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Intratumoural microbiota: a new frontier in cancer
development and therapy
Yaqi Cao1,2,3, Hui Xia1,2,3, Xueyun Tan1,2,3, Chunwei Shi4, Yanling Ma1, Daquan Meng1, Mengmeng Zhou1, Zhilei Lv1,
Sufei Wang1,2,3✉ and Yang Jin 1,2,3✉

Human microorganisms, including bacteria, fungi, and viruses, play key roles in several physiological and pathological processes.
Some studies discovered that tumour tissues once considered sterile actually host a variety of microorganisms, which have been
confirmed to be closely related to oncogenesis. The concept of intratumoural microbiota was subsequently proposed. Microbiota
could colonise tumour tissues through mucosal destruction, adjacent tissue migration, and hematogenic invasion and affect the
biological behaviour of tumours as an important part of the tumour microenvironment. Mechanistic studies have demonstrated
that intratumoural microbiota potentially promote the initiation and progression of tumours by inducing genomic instability and
mutations, affecting epigenetic modifications, promoting inflammation response, avoiding immune destruction, regulating
metabolism, and activating invasion and metastasis. Since more comprehensive and profound insights about intratumoral
microbiota are continuously emerging, new methods for the early diagnosis and prognostic assessment of cancer patients have
been under examination. In addition, interventions based on intratumoural microbiota show great potential to open a new chapter
in antitumour therapy, especially immunotherapy, although there are some inevitable challenges. Here, we aim to provide an
extensive review of the concept, development history, potential sources, heterogeneity, and carcinogenic mechanisms of
intratumoural microorganisms, explore the potential role of microorganisms in tumour prognosis, and discuss current antitumour
treatment regimens that target intratumoural microorganisms and the research prospects and limitations in this field.
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INTRODUCTION
Approximately 38 trillion microorganisms are found in the human
microbiota, including bacteria, fungi, and viruses, and their
number roughly equals that of human cells.1,2 These microorgan-
isms have previously been found in open cavities and organs such
as the gut, skin, mouth, and vagina.3 However, with the
breakthroughs of technology, the tissues and organs once
considered sterile, including the lung, breast, liver, pancreas,
prostate, and kidney, have also demonstrated to harbour low-
biomass microbial communities, which leads to further research in
related fields.4,5 In particular, the concept of intratumoural
microbiota present in tumour tissues is proposed,6 and such
microorganisms have been found in at least 33 major cancer
types.7–9 The intratumoural microbiota is an integral part of the
tumour microenvironment (TME), mainly in cancer and immune
cells.7,10–12 Intratumoural microorganisms can significantly change
the biology of different cell compartments, affecting the
occurrence, development and metastasis of tumours and anti-
tumour immunity.7,13

So far, many important discoveries about intratumoural micro-
biota have been reported (Fig. 1). As early as in the

mid-19th century, microbiologists discovered the presence of a
variety of microorganisms in tumours. In 1885, Doyen isolated a
bacterium, Micrococcus neoformans, from different tumours and
confirmed its tumorigenicity in animals.14 However, due to the
limited sterile conditions available at that time, this findings were
questioned. In the early 20th century, Rouse discovered that avian
sarcoma can be transmitted in animals through filtered cell-free
tumour extracts which suggested that causative agent in the tumour
extracts, roussarcoma virus, could induce cancer, thereby establish-
ing viruses as the causal agents of cancer for the first time.15 In 1964,
Epstein and Barr discovered the first human virus particle in Burkitt’s
lymphoma—Epstein-Barr virus (EBV).16 Since then, evidence that
viral infections cause cancer in humans began to emerge. In 1983,
Marshall and Warren cultured H. pylori and further established its role
in gastric cancer aetiology.17,18 In 2020, the most rigorous and
comprehensive survey of bacteria in seven human tumour samples
by Nejman et al. revealed that different cancer types involve
different bacterial species.7 Subsequently, Narunsky-Haziza and
Dohlman separately characterised fungi in human cancer specimens
from multiple tumour types to further explore the role of
intratumoural fungi in cancer diagnosis and prognosis.11,12
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Meanwhile, cancer treatment methods based on microbial
intervention have also been developed. In 1866, Busch purpose-
fully infected cancer patients with erysipelas and found that the
tumours of the patients subsided.19 In 1893, Coley invented an
anticancer drug microbial vaccine—Coley toxin— which has been
observed to alleviate advanced cancers in some cases.20 As similar
approaches became more widely researched, numerous antic-
ancer vaccines emerged in the following decades.21 In addition,
since Bloch demonstrated the interaction of bacteriophages with
malignant cells and their ability to inhibit tumour growth in
1940,22 scientists have also started paying attention to the
potential of these dynamic viral entities to treat cancer. In 1981,
the hepatitis B virus (HBV) vaccine was approved as the first
anticancer vaccine, saving millions of potential victims from
developing hepatocellular carcinoma (HCC).21 By now, far beyond
natural microbes, scientists have shifted their sights to modifying
bacteria and viruses to fight cancer.
Based on the need for a comprehensive and in-depth under-

standing of the current research progress in intratumoural
microbiota, this review summarises the characteristics and
emerging functions of intratumoural microorganisms in various
tumours as well as their effects on cancer development and
antitumour immunity. We also discuss prospective applications of
intratumoural microbiota in cancer prognosis and therapy. These
findings complement the results of previous studies on intratu-
moural microorganisms and may provide potential theoretical
support for future research on intratumoural microbiota-targeted
cancer treatments.

CHARACTERISTICS OF INTRATUMOURAL MICROBIOTA
Colonisation of the tumour by microorganisms
There are three possible origins of intratumoural microorganisms
(Fig. 2). The first is mucosal barrier invasion, in which microorganisms
colonising the mucosa may invade the tumour through the
damaged mucosa.23,24 Tjalsma et al. proposed a bacterial
driver–passenger model in which “driver” bacteria such as the genus
Bacteroides and the family Enterobacteriaceae colonise the intestine
and drive tumorigenesis. With microenvironment change, driving
bacteria are gradually replaced by “passenger” bacteria, including
opportunistic pathogens and commensal or probiotic bacteria, which
further affect tumour progression.25 Many intratumoural microbiota
have been found to colonise mucosal organs, such as the

oesophagus, lung, colon, and cervix. Moreover, the intratumoural
microbiota in non-mucosal organs, such as the pancreas, has also
been found to translocate from the intestinal tract with impaired
mucosal barriers and into the pancreas through the pancreatic duct,
thereby reshaping the TME and increasing susceptibility to microbial
translocation.26 The second is adjacent tissue invasion, where the
microbiome communities between the tumour and adjacent normal
tissue share many similarities.7,27,28 Moreover, many studies have
found that viral infections29 and specific bacterially mediated chronic
inflammation,30 such as Helicobacter pylori (H. pylori) and gastritis, can
eventually evolve into tumours. Nonetheless, the origin of micro-
organisms in normal tissues of most organs remains unclear, and
these microbes may also disseminate from the tumour site; therefore,
further research is required to confirm this hypothesis. Finally, the
third is hematogenic invasion, in which microorganisms from the oral
cavity, intestine, and other potential locations may be carried to the
tumour locations and colonise the tumour through destroyed blood
vessels.31 Abed et al. reported that intravenously injected Fusobacter-
ium nucleatum (F. nucleatum) interacts with the host polysaccharide
D-galactose-β(1–3)-N-acetyl-D-galactosamine (Gal-GalNAc) in a lectin
Fap2-dependent manner to localise to mouse tumour tissues,
indicating that fusobacteria reached colon adenocarcinomas via a
hematogenous pathway.32 A similar result was found in mouse
mammary tumours.33 However, intestinal localisation of these
tumours does not fully summarise the complex histological features
of human colorectal adenomas. Furthermore, specific microenviron-
ments in tumours may enhance microbial colonisation, such as
immunosuppressive, hypoxic, and metabolic nutrient-enriched
environments.34 However, these conjectures must be confirmed
through holistic metagenomic sequencing and genetic identification.

Diversity of intratumoural microbiota
The structure and abundance of the intratumoural microbial
population vary substantially across different types, subtypes, and
stages of cancer. Here, we have summarised the intratumoural
microbiota in a few cancers to understand their role in cancer
progression (Table 1).

