unintended off-target genomic sites. Based
on these advantages, PEs have been proven to facilitate precise
gene modifications in a range of cell types,232–235 organoids,236,237

zebrafish,235 mice,238–242 and plants.243–246 Nonetheless, the
technology is still in its nascent phase, and there are several
challenges that need to be addressed for the technology to fully
realize its potential. First, the challenge of low editing efficiency is
a critical issue, with efficiency often falling below 20% in cell lines
and diminishing further in primary cells.247 Many endeavors have
focused on effector proteins,248,249 pegRNAs,250,251 DNA repair
pathways,248,252 and chromatin accessibility253,254 to improve the
efficiency. Moreover, successfully delivering prime-editing
reagents into the desired target cells is still an obstacle. The
substantial size of the length PE hinders its integration into a
single AAV vector, posing a significant challenge to its safe in vivo
delivery.

CAST. Transposases are self-contained enzymatic systems
responsible for incorporating or removing DNA segments in the
genome.255 They function by identifying and removing the left-
end (LE) and right-end (RE) motifs that flank the transposable

element.256 The transposable element is subsequently integrated
into new non-homologous sites.255 As a consequence of
transposition, duplications of the transposon’s end sequences
arise from the repair of ssDNA gaps formed during the integration
of the transposon into the genome.257 Recent computational
examination of bacterial genomes revealed the presence of
CRISPR loci containing Cas genes, CRISPR RNA array elements, and
transposase-specific genes.258–260 This finding implied the possi-
bility of RNA-guided transposition in bacteria.261,262 Subsequent
investigations effectively recreated simplified RNA-guided trans-
position utilizing type I-F and type V-K CRISPR-associated
transposase (CAST) systems, leading to the targeted integration
of substantial DNA fragments within bacterial genomes.75,76,263

The type I-F CAST system comprises three key elements:
transposase operon, CRISPR-Cas-associated machinery, and the
donor LE–cargo–RE transposase DNA substrate (Fig. 3d). The
primary distinction between the type I-F and type V-K systems lies
in their CRISPR–Cas-associated components. The type I-F system
relies on the CRISPR-associated complex for antiviral defense
(CASCADE) lacking the Cas3 nuclease–helicase, whereas the type
V-K system CASCADE utilizes Cas12k effectors with naturally
inactivated nuclease domains.264 In the type I-F system, transposi-
tion cargo insertions take place approximately 47–51 bp down-
stream from the end of the protospacer (Fig. 3d), and the optimal
cargo size is determined to be around 775 bp.76 In comparison,
insertions for type V-F occur predominantly between 60 and 66 bp
downstream of the PAM sequence (Fig. 3d), enabling the
integration of cargo DNA segments 500 bp to 10 kb.75 Compara-
tive studies indicate that the type I-F system exhibits higher
efficiency and purity of products compared to the type V-K
system.265,266 Moreover, the type I-F system did not consistently
yield detectable off-target effects throughout the E. coli genome,
while off-target transposition of type V-K was detected at multiple
loci.267 While the original type I-F and type V-K CAST systems were
initially confined to bacterial applications, recent investigations
have demonstrated the potential of engineered versions of both
type I-F and V-K systems for facilitating transposon-mediated
integration in human cells.77,78 CASTs show promise for precise
genome-editing, although further engineering endeavors will be
needed to improve the efficiency of integration.

DELIVERY OF PRECISE GENOME-EDITING REAGENTS
Efficient and safe and delivery of precise genome-editing
components to target tissues is a critical prerequisite for the
success of genome-editing procedures. Typically, genome-editing
delivery strategies are categorized into DNAs, RNAs, and proteins,
including ribonucleoproteins (RNPs) (Fig. 4).

Delivery via DNA
The strategy for delivering DNA components via vectors such as
plasmid or recombinant virus is widely used in vitro and in vivo
due to simplicity (Fig. 4). In numerous cultured mammalian cell
lines, high editing efficiencies can be attained by transiently
transfecting cells with lipids or using electroporation to introduce
genome-editing plasmids, including those for HDR, HITI, BEs, and
PEs.27,56,77,104,268–271 While plasmid-based delivery offers conve-
nience, one main limitation of plasmid delivery is that transfection
efficiency varies by cell type and is generally limited to in vitro
applications.272,273 An additional limitation is that delivering DNA
increases the potential for non-specific DNA recombination with
the genome.274–277 In comparison to plasmid vectors, utilizing
viruses to transport DNA encoding genome-editing represents a
promising delivery approach for in vivo research and therapeutic
applications. The utilization of non-integrating vectors like AAV,
adenoviral (AdV) vectors, or herpes simplex virus (HSV) minimizes
the risk of integration of foreign DNA into the host genome.
Nevertheless, infection with AdV and HSV-1 may trigger
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inflammatory reactions,278 while AAV is considered to be both
non-pathogenic and non-inflammatory.279