Lung cancer. As the mucosa is in primary contact with the
external environment, the lungs are exposed to microbes and
environmental factors and harbour diverse microbes.35 In lung
cancer tissues, the prevalence of Modestobacter was higher than
that in adjacent normal tissues, while the prevalence of

Fig. 1 Milestone events of intratumoural microbiota. The key findings on intratumoural microbiota and the major achievements of
microbial-based anticancer therapy were reviewed retrospectively. Created with BioRender.com
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Propionibacterium and Enterobacteriaceae was lower.36 Dohlman et
al. found that abundant Blastomyces existed in lung tumours.11 In
addition, current smokers had higher intratumoural fungal
diversity and abundance of Aspergillus and Agaricomycetes than
never smokers.12 The intratumoural microbiota is also related to
the histological subtype and tumour stage of lung cancer.
Compared to lung adenocarcinoma, lung squamous cell carci-
noma microbiota is more diverse. The relative abundances of
Acidovorax, Klebsiella, and Anaerococcus in squamous cell carci-
noma were elevated, especially in patients with tumour protein
p53 (TP53) mutations, where Acidovorax was more abundant.37

In adenocarcinomas, Acinetobacter, Brevundimonas, and

Propionibacterium were more abundant.38 Furthermore, Apopa
et al. discovered that the phylum Cyanobacteria was more
enriched in adenocarcinoma.39 Additionally, it has been found
that the genera Veillonella and Megasphaera have a high area
under the curve for predicting lung cancer.40

A few studies have aimed to describe the intratumoural
micropopulation associated with lung cancer. Most of the samples
used in these studies were based on indirect specimens of
bronchoalveolar lavage fluid (BALF), sputum, and airway brushing
tissue, which could be problematic because the upper and lower
respiratory tracts have distinct microbial populations that might
result in cross-contamination.41 Therefore, surgical specimens

Fig. 2 The potential origins of intratumoural microbiota. a Mucosal barrier invasion. Microorganisms may invade the tumour through the
damaged mucosa. b Adjacent tissue invasion. the microbiome community between the tumour and adjacent normal tissue share many
similarities. c Hematogenic invasion. microorganisms from the oral cavity, intestine, and other potential locations may be carried to the
tumour locations and colonise the tumour through destroyed blood vessels. d Attraction of tumour specific microenvironment.
immunosuppressive, hypoxic, and metabolic nutrient-enriched environments in tumours may enhance microbial colonisation. Created with
BioRender.com
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Table 1. Characterization of the intratumoural microbiota in various cancers

Cancer types Microbiome compositions Quantitative
dynamics

Function

Lung cancer Genus Modestobacter36 Increase —

Genus Propionibacterium,
genus Enterobacteriaceae36

Dcrease —

Genus Blastomyces11 Increase —

Class Agaricomycetes,
genus Aspergillus12

Increase —

Genus Acidovorax37 Increase Related to tumours with high TP53
mutation;

Genus Klebsiella,
genus Anaerococcus37

Increase —

Genus Acinetobacter,
genus Brevundimonas,
genus Propionibacterium38

Increase —

Phylum Cyanobacteria39 Increase —

Genus Veillonella,
genus Megasphaera40

Increase As the diagnostic biomarker of tumour;

Family Coriobacteriaceae,
genus Pasteurella201

— Related to the number of CD8+ T cells
and M2 macrophages;

Species Nontypeable Haemophilus influenzae188 Increase Released IL-17C and recruited the
neutrophils;

Liver cancer Hepatitis B virus43,130,179,203 Increase Integrated viral genome into the host
chromosome;
induced m6A modification of RNA
Recruited Treg cells;

Hepatitis C virus43,204 Increase Recruited Treg cells;

Species Helicobacter pylori48–50 Increase —

Order Gammaproteobacteria53 Increase —

Family Streptococcaceae,
genus Lactococcus53

Increase As the hallmark groups of cirrhosis
hepatocellular carcinoma;

Family Enterobacteriaceae54 Increase —

Family Caulobacteraceae,
family Rickettsiaceae54

Decrease —

Species Paraburkholderia fungorum55 Decrease Related to antitumor activity;

Colorectal cancer Species Enterotoxigenic Bacteroides fragilis56,140,186 Increase Secreted carcinogenic toxins;
initiated pro-inflammatory signalling
cascade;

Genus Fusobacterium57–59,182 Increase Promoted the polarization of M2-like
macrophages;

Genus Lactococcus,
genus Bacteroides,
genus Prevotella,
genus Streptococcus59

Increase —

Genus Pseudomonas,
genus Escherichia-Shigella59

Decrease —

Species Fusobacterium
nucleatum60,141,166–168,174,190,199,210,211,242,248

Increase Related to advanced-stage tumour;
induced histone modification;
upregulated DNA methyltransferases;
inhibited autophagic process;
activated β-catenin signalling;
aggregated tumour-infiltrating myeloid
cells;
activated TIGIT and CEACAM1 receptors
expressed on immune cells;
induced EMT;
upregulated ICAM1 and promoted the
adhesion of cancer cells to endothelial
cells;

Genus Bifidobacterium,
genus Romboutsia62

Increase Related to left-sided colon cancers;

Genus Haemophilus,
genus Veillonella62

Increase Related to right-sided colon cancers;

Phylum Ascomycota
Class Malasseziomycetes65

Increase —

Class Saccharomycetes,
class Pneumocystidomycetes65

Dcrease —
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Table 1. continued

Cancer types Microbiome compositions Quantitative
dynamics

Function

Species Escherichia coli140,249 Increase Secreted carcinogenic toxins;
related to metastasis;

Species Enteropathogenic Escherichia coli144 Increase Disrupted mechanisms of DNA mismatch
repair;

Species Hungatella hathewayi168 — Upregulated DNA methyltransferases;

Genus Akkermansia194 — Increased IL-17 production and B cell
infiltration;

Genus Candida11 Increase Involved in the downregulation of genes
mediating cellular adhesion;

Gastric cancer Species Helicobacter pylori68,69,76,145,161,162,212–214 Increase Related to early-stage of tumours;
disrupted DNA mismatch repair
mechanisms;
inducted abnormal DNA methylation;
activated CEACAM1 on immune cells;
upregulated PD-L1 expression;

Genus Prevotella,
genus Streptococcus,
genus Veillonella,
genus Haemophilus
genus Neisseria73

Increase —

Genus Helicobacter73,227 Decrease Metabolic regulation;

Genus Lactobacillus74,227 Increase Related to tumour progression;
metabolic regulation;

Phylum Nitrospirae,
family Lachnospiraceae,
genus Escherichia-Shigella,
species Burkholderia fungorum74

Increase Related to tumour progression;

Genus Oceanobacter,
genus Methylobacterium,
genus Syntrophomonas75

Increase —

Species Propionibacterium acnes,
species Prevotella copri76

Increase Related to early-stage of tumours;

Phylum TM7,
genus Porphyromonas,
genus Neisseria
species Streptococcus sinensis77

Decrease Related to benign gastric disease;

Family Lachnospiraceae,
species Lactobacillus coleohominis77

Increase Related to malignant gastric disease;

Epstein-Barr virus70–72 Increase Related to DNA hypermethylation;

Order Clostridium,
family Comamonadaceae,
genus Moryella,
genus Vibro,
genus Paludibacter,
genus Agrobacterium30

Increase Monitor the risk of gastric cancer
development;

Species Kytococcus sedentarius,
species Actinomyces oris163

Increase Inducted abnormal DNA methylation;

Breast cancer Genus Pseudomonas,
genus Proteus81

Increase —

Species Methylobacterium radiotolerans82,83 Increase —

Species Sphingomonas yanoikuyae82 Decrease —

Genus Methylobacterium84 Decrease —

Genus Cladosporium12 Increase —

Genus Lactobacillus85,225 Increase Metabolic regulation;
enhanced the resistance of tumour cells
to flow shear stress;

Genus Streptococcus,
genus Staphylococcus85

Increase Enhanced the resistance of tumour cells
to flow shear stress;

Family Streptococcaceae88 Increase —

Genus Bosea88 Increase Related to tumour progression;

Species Escherichia coli,
species Staphylococcus epidermis143

Increase Caused double-stranded DNA breaks;

Genus Fusobacterium,
genus Atopobium,
genus Hydrogenophaga,
genus Gluconacetobacter225

Increase Metabolic regulation;

Species Enterotoxigenic Bacteroides fragilis246 Increase Enhanced stemness potential and
metastatic progression;
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Table 1. continued