Interestingly, the AAV genome is initially ssDNA and gets
converted to dsDNA only after arriving in the host cell nucleus.280

AAV has high transduction efficiency in both mitotic and
postmitotic cells, has an attractive safety profile, and the capability
to specifically transduce a range of tissues via different
serotypes.122,280 As a result, AAV is an ideal vector for genome-
editing reagents delivering, which can be used for both in vivo
and in vitro experiments. However, AAV is constrained by its
capacity to package DNA cargo, limited to approximately 4.7 kb in
length, rendering it insufficient for packaging larger genome-
editing reagents, such as the Cas-mediated HDR Cas protein and
donor template components (>5 kb), HITI (>5 kb), BE (~6 kb), PE
(~7 kb), and CAST (>6 kb). Multiple groups have used dual AAV
systems to circumvent this limitation. There are two types of dual
AAV systems: in one system the first AAV carries the Cas nuclease,
while the second AAV carries the HDR donor or HITI donor
template respectively.69,72,281–286 In the second type of dual AAV
delivery system large single gene editing components, such as BEs
and PEs, are split between two AAV vectors, and each half is fused
to a trans-splicing intein.109,216,240,242,287–293 Upon co-infection
with these split AAVs, the large cargo protein is reassembled
through a process of trans protein splicing. While this approach
holds potential, the requirement for successful production and
delivery of two different AAVs adds complexity and requires fine-
tuning to ensure effective delivery of genome-editing reagents in
living organisms.7

Delivery via RNA
RNA-based delivery of genome-editing components has several
promising features, including smaller molecular structures, rapid
onset, and mitigation of off-target effects that are caused by
persistent expression of Cas proteins.294,295 The delivery of
genome editors in the form of mRNA is currently a widely
pursued strategy. Delivering of mRNA encoding the genome-
editing reagents can be achieved via various approaches, such as

microinjection or electroporation, and by using non-viral vectors
such as lipid nanoparticles (LNP) and newly developed virus like
particles (VLPs) (Fig. 4). Microinjection or electroporation of
genome editor RNAs can effectively facilitate precise genome-
editing in a variety of settings, including cultured cell
lines,248,250,296 primary human T cells,297 mouse embryos,274

mouse zygotes,298 and human stem cells,299,300 and often exhibits
higher efficiency than plasmid transfection. Nonetheless, it’s worth
noting that electroporation, while effective for gene editing, has
been associated with negative impacts on cell viability, as the
stress imposed on cells during the process can lead to alterations
in gene expression profiles, potentially diminishing their prolif-
erative capacity and modifying cellular functions.301 LNP technol-
ogy stands as an effective method for delivering genome-editing
RNAs, offering key benefits such as biodegradability, excellent
biocompatibility, structural flexibility, low toxicity and immuno-
genicity, and high delivery efficiency and robust RNA protection
against degradation.302–307 Multiple groups have used LNPs to
deliver genome-editing RNAs, such as Cas-mediated HDR compo-
nents and BEs for both in vitro and in vivo applications.180,308–310

Finally, VLPs, homologs of the retroviral capsid protein which are
capable of binding and trafficking RNA, are an emerging approach
with potential for enabling precise and effective intracellular
delivery of cargo mRNAs in mammalian cells,311–313 but have not
yet been utilized for genome-editing.

Delivery via RNPs
RNPs-based delivery is a simple method that offers precise
control over nuclease dosage without signal amplification.314

RNPs delivery streamlines the genome-editing process by
bypassing the need for transcription and translation processes.
As a result, RNPs delivery initiates genome-editing almost
immediately, typically within about 3 h, and undergoes rapid
degradation, usually occurring within approximately 24 h. In
contrast, plasmid delivery has a longer onset time, usually taking
more than 8 h to commence genome-editing, and its effects
persist for several days.315 Moreover, RNP transfection avoids
DNA integration, and minimizes the risk of off-target effects.315

Delivery of RNPs for precise genome-editing can be achieved
using direct microinjection or electroporation, LNPs, and VLPs
(Fig. 4). Microinjection or electroporation of RNPs containing
precise genome-editing components, including HDR, HITI, BEs,
and PEs, have demonstrated efficient editing results in diverse
cell types, including cultured cell lines,248 human stem
cells,178,316 primary human T cell,182,235 human embryos,317

fibroblasts,315 and iPSCs.315 Utilizing LNPs to deliver RNPs has
successfully facilitated precise genome-editing via HDR and BE,
both in vitro and in vivo.169,276,318,319 VLPs, comprising viral
proteins capable of infecting cells but devoid of viral genetic
material, serve as effective carriers for RNP cargoes. They
harness the efficiency and tissue-targeting benefits of viral
delivery while mitigating the risks, such as viral genome
integration and the extended presence of the editing agent.320

Several groups have successfully achieved precise genome-
editing by using VLPs to deliver editing components such as
Cas9, donor templates, BEs, and PEs in vitro or in vivo.321–325

Although successful delivery of RNPs can improve gene editing,
current RNPs delivery strategies are inefficiency compared to
DNA and mRNA delivery.

APPLICATIONS OF PRECISE GENOME-EDITING
Labeling endogenous genes
The spatial and temporal specificity of gene expression governs
the structure and function of higher organisms. Each organ-
specific cell type has a unique gene expression profile. Disruption
of this expression profile will cause abnormal structure and
function of organs, which manifests as disease. Similarly, the

Fig. 4 Delivery strategies for precise genome-editing reagents.
Precise genome-editing components encompass a variety of forms,
including DNA, RNA, and protein complexes such as ribonucleo-
proteins (RNPs). DNA is commonly delivered through microinjection
or electroporation of plasmids, as well as viral vectors such as
lentivirus, adeno-associated virus (AAV), and adenovirus (AdV). RNA
can be introduced through microinjection or electroporation of
RNPs, or via carriers like lipid nanoparticles (LNPs) and virus-like
particles (VLPs). Proteins, specifically RNPs, are typically delivered
through microinjection or electroporation, or using carriers like LNPs
and VLPs. This figure was produced using BioRender.com
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interior of eukaryotic cells is segregated by membranes into
different organelles. Their structures and functions are highly
specialized, and different proteins are precisely localized to ensure
the normal structure and function of the organelle. Therefore,
changes in cellular functions are often accompanied or caused by
changes in subcellular localization of proteins.326 As a result,
precisely mapping the subcellular localization of proteins is critical
to understanding their roles in cellular processes.
Conventionally, approaches including immunostaining and

overexpression of proteins fused with epitope tags or fluorescent
proteins have been widely used to study protein subcellular
localization. However, these methods have significant limitations.
Firstly, immunostaining commonly encounters challenges due to
the absence of specific antibodies against the target protein.
Moreover, immunostaining often can’t distinguish between WT
and mutant proteins, particularly if the mutant protein has only a
small point mutation or indel. However, even small mutations can
change protein subcellular localization.327,328 Overexpression of
tagged proteins has similar limitations, one being that the cell’s
protein targeting mechanisms can be overwhelmed by high levels
of exogenous protein, resulting in a subcellular localization profile
that dramatically differs from that of the endogenous pro-
tein.329,330 For example, fluorophore tags at high intracellular
concentrations can cause expressed proteins to assemble into a
complex, which may result in ectopic cellular localization.331 Thus,
overexpressed fusion proteins often show diffuse localizations,
while natively expressed proteins display more nuanced staining
patterns.331

To address these problems, precise gene editing can be
employed to insert epitope tags or fluorescent proteins at
endogenous loci both in vivo within somatic tissues and in vitro.
Early versions of this approach were based on natural HR and
were used to generate knock-in mice featuring proteins fused to
epitope tags or fluorescent proteins.332 However, generating
mice by natural HR is costly and time-consuming. HDR, which
employs systems such as CRISPR/Cas9, can efficiently insert
epitope tags or fluorescent proteins, to label endogenous genes
in vitro and in vivo.72,160,177,333,334 For instance, our team
performed CRISPR/Cas9-mediated HDR through systemic injec-
tion of an AAV9 vector carrying donor template to Cas9-
expressing mice. We successfully integrated the red fluorescent
protein mScarlet into the endogenous TTN and PLN loci, creating
fusion proteins which allowed for visualization of their localiza-
tion.72 Additionally, HITI and PEs have also been employed to
tag endogenous genes.27,69,203,248,335 For example, Belmonte
et al.69 utilized the HITI approach to integrate sequence coding
for fluorescent proteins into endogenous genes, both in
cultured cells and, significantly, in living organisms. Similarly,
Liu et al.248 employed PEs to introduce epitope tags into native
genomic sites, achieving insertion rates of up to 70% in cell
culture.
In addition to labeling normal proteins, precise genome-editing

can also be employed to both create and determine the
localization of mutant proteins, which can give important clues
as to the mechanisms by which mutant proteins cause disease.
However, this approach is limited by the need to create both the
mutation and the epitope tag insertion at the same time with the
same donor DNA, thus necessitating that the mutation be located
in close proximity to the N or C-terminus. In addition to mutations
close to the native termini, frameshifting mutations that result in a
nearby premature stop codon can also be created and tagged in
this manner. One important caveat of this approach is that some
loss of function may occur from targeted alleles that undergo
NHEJ instead of HDR or HITI. PEs may avoid this issue but are
limited by modest insertion lengths. While NHEJ alleles will not be
tagged, disruption of their function by indels may influence the
localization of a tagged allele. These confounding effects can
typically be mitigated by designing sgRNAs to cut in a nearby

intron or untranslated region (UTR) rather than targeting the
coding sequence.