Cancer types Microbiome compositions Quantitative
dynamics

Function

Species Fusobacterium nucleatum33,252 Increase Related to metastasis;
Pancreatic cancer Phylum Proteobacteria91 Increase —

Species Helicobacter pylori92,93 Increase Related to activation of molecular
pathways for tumour growth and
progression;

Genus Pseudomonas91,94 Increase Related to carcinogenesis;

Genus Elizabethkingia91 Increase —

Genus Acinetobacter,
genus Sphingopyxis94

Increase Related to carcinogenesis;

Genus Malassezia95 Increase —

Oral cancer Genus Fusobacterium101,112 Increase —

Species Fusobacterium nucleatum142,229 Increase Caused double-stranded DNA breaks;
Promoted GLUT1 upregulation and lactic
acid accumulation;

Species Porphyromonas gingivalis102–105,154,155,244 Increase Related to the formation of DNA adducts
or the inhibition of DNA repair enzymes;
Related to the expression of EMT-related
transcription factors;

Genus Prevotella106 Icrease —

Species Prevotella intermedia107 Increase Related to carcinogenesis;

Species Treponema denticola108,109 Increase —

Species Streptococcus anginosus110,111,155 Increase Related to the formation of DNA adducts
or the inhibition of DNA repair enzymes;

Genus Streptococcus112 Decrease —

Species Pseudomonas aeruginosa,
Campylobacter sp. Oral taxon 44113

Increase —

Human papillomavirus98 Increase —

Epstein-Barr virus99 Increase —

Herpes Simplex Virus Type 1100 Increase —

Species Candida albicans,
species Candida etchellsii,
species Hannaella luteola-like114

Increase —

Head-and-neck squamous
cell carcinomas

Genus Parvimonas116 Increase —

Genus Actinomyces116 Decrease —

Human papillomavirus types 16117,134 Increase Inhibited the cGas-STING pathway;

Oesophageal cancer Species Campylobacter conisus189 Increase Upregulated PRRs and aggregated IFI16
inflammasome;

Nasopharyngeal carcinoma Genus Corynebacterium,
genus Staphylococcus28

Increase —

Epstein-Barr virus119,217 Increase Downregulated IDO expression;

Ovarian carcinoma Phylum Aquificae,
phylum Planctomycetes120

Increase —

Phylum Crenarchaeota120 Decrease —

Human papillomavirus types 16, 18, and 45121 Related to advanced-stage tumours;

Endometrial cancer Genus Bacteroides,
genus Faecalibacterium122

Increase —

Genus Staphylococcus,
genus Blautia,
genus Parabacteroides122

Decrease —

Cervical cancer Genus Gardnerella,
genus Prevotella,
genus Streptococcus,
genus Atopobium226

Increase Metabolic regulation;

Human papillomavirus131,205,208,209 Increase Integrated viral genome into the host
chromosome;
recruited Treg cells;
inhibited cytotoxic T and NK cell
activation;
upregulated PD-L1 expression;

Prostatic cancer Species Cutibacterium acnes123,124 Increase —

Species Staphylococcus aureus202 Increase Recruited Treg cells;

Bladder cancer Species Escherichia coli,
species Butyrate-producing bacteria SM4/1,
a species of Oscillatoria243

Increase Related to the expression of EMT-related
genes;
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would provide a more precise evaluation of microorganisms in
lung cancer.

Liver cancer. Primary liver cancer (PLC) is a malignancy that
originates from malignant hepatocellular tumours and precursors
such as HCC, the main type of PLC.42 PLC generally progresses
from chronic liver diseases, such as viral hepatitis, as ~56% of liver
cancers are associated with HBV and 20% with the hepatitis C
virus (HCV).43 The interaction between microbiota and PLC has
been intensively investigated because of the gut-liver axis.44–47

However, studying microorganisms in liver tumours remains
limited. H. pylori and similar species have been identified in
patients with HCC liver tissues.48–50 Although in vitro studies have
suggested the potential connection between H. pylori and liver
cancer development, no evidence has been obtained showing
that this species directly contributes to tumorigenesis.51,52 Huang
et al. found microbes present in hepatocytes and erythrocytes,
and the abundance of Gammaproteobacteria in cancerous tissues
was considerably higher than that in normal tissues. In particular,
compared with that in non-cirrhosis HCC, Streptococcaceae and
Lactococcus were significantly increased in cirrhosis HCC, suggest-
ing that they could be used as marker taxa for cirrhosis HCC.53 Qu
et al. demonstrated that the abundance of Enterobacteriaceae was
substantially higher in the HCC group, whereas the abundances of
Caulobacteraceae and Rickettsiaceae were substantially lower in
the combined hepatocellular carcinoma and intrahepatic cholan-
giocarcinoma (cHCC‐ICC) group.54 Moreover, the abundance of
Paraburkholderia fungorum in ICC was higher in paraneocancerous
tissues than in cancerous tissues, and the value was inversely
correlated with carbohydrate antigen 199 (CA199) levels. The
results of in vitro and in vivo experiments further indicated that
the fungus had antitumour activity.55 Currently, studies on the
intratumoural microorganisms of HCC are limited, and further
investigation is needed to identify the significance of other
microbiota in HCC.

Colorectal cancer. Fusobacterium and enterotoxigenic Bacteroides
fragilis (ETBF) have been demonstrated to be carcinogenic factors
in the advancement of colorectal cancer (CRC).56–58 Unlike normal
tissues, Lactococcus, Bacteroides, Fusobacterium, Prevotella, and
Streptococcus were more abundant in tumour tissues. Pseudomo-
nas and Escherichia-Shigella were substantially enriched in
adjacent normal tissues compared to those in tumour tissues.59

Yamamoto et al. also discovered a varied abundance of F.
nucleatum in the progression of CRC, with the highest prevalence
in stage III/IV tumours.60 However, another study reported that F.
nucleatum was not detected in most CRC samples and that there
were no substantial differences in the microbiota between
tumours and adjacent tissues.61 This may be due to differences
in patient selection and techniques used among the studies. In

addition, distinctions between left and right colon cancers were
detected, where the loadings of Bifidobacterium and Romboutsia
were higher in left-sided colon cancers (LSCCs), whereas
Haemophilus and Veillonella were higher in right-sided colon
cancers (RSCCs).62 This may partially explain the difference in the
biological subtypes of CRC between the LSCCs and RSCCs, with
increased levels of the “microsatellite unstable/immune” consen-
sus molecular subtype (CMS)1 and the “metabolic” CMS3
identified in RSCCs.63 Regarding fungi, Ascomycota, Glomeromy-
cota, and Basidiomycota were identified as the predominant phyla
between adenomas and adjacent tissues,64 and the abundance of
Ascomycota was higher in patients with CRC, with an increase in
Malasseziomycetes and a decrease in Saccharomycetes and
Pneumocystidomycetes.65

Several studies on the CRC microbiome utilised faecal samples
due to the simple and non-invasive sample collection procedure.
However, intestinal mucosal tissue samples are more suitable for
assessing the physiopathology of CRC, and distinct microbiome
patterns in mucosal and faecal samples have also been
reported.66,67 The composition of CRC-related micropopulations
has not yet been unified and requires further research.

Gastric cancer. H. pylori is the most predominant microorganism
detected in gastric cancer (GC) and has been implicated in
promoting premalignant lesions that can ultimately progress to
GC.68,69 EBV was found within malignant epithelial cells in 9% of
GC.70 EBV-GC may be the most common type of EBV-associated
cancer, highly correlated with cyclin-dependent kinase inhibitor
2 A (CDKN2A) promoter hypermethylation.71,72 Shao et al. found
that the microbial diversity in GC cells was considerably greater
than that in benign stomach lesions. Specifically, the genera
Prevotella, Streptococcus, Veillonella, Haemophilus, and Neisseria
were more abundant, whereas Helicobacter was less abundant.73

Moreover, GC tissues have a high load of potentially carcinoma-
promoting bacteria, including Lactobacillus, Escherichia-Shigella,
Lachnospiraceae, Nitrospirae, and Burkholderia fungorum.74 Peng
et al. observed that the Oceanobacter, Methylobacterium, and
Syntrophomonas genera were enriched in tumour tissue, and the
intratumoural Methylobacterium was considerably correlated with
a poor prognosis in GC patients.75 Recent research has demon-
strated that as GC progresses, the abundance of H. pylori may
gradually reduce, and the microbiota diversity may also change. In
the early-stages of GC, the numbers of H. pylori, Propionibacterium
acnes, and Prevotella copri were higher than that in non-cancer
patients.76 In addition, the microbiome of patients at different
histological stages, from gastritis to precancerous lesions to
stomach cancer, also showed changes. The abundance of TM7,
Porphyromonas, Neisseria, and Streptococcus sinensis decreased
with disease progression, while that of Lactobacillus coleohominis
and Lachnospiraceae were reversed.77 In addition, a longitudinal

Table 1. continued

Cancer types Microbiome compositions Quantitative
dynamics

Function

Pituitary neuroendocrine
tumour

Order Clostridiales,
family Fusobacteriaceae,
family Tissierellaceae,
family Aerococcaceae,
family Corynebacteriaceae,
family S24-7,
F16125

Increase Related to different clinical phenotypes
of tumour;

Burkitt’s lymphoma Epstein-Barr virus126 Increase —

Hodgkin’s lymphoma Epstein-Barr virus126 Increase —

NK cell and T cell
lymphomas

Epstein-Barr virus126 Increase —

Human T-lymphotropic virus type 1139 Increase Inhibited DNA repair pathway.

Lymphocytic leukaemia Human endogenous retroviruses118 Increase —
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prospective study identified a total of six microbial taxonomic
features, namely the Moryella genus, Vibro genus, Comamonada-
ceae family, Paludibacter genus, Agrobacterium genus, and
Clostridium order, at baseline that could be used to indicate the
risk of future GC development.30

Breast cancer. Breast cancer (BC) is the most widespread
malignancy among women.78 The relationship between the
microbiota and carcinogenesis has been evaluated to determine
its function in the initiation and progression of BC.79,80 Breast
tumours have the greatest bacterial diversity and abundance
among all tumours.7 Tzeng et al. discovered that the genera
Pseudomonas and Proteus were highly enriched in BC tissues.81

Xuan et al. demonstrated that Methylobacterium radiotolerans was
increased in tumour tissue, while Sphingomonas yanoikuyae was
increased in normal tissue. Moreover, the tumour stage was
inversely associated with total bacterial load at the tumour site,
which may provide clues for BC diagnosis.82 Another study also
revealed an increased abundance of Methylobacterium radio-
tolerans in the tumour sentinel lymph nodes.83 However, Wang
et al. demonstrated a decreased abundance of Methylobacterium
in BC tissues.84 Narunsky-Haziza et al. identified that the
Cladosporium genus was increased in the BC of patients ≥50 years
old.12 The unique intratumoural microbiota present in BC tissues,
mainly comprising Lactobacillus, Streptococcus, and Staphylococ-
cus, is a potential factor contributing to tumour metastasis.85

Multiple investigations have found that the microbial community
varies according to subtype.86,87 The family Streptococcaceae is
more abundant in the triple-negative BC subtype, and the
abundance of the genus Bosea increases with the progression of
the tumour.88

Pancreatic cancer. Pancreatic cancer (PC) is a malignant cancer
characterised by a dismal prognosis; pancreatic ductal adenocar-
cinoma (PDAC) accounts for most of PC.89 Recent research has
revealed the existence of bacteria in the pancreas; PC tissues
contain a larger proportion of bacteria than normal pancreatic
tissues.90 Proteobacteria are the most prevalent intratumoural
microorganisms in PDAC, similar to the normal duodenal microbial
composition.91 Studies have suggested that H. pylori colonised PC
cells and was associated with the activation of molecular
pathways for tumour initiation and development.92,93 However,
the subspecies of Helicobacter found in pancreatic and gastro-
duodenal tissues were different, suggesting that Helicobacter in
the pancreas may not have migrated from the gastroduodenum.92

Moreover, the microbes in PDAC are completely distinct from
those in normal pancreatic tissues, especially regarding Pseudo-
monas and Elizabethkingia, which were highly abundant in
tumours.91 Basal-like tumours, a highly aggressive PDAC subtype,
were found to have distinctive intratumoural microbiota, and
increased abundance of Acinetobacter, Pseudomonas, and Sphin-
gopyxis was strongly associated with carcinogenesis.94 In addition,
the fungal population of PDAC tumours was found to be
significantly enriched with Malassezia.95

Oral cancer. The oral microbiome hosts >750 common oral
species.96 The normal oral microbiome mainly comprises aerobes;
the percentage of anaerobes increases with the development of
oral cancer (OC). Oral squamous cell carcinoma (OSCC) constitutes
90% of epithelial malignancies in the oral cavity.97 Human
papillomavirus (HPV) has been recognised as a potential
contributor to OSCC, with HPV type 16 being the most significant
subtype. Approximately 25–35% of OSCCs are attributed to HPV
infection.98 Other oncogenic viruses, such as EBV and Herpes
Simplex Virus Type 1 (HSV-1), have also been demonstrated to be
associated with OSCC.99,100 F. nucleatum is the natural flora
present in oral mucosa that has been implicated in the
development of oral malignancies. Nagy et al. observed a higher

abundance of Fusobacterium in OSCC tissue than in normal
mucosal tissue.101 Porphyromonas gingivalis (P. gingivalis) is
another independent and critical risk factor for OC.102,103 Katz
et al. detected a significant enrichment of P. gingivalis in gingival
squamous cell carcinoma.104 Similarly, Chang et al. revealed that
the level of P. gingivalis in OSCC tissue was higher than that in
normal tissue; they also found a positive correlation between P.
gingivalis infection and advanced-stage, poor differentiation, and
lymph node metastasis among OSCC patients.105 Another study
revealed that Prevotella were enriched in OSCC tissue.106 In
particular, Zhang et al. found that the abundance of Prevotella
intermedia was significantly increased in OSCC; functional predic-
tion further suggested that the bacteria were associated with
carcinogenesis.107 Moreover, studies have shown that Treponema
denticola is closely correlated with OSCC and oropharyngeal
squamous cell carcinoma (OPSCC).108,109 The aerobic bacterium
Streptococcus has also been found to be associated with OC. Sasaki
et al. showed that the levels of Streptococcus anginosus (S.
anginosus) were elevated in patients with OC.110 Rai et al. reported
similar results.111 Some studies, however, have reported contrast-
ing results. Su et al. found that Fusobacterium was substantially
enriched at tumour sites, while Streptococcus showed the opposite
results.112 Besides, Pseudomonas aeruginosa and Campylobacter sp.
Oral taxon 44 were also abundant in OSCC.113 Moreover, Perera
et al. found that Candida albicans, Candida etchellsii, and a
Hannaella luteola-like species were relatively abundant in OSCC.114

Additionally, the oral microbiota changed with the progress of
OC. Yang et al. demonstrated that as cancer progressed, the
prevalence of Fusobacterium increased, while that of Streptococcus,
Haemophilus, Porphyromonas, and Actinomyces decreased.115

Other cancers. In addition to the cancers reported above,
multiple studies have also shown the presence of microbiota in
other tumours. In an investigation of head-and-neck squamous
cell carcinomas (HNSCCs), Actinomyces was significantly reduced,
while Parvimonas was elevated relative to that in normal
tissues.116 Another study demonstrated that HPV 16 was detected
in HNSCCs,117 and a significant exclusivity of HPV and driver
mutations in TP53, CDKN2A, and telomerase reverse transcriptase
was exhibited in the tumour.118 In addition to EBV,119 a recent
study found that some bacteria, mainly Corynebacterium and
Staphylococcus, existed in nasopharyngeal carcinoma (NPC)
tumour tissues, and the total intratumoural bacterial load was
negatively correlated with prognosis.28 Among other reproductive
system tumours, the microbiota in ovarian cancer tissue consisted
of increased Aquificae and Planctomycetes abundance and
decreased Crenarchaeota abundance.120 Compared to normal
adjacent tissues, ovarian carcinoma contained a higher proportion
of HPVs, and high-risk HPV types 16, 18, and 45 were significantly
correlated with advanced-stage tumours.121 Bacteroides and
Faecalibacterium were particularly associated with endometrial
cancer, while Staphylococcus, Blautia, and Parabacteroides were
more associated with benign uterine disease.122 Certain bacterial
species, especially Cutibacterium acnes, can persist in prostatic
tissue specimens.123,124 Intracranial tumours, such as glioblasto-
mas7 and pituitary neuroendocrine tumours (PitNETs),125 were
found to contain intratumoural microorganisms, and the abun-
dance of microorganisms in different subtypes of the PitNETs was
also different, which Fusobacteriaceae, Tissierellaceae, and Aero-
coccaceae were substantially enriched in adrenocorticotropic
hormone-secreting PitNET (ACTH-PitNET) tissues and Corynebac-
teriaceae, S24-7, Aerococcaceae, Clostridiales, and F16 were more
enriched in growth hormone-secreting PitNET (GH-PitNET) tissues.
Moreover, EBV was present in the blood system’s tumour cells,
such as Burkitt’s lymphoma, Hodgkin’s lymphoma, and some
natural killer (NK) and T cell lymphomas.126 Human endogenous
retroviruses (HERVs) have been found in chronic lymphocytic
leukaemia, where ERV1 was strongly expressed.118 However, the

Intratumoural microbiota: a new frontier in cancer development and therapy
Cao et al.