Screening genetic variants
Creating genetic perturbations and evaluating their outcomes
through functional characterization or enrichment stands as a
commonly employed technique for unraveling biological path-
ways and mechanisms. CRISPR/Cas screening-based genetic
perturbations have revolutionized the field of functional geno-
mics, offering researchers unprecedented control and precision in
manipulating the genome for a deeper understanding of gene
function and regulation. To date, most CRISPR screens have relied
on imprecise indel formation to create loss-of-function perturba-
tions, however, precise genome-editing can be employed to
create specific variants, which can then be functionally screened.
Multiple groups have successfully achieved functional screens

through precise genome-editing tools, such as HDR,177,336–338

BEs,339–344 and PEs.345,346 For example, Shendure et al.337 utilized
CRISPR/Cas9-mediated HDR to precisely edit exon 18 of BRCA1.
They employed a diverse library of donor templates to replace a
6 bp genomic region with every conceivable hexamers or the
entire exon with all potential single nucleotide variants. This
approach allowed them to assess substantial impacts on transcript
abundance, which could be attributed to nonsense-mediated
decay and the influence of exotic splicing elements. In another
pioneering study, Doench et al.339 used BEs in pooled screens to
assay variants at endogenous loci in mammalian cells. Initially,
they evaluated the effectiveness of BEs in positive and negative
selection screens, accurately identifying established loss-of-
function mutations in BRCA1 and BRCA2. Next, they screened
BH3 mimetics and PARP inhibitors, pinpointing specific point
mutations associated with drug sensitivity or resistance. Finally,
they constructed a library of sgRNAs designed to induce 52,034
ClinVar variants in 3584 genes. Through screens conducted under
cellular stress conditions, they identified loss-of-function variants
in multiple DNA damage repair genes. In a final example, Cohn
et al.345 developed a high-throughput variant classification
method by adapting PEs and combining it with a strategy that
allows for haploidization of any locus, thereby streamlining the
interpretation of genetic variants. They applied this strategy to
evaluate the functionality of genetic variants with unknown
significance within NPC1, a gene associated with the lysosomal
storage disorder Niemann–Pick disease type C1.
Despite these successes, significant limitations remain. Cas

nuclease-mediated HDR exhibits restricted efficiency and reduced
product purity across various cell types. BEs are constrained to
C•G-to-T•A and A•T-to-G•C transition edits, and the outcomes of
PEs are determined through sequencing the edited locus, limiting
mutagenesis to a specific gene. Nevertheless, we anticipate that
continued progress in integrating precise genome-editing systems
into genetic screening workflows will streamline the discovery and
characterization of novel gene variants and accelerate dissection
of complex genetic pathways.

Molecular recording
Capturing and preserving a record of cellular events through
modifications to genomic DNA sequences offers a means of non-
invasive surveillance, which is useful for studying intricate
biological systems. In molecular recording, specific genetic
elements are engineered to respond to environmental signals or
cellular events, leading to changes in the DNA sequence that can
be deciphered through sequencing. In contrast to Cas9-mediated
NHEJ, precise genome-editing has the capability to produce
specific base sequences which encode digital information. This
unique feature makes it feasible to effectively record the type,
duration, and sequence of cellular signals over time.
Several teams have successfully recorded molecular events

using BEs347–350 and PEs.351 For example, Lu et al.350 utilized BEs to

Precise genome-editing in human diseases: mechanisms, strategies and. . .
Zheng et al.

10

Signal Transduction and Targeted Therapy            (2024) 9:47 



create a platform for manipulating and assessing cellular
processes, known as DOMINO (DNA-based Ordered Memory and
Iteration Network Operator). This platform allows for the direct
connection of stimulus-dependent base editing to a phenotypic
readout. In one configuration of the system, two guide RNAs
expressed from conditional promoters are required to activate a
third guide RNA, which results in expression of a genomically
integrated GFP gene. In this way, the platform allows for
construction of programmable AND/OR logic circuits controlling
the expression of genetically encodable readouts. In another
example of molecular recording, Shendure et al.351 created the
DNA typewriter system, a sequential approach for writing
information into a tandem array of truncated PE target sites.
These target sites are strategically designed to allow editing of
only one site at a time. To transcribe activity directional manner,
short PE-mediated insertions encode the cellular signal being
recorded and finalize the protospacer sequence of the adjacent
target site. This conversion of the adjacent site into a viable prime
editing target facilitates the next recording event. The system was
utilized for encoding text messages and reconstructing cellular
lineages, illustrating the potential of prime editing molecular
recorders in applications for biotechnology research.
While these results are promising, the field remains at a nascent

stage. One key concern is that these tools may introduce
unintended mutations or alterations in the genome, leading to
unpredictable outcomes, such as compromised reliability and
accuracy of the recorded information.351 Balancing the benefits of
molecular recording with the need for minimizing unintended
consequences and improving the sophistication and capacity of
recording systems will remain active areas of development.