8

Signal Transduction and Targeted Therapy            (2024) 9:15 



relationships between intratumoural microbiota and other types
of cancers have not been thoroughly studied, and further research
is required.

ROLE OF INTRATUMOURAL MICROBIOTA IN THE
DEVELOPMENT OF CANCER
Cancer cells influence disease progression by maintaining
proliferation, evading growth inhibition, resisting cell death,
enabling replicative immortality, inducing angiogenesis, and
activating invasion and metastasis.127,128 Although the potential
role of the microbiome in the initiation and advancement of
cancer remains elusive, it could be associated with modulating the

most relevant tumour-promoting functions between malignant
and non-malignant cells. Understanding these mechanisms is
crucial for cancer prediction and treatment (Fig. 3).

Genome instability and mutation
The induction of genomic instability and mutation is one of the
carcinogenic mechanisms of the microbiome. More than 10% of
human malignancies are primarily caused by oncoviruses.129

Various studies have suggested that oncoviruses cause cancer
by integrating the viral genome into the host chromosome and
triggering genetic mutations, such as HPVs in cervical, head-and-
neck, and several other cancers, and HBV in liver cancer.130–132

Integrated deoxyribonucleic acid (DNA) also leads to viral

Fig. 3 The role of intratumoural microbiota in the development of cancer. The potential effects of the microbiome on the cancer remain
elusive. Six major mechanisms have been proposed to explain how the intratumoural microbiota influence the initiation and advancement of
cancer, including genome instability and mutation, epigenetic modification, chronic inflammation, immune evasion, metabolic regulation,
activation of invasion and metastasis. TAM, tumour-associated macrophage; HK2, hexokinase 2; TCA, tricarboxylic acid. Created with
BioRender.com

Intratumoural microbiota: a new frontier in cancer development and therapy
Cao et al.

9

Signal Transduction and Targeted Therapy            (2024) 9:15 



oncoprotein production, which modulates host signalling path-
ways and alters genes’ and ribonucleic acid (RNA) expression. In
mouse models, the HPV E7 oncoprotein directly inhibits the cyclic
guanosine monophosphate (MP)-adenosine MP synthase (cGas)-
stimulator of interferon genes (STING) pathway and specifically
reduces the expression of genes encoding type I interferon and
pro-inflammatory factors, thereby driving immune escape in
multiple HPV-related tumours.133,134 Moreover, EBV and Kaposi
sarcoma-associated herpesvirus (KSHV) oncoproteins can upregu-
late oncogenic cellular proteins and microRNAs in mouse,
downregulate tumour suppressors, and trigger signalling path-
ways, such as the nuclear factor kappa-light-chain-enhancer of
activated B cells (NF-κB) pathway, to drive the proliferation and
transformation of B cells and endothelial cells.135–138 Human
T-lymphotropic virus type 1 (HTLV-1), the retrovirus that triggers
adult T cell leukaemia, inhibits the DNA repair pathway through
the HTLV-1 Tax protein, leading to genome instability and the
accumulation of carcinogenic mutations.139

Certain carcinogenic bacteria, such as pks+ Escherichia coli (E. coli)
and ETBF, encode and secrete carcinogenic toxins that induce DNA
damage, which results in faster tumour onset and greater
mortality.140 Moreover, FadA, a key adhesin secreted by F. nucleatum,
promotes E-cadherin/β-catenin activation to upregulate checkpoint
kinase 2 (CHK2), causing DNA damage in mouse CRC cells.141 F.
nucleatum infection promotes OSCC by causing Ku70/p53 pathway-
dependent DNA double-strand breaks (DSBs).142 E. coli and
Staphylococcus epidermis isolated from breast tumour tissue cause
DSBs in HeLa cells.143 In addition, EspF-expressing enteropathogenic
E. coli and H. pylori may interfere with DNA mismatch repair
mechanisms, thereby aggravating genome instability and promoting
tumorigenesis.144,145 However, further studies are required to identify
the direct involvement of bacterial virulence factors (VirFs) in cancer
induction. The fundamental role of these VirFs could be to induce
DNA damage response and subsequently activate the immune
system, which results in pro-inflammatory outcomes and forms a
microenvironment conducive to cancer.146 Microbial activities can
also elicit the generation of reactive oxygen species (ROS), hydrogen
sulphide, and superoxide dismutase.147–149 ETBF toxin increases the
expression of spermine oxidase (SMO) in HT29/c1 and T84 colonic
epithelial cells, triggering the SMO-dependent production of ROS
and activation of γ-H2A, which causes DNA damage.56

In addition, many microbial metabolites affect tumour devel-
opment by promoting DNA damage. BC tissues harbour increased
levels of β-glucuronidase, which has been identified as a
carcinogenic enzyme.150,151 β-glucuronidase may release reactive
intermediates from 2-amino-3-methylimidazo[4,5-f]quinoline to
cause DNA damage in rats.152 S. anginosus and P. gingivalis can
convert ethanol into acetaldehyde, resulting in the formation of
DNA adducts or the inhibition of DNA repair enzymes, which
might cause DNA damage and oral carcinogenesis.153–155

Epigenetic modification
Epigenetic pathways also play an essential part in oncogenesis by
aberrantly silencing tumour suppressor genes (TSGs) and activat-
ing oncogenes.156 According to reports, bacterial infections
survive, replicate, and evade destruction by the host immune
system by regulating the host epigenome.157–160 Induction of
abnormal DNA methylation is the main pathway for H. pylori
infection to induce gastric adenocarcinoma.161,162 Other gastric
microbiota, such as Kytococcus sedentarius and Actinomyces oris,
are also involved in this mechanism, which promotes the
occurrence of gastric adenocarcinoma and metastasis and affects
its prognosis.163 A study reported that the significantly rich
microorganisms in the high-cell subtype thyroid cancer patients
were associated with higher tumour suppressor gene methyla-
tion.164 A recent study compared intratumoural microbiome and
DNA methylation profiles of HCC tissue and normal liver tissue,
and correlation analysis showed that 10 metabolome-related

microbiome groups were closely related to 25 methylation-related
differentially expressed genes.165 The abundance of intratumoural
F. nucleatum was linked to increased infiltration of macrophages
and promoter CpG island hypermethylation of CDKN2A in CRC
patients.166 However, the molecular mechanism underlying the
host epigenetic changes induced by intratumoural microbiota has
not yet been fully characterised. On the one hand, some studies
have reported that microorganisms directly regulate host
epigenetic modifications. Liu et al. reported that in vivo and
in vitro H. pylori infection promoted guanine nucleotide-binding
protein subunits β-44 (GNB4) demethylation by activating NF-κB
to upregulate TET1, inducing the carcinogenic pathway.161

Besides, F. nucleatum upregulates the transcription of long non-
coding RNA (lncRNA) enolase1-intronic transcript 1 (ENO1-IT1)
through transcription factor SP1. Elevated ENO1-IT instructs KAT7
histone acetyltransferase to change the histone decorator pattern
on its target genes, enhancing CRC glycolysis and tumorigen-
esis.167 F. nucleatum and Hungatella hathewayi could mediate TSG
promoter hypermethylation by upregulating DNA methyltrans-
ferases in CRC.168 On the other hand, it was reported that
microorganisms synthesised and metabolised abundant com-
pounds that serve as epigenetic substrates and cofactors or
regulate epigenetic enzymes, indirectly affecting host epigenetic
modifications. For example, folate and other B vitamins (B2, B12)
are the primary substrates for DNA and histone methylation.169