Generating disease models
Mutations that alter amino acids or nucleotides are often found in
the genomes of patients with genetic diseases and are widely
used in the simulation of human diseases in various model
systems. Researchers utilize two key tools to mimic human
disease: transgenic animals involve the random insertion of a
foreign gene into an animal’s genetic material, and gene edited
animals, where specific genes are either disabled or modified.352

In contrast to transgenic disease models, where the incorporation
of foreign genes and their regulatory elements can pose a risk of
disrupting host genes, potentially leading to cancer or other
dysfunction,353–358 the precise alterations created in gene-edited
animals are less likely to have unintended consequences. Early
animal models were generated by introducing edited embryonic
stem (ES) cells into blastocysts, a process often relying on
inefficient natural HR.359,360 By using higher efficiency methods
such as HDR, BEs, and PEs, this process has been dramatically
accelerated.
Multiple research teams have successfully employed HDR, EBs,

and PEs strategies to efficiently produce various disease models,
including edited mice,234,238,361–364 rats,363 pigs,365 zebrafish,221,235

and Drosophila.366 For example, when Gruber et al.361 utilized
CRISPR/Cas9-mediated HDR to generate MplS504N mutant mice, 2
of 16 founder mice harbored the mutation and displayed the
anticipated myeloproliferative neoplasms (MPNs) phenotype.
Similarly, ABE9 was employed by Li et al.363 to achieve specific
A-to-G conversions in mouse and rat embryos, efficiently creating
disease models, with an impressive efficiency rate of up to 62.41%.
Finally, Kim et al.234 harnessed enhanced prime editing to produce
mutant mice, achieving editing frequencies as high as 47%.

Gene therapy
Traditional treatments for genetic disease perform poorly,
providing only limited relief of clinical symptoms in many cases.
Hence, effective, and safe gene therapy methods are urgently
needed to achieve a radical cure for genetic diseases. Thus far two
methods of gene therapy have been widely used: first, viral

delivery of an exogenous wildtype gene to replace the defective
endogenous gene367–372 and second, use of RNA interference
(RNAi)373–376 to degrade target mRNA and suppress the expres-
sion of defective genes. These methods, however, have limita-
tions. For example, delivery of therapeutic genes by viral vectors
might introduce new mutations during the process of virus entry
into the body, resulting in dysregulation of endogenous gene
expression,377 and non-integrating viral vectors can be lost over
time,378,379 while RNAi may suffer from modest inhibitory effects
and poor specificity.380,381

Given their ability to create specific, site-directed DNA inser-
tions, deletions, and substitutions, precise genome editors have
garnered significant interest in the biomedical research commu-
nity. This interest stems from the potential to correct genetic
mutations associated with human illnesses. Precise genome-
editing-mediated gene therapy can be performed ex vivo or
in vivo (Fig. 5). In ex vivo gene therapy, the target cells are
removed from the patient and cultured in vitro, where the mutant
gene can be corrected via genome-editing. Subsequently, these
edited cells are expanded to produce enough cells expressing the
corrected gene, and finally returned to the patient (Fig. 5a). For
in vivo gene therapy, the genome-editing elements necessary for
genome-editing are directly introduced to the body via RNPs, LNP,
or viral vectors, to make systemic or target somatic cell genome
edits (Fig. 5b).1 Currently, various precise genome-editing
strategies have been extensively employed in gene therapy for
a variety of tumors and genetic disease, many of which have
entered clinical trials (Tables 2 and 3).

Ex vivo gene therapy. Ex vivo gene therapy has multiple
advantages. First, this type of gene therapy allows the target cells
to be easily manipulated via various elements (such as RNPs,
mRNA, DNA, and proteins) through various delivery systems,
including viral vectors, electroporation, lipid nanoparticles, cell-
penetrating peptides, and carbon nanowires.382–388 This broad
selection of delivery options often translates to high gene editing
efficiencies.382,389 Second, ex vivo therapy is well-targeted, since
only the targeted cells are present at the time of editing.390

Moreover, ex vivo therapy can trigger a smaller immune response
in comparison to in vivo therapy since there are no gene-editing
elements directly introduced into the body.390,391 Third, non-
specific edits that result in harmful phenotypes can be screened
out prior to the cells being returned to the patient, thus resulting
in a much more attractive safety profile for this approach.
Precise genome editors have been successfully applied for