Microorganism-derived short-chain fatty acids (SCFAs) trigger
genomic epigenetic changes by affecting the activities of histone
acetylase and histone deacetylase.170,171 A recent study found that
specific bacteria produce methionine in lung cancer patients,172

and they behave as the main methyl donors for nucleic acid and
protein methylation, making epigenetic reprogramming of host
cells possible.173 Moreover, microorganisms may activate other
pathways that indirectly alter the epigenetics of host cells. Koi
et al. found that chronic F. nucleatum infection produces ROS,
which causes DNA damage and triggers MSH2/MSH6-dependent
repair, resulting in DNA hypermethylation.174 Previous reviews
have described the changes in various non-coding RNAs induced
by bacterial infection and their role in modifying chromatin
structure.175–177 However, few studies have focused on intracel-
lular microorganisms in this area. Epigenetic regulation crosstalk
between the virus and the host also occurs. Pietropaolo et al.
reviewed the research progress on seven viruses causing cancer
through epigenetic changes in host cells.178 Another review
summarised several mechanisms by which HBV induces hepato-
carcinogenesis by inducing m6A modification of RNA, including
virus replication, immune escape, and carcinogenesis, indicating a
complex interaction between the microbiome and host.179

In conclusion, multiple studies have demonstrated that
intratumoural microorganisms (mainly viruses and bacteria) could
directly or indirectly regulate host epigenetic modifications,
including DNA modification, histone modification, RNA modifica-
tion, and non-coding RNA. However, the molecular mechanisms
underlying the host epigenetic changes induced by intratumoural
microorganisms must be further explored.

Chronic inflammation
Persistent chronic inflammation is correlated with the advance-
ment of most cancer types.180 The intratumoural microbiome can
activate inflammatory signalling pathways and cascades by
interacting with pattern recognition receptors (PRRs), such as
Toll-like receptors (TLRs), in the TME.
TLRs are expressed on a variety of immune cells, including

macrophages, dendritic cells, B cells, certain types of T cells, as
well as non-immune cells like fibroblasts and epithelial cells.181

Fusobacterium recognised by TLR4 enhanced the interleukin (IL)-6/
phospho-signal transducer and activator of transcription 3 (p-
STAT3)/c-MYC signalling pathway, resulting in M2-like macro-
phage polarisation and mouse CRC progression.182 Pushalkar et al.
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showed that the PDAC microbiota inhibits the type 1 T-helper
(Th1) polarisation of cluster of differentiation (CD)4+ T cells and
M1-like macrophage differentiation by activating TLR, thus
generating a tolerant immune programme.91 Moreover, in a
mouse colitis-associated tumorigenic model, Yang et al. found
that microbial-derived lipopolysaccharide /TLR4 mediates the
chemokine-dependent recruitment of monocyte-like macro-
phages to promote IL-1β production, further promoting Th17 cell
expansion. This process may enhance intestinal permeability and
allow the excessive release of microbial products, thus promoting
M2-like macrophage differentiation, generating a positive feed-
back loop to attract immunosuppressive cells and forming a
tolerogenic microenvironment.183,184 Another mouse model
showed that microbial products elicited by tumorous epithelial
barrier disruption activate tumour-infiltrating inflammatory den-
dritic cells (DCs), thereby inducing γδT17 cells polarisation, which
can release a lot of IL-17, IL-8, granulocyte-macrophage colony-
stimulating factor, tumour necrosis factor alpha (TNF-α), and other
cytokines to promote inflammation. These cytokines further
attract the accumulation of polymorphonuclear myeloid-derived
suppressor cells (PMN-MDSCs), thus transforming the inflamma-
tory microenvironment into an immunosuppressor microenviron-
ment and promoting the progression of CRC.185 Moreover, ETBF
toxin triggers a STAT3–NF-κB-dependent pro-inflammatory signal-
ling cascade to release cytokines like IL-17 and IL-23, which has
been demonstrated to attract pro-tumoural myeloid cells and
promote distal colon tumorigenesis.186 Park et al. demonstrated
that F. nucleatum and Aggregatibacter actinomycetemcomitans
activate TLR2 and TLR4 and downstream NF-κB in bone marrow-
derived macrophages to stimulate IL-6 production in mouse.187

Nontypeable Haemophilus influenzae can stimulate mouse epithe-
lial cells to release IL-17C, recruit neutrophils into inflamed tissues,
and promote lung tumour growth.188 In addition, macrophage
infection with Campylobacter conisus (C. conisus) leads to the
upregulation of PRRs and aggregation of interferon-inducible
protein 16 inflammasome, which may be a related pro-
inflammatory mechanism underlying the ability of C. conisus to
cause oesophageal cancer.189 Moreover, F. nucleatum-mediated
inhibition of autophagy in colon cancer epithelial cells promotes
ROS accumulation, triggering the production of pro-inflammatory
cytokines, such as IL-8, IL-1β, and TNF-α.190

In addition, microbes can also induce macropinocytosis, an
endocytic activity that cells use for antigen capture and delivery,
to activate inflammation.191 A mouse study found that the Wnt
pathway activates macrophage proliferation and stimulates
macrophage uptake of bacteria and their products into the colon.
However, transcriptional targets for macropinocytosis activation
by the Wnt pathway remain unknown; some potential candidates
for Wnt-dependent transcription factors involve RAB5, PDK1, and
PAK1.192,193 The crosstalk between intratumoural microorganisms
and polymorphonuclear neutrophils (PMNS) can also promote
cancer development. The loss of neutrophils was found to
promote the enrichment of Akkermansia in a mouse model of
CRC. The intratumoural bacteria can boost IL-17 production and
intratumoural B cell infiltration, thereby promoting tumour growth
and cancer progression.194

The inflammatory reaction is accompanied by the immune
response. Stress and tissue damage from microbial infection
recruit immune cells to promote inflammation and further
activate various pro-tumoural inflammatory factors.195 The
chronic inflammatory microenvironment eventually transforms
into an immunosuppressive microenvironment to promote
tumour progression and inhibit antitumour immunity.196 More-
over, inflammatory cells at sites of infection can also produce
ROS to induce DNA damage. The latter can also amplify
inflammatory responses, leading to increased DNA damage.197

Therefore, crosstalk between various pathogenic mechanisms
may contribute to cancer development.

Immune evasion
The interaction between microorganisms and their host is
essential for sustaining immune homoeostasis.198 Intratumoural
microbes can evade the immune response and affect tumorigen-
esis by promoting an immunosuppressive microenvironment and
immune cell inactivation.
F. nucleatum regulates the tumour immune microenvironment

by selectively aggregating tumour-infiltrating myeloid cells,
including CD11b+ myeloid cells, MDSCs, tumour-associated
macrophages, classical myeloid DCs, and CD103+ regulatory
DCs, thereby potentiating tumorigenesis.199 Besides this, com-
mensal bacteria triggered Myd88-dependent IL-1β and IL-23
production, driving the activation of Vγ6+ Vδ1+ γδ T cells and
the subsequent release of IL-17 and other cytotoxic effectors to
promote an inflammatory immunosuppressive environment and
lung tumour cell proliferation in mouse.200 Another mouse study
revealed that Pasteurella was positively correlated with cytotoxic
CD8+ tumour-infiltrating lymphocytes (TILs) and negatively
correlated with M2-like macrophages, whereas Coriobacteriaceae
was positively associated with M2-like macrophages and nega-
tively associated with CD8+ cells. All these immune responses
influence the initiation and development of lung tumours.201

Certain microorganisms, such as Staphylococcus aureus, HBV, and
HCV, potentially promote the progression of prostate and liver
cancers by promoting the immunosuppression mediated by T
regulatory cells (Tregs).202–204 Moreover, a large number of Tregs
have been observed in HPV-induced cervical lesions, and the level
of Tregs is associated with the severity of the disease, suggesting
that Tregs may be involved in the interference of anti-HPV
immune response.205 Furthermore, in both in vivo and in vitro
trials, the fungal community of PDAC tissue stimulated the
expression of cancer-cell-specific IL-33, which leads to the
recruitment and activation of Th2 cells and innate lymphoid cells
2, consequently promoting tumour progression.206

As noted previously, intratumoural microbiota can also evade
immune responses by promoting the inactivation of immune cells.
In a mouse model, the PC microbiome promotes suppressive M1
macrophage differentiation via differentially activating selective
TLR to induce T cell anergy.91 Elevated lung SCFA levels from
lower airway anaerobic bacteria may hinder the production of
interferon gamma (IFN-γ) by CD4+ and CD8+ T cells and cause
effector T cell depletion, which promotes tumour growth.207 HPV
downregulates the antigen-presenting pathway through its gene
expression programme to inhibit cytotoxic T and NK cell
activation, thereby increasing virus replication and transmission
and promoting malignant transformation in human cervical
cancer cells.208 Another in vitro study showed that HPV E7 in
cervical cancer directly upregulated intratumoural surface pro-
grammed death-ligand 1 (PD-L1) and inhibited cytotoxic T cell
function.209 Moreover, F. nucleatum protein could bind and
activate T Cell immunoreceptor with immunoglobulin and
immunoreceptor tyrosine-based inhibitory motif domains (TIGIT)
and carcinoembryonic antigen cell adhesion molecule 1 (CEA-
CAM1) receptors express on human NK cells and other
lymphocytes, inhibiting antitumour immune cell function in
CRC.210,211 Similarly, the HopQ outer-membrane adhesin of H.
pylori interacts with CEACAM1 to inactivate immune cells and
mediate the migration of VirF cytotoxin-associated gene A (CagA)
into host cells and production of IL-8, thereby promoting GC
progression.212,213 In addition, CagA can stimulate PD-L1 expres-
sion in gastric epithelial cells, creating premalignant lesions
progressing to GC.214 Further studies have shown that the process
might be mediated by the Sonic Hedgehog signalling pathway.215

EBV infection of B cells and NPC cell lines can induce the
downregulation of indoleamine 2, 3-dioxygenase (IDO), resulting
in T cell surveillance inactivation.216,217

However, many studies have demonstrated that intratumoural
microbiota can mediate immune activation and produce
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antitumour immunity. HPV was associated with massive infiltration
of IFN-γ+ CD8+ T cells and IL-17+ CD8+ T cells in HNSCC, which
might play a key role in the significantly better response to
immunotherapy in HPV-positive patients.218 The intestinal
microbe Bifidobacterium has been shown to preferentially colonise
in tumour sites and enhance STING/IFN-I signalling in tumour-
infiltrating DCs, thereby promoting T cell-dependent antitumour
responses in mouse.31 Another mouse model of CRC showed that
colonisation with Helicobacter hepaticus correlates with increased
infiltration of CD11c+ myeloid cells, T and B cells, leading to
reduced tumour burden.219 Moreover, Lactobacillus plantarum-
derived indole-3-lactic acid increased IL-12a production of DCs by
promoting H3K27ac binding in the IL-12a enhancer region,
therefore initiating the CD8+ T cell immunity against tumour
growth.220 Another mouse experiment found that intratumoural
Lactobacillus reuteri (Lr) releases dietary tryptophan catabolite
indole-3-aldehyde to promote IFN-γ-producing CD8+ T cells,
thereby enhancing immune checkpoint inhibitors (ICIs).221 The
Clostridiales-derived metabolite trimethylamine N-oxide activates
the endoplasmic reticulum stress kinase PERK, which causes
gasdermin E-mediated pyroptosis in tumour cells and promotes
CD8+ T cell-mediated antitumour immunity in BC in vivo.222 The
metabolite inosine produced by the bacterium Bifidobacterium
pseudolongum in a mouse model of CRC induces the expression of
Th1-regulating genes in CD4+ T cells, thus promoting antitumour
immunotherapy.223

Overall, microbiota and their derived metabolites are also
potential therapeutic targets for supporting immunotherapy, and
their effects are context-dependent and require further clarifica-
tion prior to clinical translation.

Metabolic regulation
Alterations in human metabolism caused by the microbiome may
lead to various metabolic diseases and cancers.224 Hieken et al.
reported that microbiota in benign breast disease tissue was
associated with increased cysteine and methionine metabolism,
glycosyltransferases, and fatty acid biosynthesis. By comparison,
microbiota in BC tissue, including Fusobacterium, Atopobium,
Hydrogenophaga, Gluconacetobacter, and Lactobacillus, reduce
inositol phosphate metabolism.225 In cervical cancer, non-Lacto-
bacillus dominated communities, comprising Gardnerella, Prevo-
tella, Streptococcus, and Atopobium, affected amino acid and
nucleotide metabolism.226 Dai et al. discovered that the relative
level of carbohydrates, carbohydrate conjugates, amino acids,
glycerophospholipids, and nucleosides in gastric tumour tissues
was higher than that in non-tumour tissues through untargeted
metabolomic analysis; subsequent analysis indicated that Helico-
bacter and Lactobacillus exhibited negative and positive correla-
tions, respectively, with the majority of differential metabolites in
the amino acids, carbohydrates, nucleosides, nucleotides, and
glycerophospholipids classes.227 Yost et al. showed that the
microbiota in patients with OSCC was associated with the
upregulation of the activities of iron ion transport-related
enzymes, tryptophanase, glutamate dehydrogenase, starch
synthase, and superoxide dismutase.228 Moreover, Sun et al. found
that F. nucleatum promoted glucose transporter 1 (GLUT1)
upregulation and lactic acid accumulation by triggering GalNAc-
Autophagy-TBC1D5 signalling, leading to OSCC progression.229 In
vitro experiments showed that the expression of Merkel Cell
Polyomavirus (MCPyV) oncoprotein can increase the expression of
glycolytic genes, including the monocarboxylate lactate transpor-
ter SLC16A1 (MCT1), and induce aerobic glycolysis, which is
typically characteristic of malignant and rapidly proliferating
tumour cells.230 KSHV infection has been demonstrated to induce
stable glycolysis via increasing HIF1α expression and activating
the PI3K/Akt/mTOR signalling pathway.231–233 Metabolic flux
experiments confirmed that human cytomegalovirus (HCMV)
markedly upregulated the glycolytic pathway, tricarboxylic acidTa

bl
e
2.

co
n
ti
n
u
ed

C
an

ce
r
ty
p
es

Pa
th
o
lo
g
ic
al

ty
p
e

St
ag

e
Tr
ea
tm

en
t

M
ic
ro
o
rg
an

is
m

O
u
tc
o
m
es

Su
rv
iv
al

A
n
al

Sq
ua

m
ou

s
C
el
l

C
ar
ci
n
om

a
—

A
ll
st
ag

es
R
ad

io
th
er
ap

y/
ch

em
o
ra
d
io
th
er
ap

y,
su
rg
er
y

Sp
ec
ie
s
Fu
so
ba

ct
er
iu
m

nu
cl
ea
tu
m

2
5
9

Pr
o
te
ct
iv
e

fa
ct
o
r

O
S

V
ul
va

r
sq

ua
m
ou

s
ce
ll

ca
rc
in
om

a
—

St
ag

e
I,
II,

an
d
III

Su
rg
er
y,
ch

em
o
th
er
ap

y/
ra
d
io
th
er
ap

y
Sp

ec
ie
s
Fu
so
ba

ct
er
iu
m

nu
cl
ea
tu
m
,

sp
ec
ie
s
Ps
eu
do

m
on

as
ae
ru
gi
no

sa
2
5
6

R
is
k
fa
ct
o
r

PF
S

O
va

ri
an

ca
n
ce
r

—
—

Su
rg
er
y

G
en

u
s
Ph

ae
os
ph

ae
ria

ce
ae

1
2

R
is
k
fa
ct
o
r

PF
S

K
id
n
ey

ca
n
ce
r

—
—

—
H
u
m
an

en
d
o
g
en

o
u
s
re
tr
o
vi
ru
s1

1
8

R
is
k
fa
ct
o
r

O
S

Intratumoural microbiota: a new frontier in cancer development and therapy
Cao et al.

13

Signal Transduction and Targeted Therapy            (2024) 9:15 



cycle, and fatty acid biosynthesis pathway in infected cells.234 In
addition, HPV E7 protein interacts with and accumulates the
dimeric form of M2 type pyruvate kinase (M2PK), a low-activity
form that has been found to be upregulated in multiple
tumours.235 Other cancer-causing viruses, such as EBV, HBV, and
HCV, promote cancer by targeting transcription factors, onco-
genes, and tumour suppressors to regulate metabolic enzymes
and signalling pathways.236 However, many non-carcinogenic viral
infections have similar metabolic alterations. This suggests that
metabolic changes induced by tumour viruses may not be
sufficient to cause carcinogenic effects. Nevertheless, in the
microenvironment of hypoxia, inflammation and immunosuppres-
sion, the presence of pro-tumoural metabolism may potentially
promote virus-induced cancerisation.