ex vivo gene therapy to fix mutations associated with various
genetic diseases of the blood system. Kohn et al.392, Tisdale
et al.393, Porteus et al.394 and Liu et al.386,395 employed HDR, BEs,
and PEs to correct the HBB gene in hematopoietic stem cells
(HSCs) as a treatment for Sickle cell disease (SCD). These
approaches yielded therapeutic-level gene correction with effi-
ciency ranging from 30% to 80%. Subsequent transplantation of
these modified human HSCs into immunodeficient mice resulted
in a significant reduction in hypoxia-induced sickling of bone
marrow reticulocytes, suggesting enduring and effective genome-
editing. Miccio et al.396 Bauer et al.397 and Bauer et al.398 utilized
ABE8e to specifically target the prevalent HBB mutation IVS1-110
(G > A), BCL11A enhancer, or both the BCL11A enhancer and HBG
promoters in hematopoietic stem and progenitor cells (HSPCs)
from β-thalassemia patients, achieving gene editing efficiencies of
up to 80%. Long-lasting therapeutic modifications were achieved
in self-renewing repopulating HSCs, as evidenced by assessments
in both primary and secondary recipients. Furthermore, the
durable therapeutic editing extended to self-renewing repopulat-
ing human HSCs, as evidenced in primary and secondary recipient
assays. In another case of successful therapeutic gene editing,
Malech et al.399,400 achieved insertion of the wild-type CYBB gene
into the AAVS1 locus or corrected the mutant CYBB gene in CD34+
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HSPCs obtained from patients with the X-linked chronic granulo-
matous disease (X-CGD) using HDR strategies. This HDR-mediated
CYBB insertion or correction resulted in efficient restoration of
CYBB expression and increased NADPH oxidase activity. In a final
example, transplant of gene-repaired X-CGD HSPCs into C-CGD
model mice led to successful engraftment and the generation of
functional mature human myeloid and lymphoid cells. In addition,
precise genome-editing, including HDR and HITI, can also be
applied for chimeric antigen receptor (CAR)-T cell therapy.
Previously, CARs were typically delivered to T cells via γ-retroviral

transduction, or other randomly integrating vectors.401–403 How-
ever, the use of these vectors comes with potential drawbacks,
including clonal expansion, variegated transgene expression,
oncogenic transformation, and transcriptional silencing.404–406 In
contrast, HDR and HITI enable efficient sequence-specific insertion
of CARs, which avoids the above limitations. This approach was
demonstrated by Sadelain et al.407 Bao et al.408 Hunag et al.409 and
Feldman et al.202 who achieved highly efficient and precise gene
targeting of CAR-T cells using HDR or HITI, resulting in enhanced T
cell potency both in vitro and in vivo.

Table 2. Clinical trials of precise genome-editing therapy

Disease type Target Strategies Phase Trial number

Mucopolysaccharidosis I Albumin ZFN-HDR I/II NCT02702115

Mucopolysaccharidosis II Albumin ZFN-HDR I/II NCT03041324

Relapsed Or Refractory CD19+ Leukemia and Lymphoma TCR Cas9-HDR I NCT05037669

Relapse/Refractory B-cell Lymphoma AAVS1 Cas9-HDR I NCT04213469

Locally advanced or metastatic solid tumors TRAC Cas9-HDR I NCT03970382

Relapsed or Refractory B-Cell Malignancies TRAC Cas9-HDR I NCT04035434

β-thalassemia HBB Cas9-HDR I NCT03728322

Sickle cell disease HBB Cas9-HDR I/II NCT04774536

Sickle cell disease HBB Cas9-HDR I/II NCT04819841

β-thalassemia BCL11A BE I NCT06065189

β-thalassemia BCL11A BE I NCT06024876

Sickle cell disease, β-thalassemia HGB1 and HGB2 BE I/II NCT05456880

T cell malignancies CAR7 BE I NCT05397184

Acute myeloid leukemia (AML) CAR33 BE I NCT05942599

Acute lymphoblastic leukemia/CD7+ acute myeloid leukemia CD7, TRAC, PDCD1, and CD52 BE I/II NCT05885464

Familial hypercholesterolemia PCSK9 BE I NCT05398029

ZFN zinc-finger nuclease, HDR homology-directed repair, BE base editor

Fig. 5 Ex vivo and in vivo precise genome-editing therapy. a In ex vivo editing therapy, cells are harvested from the patient, modified, and
subsequently reintroduced. b For in vivo systemic therapy (on the left), universal delivery agents are employed, capable of targeting a broad
range of tissue types. For targeted in vivo therapy (on the right), targeted intervention can be accomplished by directly injecting viral vectors
into the affected tissue or through systemic administration of vectors with an innate affinity for particular tissues, such as the heart, liver, or
skeletal muscle. This figure was produced using BioRender.com
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Although the advantages of ex vivo gene therapy are notable,
limitations also should be considered. First, the target cells of
ex vivo therapy must be able to survive outside the body for a
long period of time, which is problematic for many fully
differentiated cell types. As a consequence, ex vivo gene therapy
is primarily constrained to tissues containing adult stem cells, such
as the hematopoietic systems.1 A second major limitation of
ex vivo therapy is that when cells cultured in vitro are transplanted
back into the patient, the transplantation efficiency is often poor,
which reduces the effectiveness of the treatment.1

In vivo gene therapy. Compared with ex vivo gene therapy,
in vivo gene therapies have several advantages. First, in vivo
therapies may be more suitable for treating cell types that cannot
be readily cultured and expanded ex vivo. Second, in vivo
therapies can be more cost effective since slow and labor-
intensive culture processes are avoided. Third, in vivo therapies
can simultaneously target a variety of tissue types, making it
possible to treat diseases that affect multiple organ systems.
In vivo gene therapies based on precise genome-editing have

been employed to directly correct disease-causing mutations or to

Table 3. Precise genome-editing-mediated gene therapy

Environment Disease type Target Strategies Editing efficiency Delivery References

Ex vivo Sickle cell disease HBB ZFN-HDR ~18% T > A correction Lentivirus and
electroporation

392

Cas9-HDR 20–30% T > A correction AAV and
electroporation

393,394

ABE 40%–80% A > G correction Electroporation 395

PE ~27% T > A correction Electroporation 386

β-thalassemia IVS1 ABE ~80% A > G correction Electroporation 396

BCL11A,
HBB

CBE ~90% C > T correction of BCL11A,
~18.2 C > T correction of HBB

Electroporation 397

BCL11A,
HBG

ABE ~94.3% A > G correction of BCL11A,
~85.5% A > G correction of HBG

Electroporation 398

X-linked chronic granulomatous
disease

CYBB ZFN-HDR ~7.1% CYBB cDNA insertion AAV and
electroporation

400

Cas9-HDR ~21% T > C correction Electroporation 399

Lymphoblastic leukaemia TRAC Cas9-HDR ~46.5% CAR insertion of T cells AAV6 and
electroporation

407

Glioblastoma AAVS1 Cas9-HDR >90% CAR insertion of cells Nucleofection 408

In vivo Duchenne muscular dystrophy DMD HITI 4% ~ 7% Exon 52 insertion AAV9 284

ABE ~51.0% A > G correction AAV9 287

Spinal muscular atrophy SMN2 ABE ~37% T > C correction AAV9 410

Hypertrophic cardiomyopathy Myh6 ABE ~32.3% A > G correction AAV9 412

ABE ~32.3% A > G correction of DNA AAV9 412

Ornithine transcarbamylase
deficiency

OTC Cas9-HDR ~10% A > G correction AAV8 282

Cas9-HDR ~6% OTC cDNA insertion AAV8 413

Familial Hypercholesterolemia LDLR Cas9-HDR ~6.7% T > G correction AAV8 283

Fabry disease GLA ZFNs-HDR ~1.7% human GLA cDNA insertion AAV8 414

Adrenoleukodystrophy ABCD1 HITI Human ABCD1 insertion AAV9 286

phenylketonuria PAH CBE 21.9–26.9% C > T correction AAV8 109

PE 2.0%–6.9% C > T correction AdV 240

Type I tyrosinemia FAH Cas9-HDR ~9% A > G correction Plasmid 415

ABE ~9.5% A > G correction Plasmid 310

PE ~11.5% A > G correction Plasmid 417

PE ~0.76% 1.3 kb deletion and 19 bp
insertion of hepatocytes

Plasmid 416

Hutchinson-Gilford progeria
syndrome

LMNA ABE 20%–60% T > C correction AAV9 419

Inherited retinal disease RPE65 ABE ~16% T > C correction Lentivirus 421

ABE ~22% T > C correction AAV2 422

PE ~6.8% T > C correction AAV8 417

PE ~11.4 T > C correction AAV8 420

Atherosclerotic cardiovascular
disease

PCSK9 ABE ~50% A > G conversion AAV8 425

ABE ~60% A > G conversion LNP 426,427

Ischemia/reperfusion injury CaMKIIδ ABE 7.6% A > G conversion AAV9 430

ZFN zinc-finger nuclease, HDR homology-directed repair, HITI homology-independent target integration, ABE adenine base editor, CBE cytosine base editor, PE
prime editor, AAV adeno-associated virus, AdV adenovirus, LNP lipid nanoparticles

Precise genome-editing in human diseases: mechanisms, strategies and. . .
Zheng et al.

13

Signal Transduction and Targeted Therapy            (2024) 9:47 



precisely insert a therapeutic transgene at an endogenous locus
linked to a variety of genetic disorders in humans associated with
Duchenne Muscular Dystrophy (DMD),284,287 Spinal Muscular
Atrophy (SMA),410 Hypertrophic Cardiomyopathy (HCM),411,412

Ornithine Transcarbamylase Deficiency (OTCD),282,413 Familial
Hypercholesterolemia (FH),283 Fabry disease,414 Adrenoleukody-
strophy (ALD),286 Phenylketonuria,109,240 Type I tyrosine-
mia,310,415–418 Hutchinson-Gilford Progeria Syndrome (HGPS),419

and inherited retinal disease.417,420–422 For instance, in a mouse
model of OTCD, Wilson et al.282,414 corrected a mutant OTC gene
or inserted a codon-optimized human OTC (hOTCco) transgene at
the mutant OTC locus via delivery of CRISPR/Cas9-mediated HDR
components with a dual AAV system. These two approaches
resulted in a reversal of the mutation in 6.7% to 20.1% of
hepatocytes and improved the survival of mice exposed to a high-
protein diet, which typically worsens the disease. Gersbach
et al.284 employed an AAV-based HITI method to correct the
expression of full-length dystrophin in a DMD mouse model. This
led to the successful correction of full-length dystrophin expres-
sion in both skeletal and cardiac muscle, effectively alleviating the
disease symptoms. Schwank et al.109 corrected the PAH point
mutation linked to phenylketonuria in mice using an intein-split
base editing approach delivered by dual AAVs. This approach led
to mRNA PAH correction rates reaching as high as 63%, restoration
of PAH enzyme activity, and the reversal of the light fur phenotype
in PAHenu2 mice. Sontheimer et al.418 addressed a FAH transversion
mutation in a mouse model of tyrosinemia type I through the
delivery of PEs via AAV and hydrodynamic tail-vein injection.
These interventions resulted in the recovery of weight in the mice,
with editing efficiencies in the liver reaching approximately 11.5%
from AAV delivery and 1.3% from hydrodynamic injection.
In addition to genetic diseases, in vivo precise genome-editing

also has been used in non-genetic disease, such as cardiovascular
disease. PCSK9 is predominantly found in the liver and functions
as an inhibitor of the LDL receptor.423 Inhibiting PCSK9 disrupts its
binding to the LDL receptor, leading to a reduction in blood LDL
levels, offering a potential treatment avenue for atherosclerotic
cardiovascular disease.424 Liu et al.425 Kathiresan et al.426 and
Schwank et al.427 used base editing to knockdown PCSK9 in mice
and nonhuman primate models, resulting in substantial reduc-
tions of PCSK9 and LDL cholesterol levels, with approximately 90%
and 60% reductions observed in mice and nonhuman primates,
respectively. A second cardiovascular application relates to
CaMKIIδ, which plays a pivotal role in regulating cardiac signaling
and function.428 Nevertheless, prolonged CaMKIIδ overactivity is
associated with various cardiac diseases in both humans and mice,
such as hypertrophy, ischemia/reperfusion (IR) injury, arrhythmias,
and heart failure.429 Olson et al.430 employed BEs to eliminate the
oxidative activation sites of CaMKIIδ. Editing CaMKIIδ in mice
during an episode of IR rescued cardiac function, even after
substantial damage.
Although advances in precise genome-editing in vivo gene

therapy provide examples of various therapeutic strategies, the
low efficiency and the immune response caused by viral vectors
should be considered. Another challenge is that the sustained
expression of in vivo genome-editing reagents, such as Cas9, may
increase off-target effects and genotoxicity. Thus, spatiotemporal
control of CRISPR/Cas9 expression is particularly important.431

DISCUSSION AND PERSPECTIVES ON FUTURE DIRECTIONS
Precise genome-editing can be achieved through a variety of
distinct tools that introduce precise changes to the DNA sequence
of cells or organisms. The capability to precisely manipulate the
genome with precision has numerous direct applications in basic
science research, disease modeling, and medicine. However,
despite significant recent progress, low efficiency remains a major
barrier to further adoption. BEs are less affected by this issue,

demonstrating high in vivo editing efficiency, but unfortunately,
BEs are limited to C•G-to-T•A and A•T-to-G•C transition edits. In
addition to BEs, recent advances have significantly improved the
efficiency of other precise genome-editing approaches, such as
HDR and PEs, both in vitro and in vivo. While early results are
promising, the efficiency of these gene editing approaches needs
to be improved to enable broad development of effective gene
therapies. A second major challenge of precise genome-editing is
off-target mutations, particularly in systems based on CRISPR/
Cas9, such as HDR, HITI, BEs, and PEs. Newly developed Cas
variants with lower rates of off-target editing have been reported,
such as a new subtype of Cas12f, enAsCas12f, which showed
lower off-target effects than Cas9.133 However, the efficiency of
these new Cas variants in targeting DNA needs additional
improvement. Furthermore, delivery of precise genome-editing
reagents to target cells or tissues is a crucial step for successful
genome-editing. The delivery efficiency depends on the cell or
tissue type, the delivery method used, and the stability of the
reagents in vivo. For example, delivery of RNPs can be more
efficient than delivery of plasmids or viral vectors.169 Unfortu-
nately, delivery of components to many tissues in vivo remains
challenging, and will require considerable additional vector
engineering efforts.
The ongoing refinement of existing editing tools will focus on

improving efficiency and specificity, while expanding targeting
capabilities and optimizing delivery systems will also drive the
field forward. Ultimately, these improvements will enable more
sophisticated applications, including the development of novel
therapies.
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