Activating invasion and metastasis
Intratumoural microorganisms can alter the internal features of
oncocytes and their external microenvironment to promote
cancer metastasis.237 On the one hand, they directly modulate
cancer cells to cope with an unfavourable environment.238,239

The epithelial-mesenchymal transition (EMT) process imparts the
transition of carcinoma cells with a metastatic mesenchymal
phenotype via the TGFβ/SMAD, PI3K/AKT, Wnt/β-catenin, and MAPKs
signalling pathways, which drives the invasion and spread of
carcinoma cells.240 Multiple investigations have demonstrated the
association between microorganisms and EMT.241 A novel virulence
protein of F. nucleatum, Fn-Dps, induces EMT by upregulating
chemokines CCL2/CCL7, thus promoting the invasion and metastasis
of mouse CRC cells.242 Li et al. discovered that E. coli, Butyrate-
producing bacteria SM4/1, and a species of Oscillatoria were
correlated with the production of EMT-related genes in bladder
cancer, including E-cadherin, vimentin, SNAI2, SNAI3, and TWIST1.243

In an in vitro study, P. gingivalis was found to increase the expression
of the EMT-associated transcription factors Slug (SNAI2), Snail, and
Zeb1 as well as the levels of phosphorylated glycogen synthase
kinase-3 beta, an important EMT regulator, thereby promoting the
migration of oral epithelial cells.244 The presence of Candida in
advanced metastatic colon tumours might play a role in the
downregulation of genes mediating cellular adhesion, including
PTK2B, CDKN2C, and NET1, thereby leading to metastasis.11 The
microbiota can affect EMT and enhance the expression of cancer
stem cell (CSC) markers. Bessède et al. reported that infection with H.
Pylori CagA-positive strain triggers EMT-like changes and high
expression of CD44 in vitro, a known gastric CSC marker, leading
to an enhanced ability of cells to migrate, invade, and form tumour
spheres.245 In a mouse experiment, ETBF toxin induces downstream
β-catenin nuclear localisation by cleavage of E-cadherin in BC and
subsequently enhances stemness potential, tumour growth, and
metastatic progression.246 Staphylococcus, Lactobacillus, and Strepto-
coccus were highly abundant in a mouse spontaneous breast tumour
model and could restrain the RhoAROCK signalling pathway to
remodel the actin cell skeleton, thereby improving the resistance of
tumour cells to flow shear stress (FSS) and promoting tumour
metastasis.85 The adhesion of tumour cells to endothelial cells in the
bloodstream is another key stage of invasion and metastasis.247 F.
nucleatum mediated a novel PRR, ALPK1, that triggered the NF-κB
signalling pathway and upregulated ICAM1, thereby boosting CRC
cell adhesion to endothelial cells and metastasis.248

Further, the intratumoural microbiota forms a microenviron-
ment conducive to cancer metastasis. In a mouse model of CRC,
tumour-resident E. coli disrupted the gut vascular barrier through
the VirF, promoting the spread of bacteria to the liver and the
recruitment of metastatic cells.249 Furthermore, F. nucleatum
colonises BC and suppresses the accumulation of tumour-
infiltrating T cells through the abundant Gal-GalNAc on tumour
cells, thereby facilitating tumour metastasis in mouse.33 Many
studies have shown that extracellular vesicles (EVs) trigger pro-
inflammatory signalling and activate immunosuppression by

modulating communication between cancer cells and their
surrounding microenvironment as well as distal organ cells,
thereby establishing a pre-metastatic niche for tumour metasta-
sis.250,251 A recent work indicated that F. nucleatum-derived EVs in
BC tissue enhance tumour cell migration and invasion via TLR4.252

However, few studies have investigated whether intratumoural
microbiota-derived EVs play a key role in promoting metastasis or
fully described the mechanisms involved, which may be a worthy
direction for future research.

PROGNOSTIC ROLE OF INTRATUMOURAL MICROBIOTA
Microbiota composition differs significantly between tumours and
healthy tissues, as well as among distinct tumour stages, gene
mutations, and distant tumour metastasis, making it a potential
prognostic tool.8 As our understanding of the influence of
intratumoural microorganisms on tumorigenesis deepens, apply-
ing these profiles in precision oncology becomes more likely.
Here, we briefly summarise the application of various intratu-
moural microbiota to predict cancer survival and therapeutic
efficacy (Table 2).
The abundance of F. nucleatum is correlated with the short

survival of many cancers.253–255 F. nucleatum and Pseudomonas
aeruginosa have been identified as tumour-promoting bacteria
linked to poor outcomes in vulvar squamous cell carcinoma
patients.256 The colonisation of Fusobacterium species in patients
with PDAC is also associated with short survival.257 However, in
some cases, F. nucleatum was unexpectedly found to be positively
correlated with survival, such as in OSCC258 and anal squamous
cell carcinoma.259 Moreover, Alexander et al. recently found that a
cluster of microbiota that included Fusobacterium, Granulicatella,
and Gemella independently predicted higher disease-free survival
(DFS) in patients after CRC resection,260 despite previous studies
linking high F. nucleatum abundance to poor prognosis of CRC.254

This paradox may be due to the enhanced immune response
triggered by an increased abundance of the microbial cluster,
potentially leading to persistent immune memory against CRC
post-surgery and vigilant monitoring for recurrence and metas-
tasis. Therefore, the contribution of microorganisms to prognosis
should be considered in the context of different organ tumours
and treatment modalities.
In addition to F. nucleatum, other microbiota associations with

prognosis have been identified. For instance, a higher burden of
the Actinomycetales and Pseudomonadales orders was related to
lower DFS in stage II non-small cell lung cancer (NSCLC) tumour
tissue.261 Analysis of the microbiota in first-line treatment of
NSCLC samples revealed that the prevalence of certain bacteria,
including Haemophilus parainfluenzae, Serratia marcescens, Acine-
tobacter jungii, and Streptococcus constellation, effectively pre-
dicted 2-year survival.262 Moreover, Thermus is more prevalent in
advanced-stage patients, whereas Legionella is more abundant in
metastatic patients.263 Conversely, the abundance of Pseudomo-
nadaceae, which have antitumour effects, was reduced in tumour
tissues and linearly related to the prognosis of PLC patients.54

Riquelme et al. discovered that the intratumoural microbiota,
including Pseudoxanthomonas, Streptomyces, Saccharopolyspora,
and Bacillus clausii, could be utilised as an ideal combination to
predict the long-term survival of PC.264 Patients with P. gingivalis
infection were found to exhibit substantial reduction in cancer-
specific survival in CRC.265 The Candida-to-Saccharomyces ratio
was positively correlated with the stage of CRC.11 In ovarian
cancer, patients with intratumoural Phaeosphaeriaceae, or related
Phaeosphaeria genus, had substantially decreased progression-
free survival (PFS).12 In addition, high HERV expression in kidney
cancer was associated with poorer survival.118 A recent prospec-
tive analysis demonstrated the prognostic significance of the
measurable microbiome in soft tissue sarcoma, especially
intratumoural viral microbiome, which is associated with higher
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NK cell infiltration and improved clinical outcomes.266 Beyond the
individual roles of certain microorganisms, microbial clustering or
combinations demonstrate unique prognostic value. Sun et al.
identified two hepatotypes based on the microbial profile
clustering, representing independent prognostic factors in
patients with resected HCC.267 Song et al. developed a
microbiome-related score model based on 27 microorganisms
that acted as an independent prognostic factor for HCC
patients.268

Specific intracellular microorganisms have also been related to
immunotherapy efficacy across various cancers. A higher abun-
dance of F. nucleatum is correlated with the reduced efficacy of
neoadjuvant chemotherapy in oesophageal squamous cell carci-
noma. Targeting this bacterium with antibiotics may potentially
enhance the curative effect in oesophageal squamous cell
carcinoma patients.269 In patients with metastatic melanoma
receiving immunotherapy, Clostridium is enriched in tumours that
responded to ICIs, while Gardnerella vaginalis is enriched in the
tumours of non-responders.7 Interestingly, previous research
suggested that H. pylori infection is correlated with a favourable
outcome in GC patients.270–272 However, recent studies have
indicated that the presence of H. pylori may affect the efficacy of
ICIs in melanoma,273 NSCLC,274 and advanced GC,275 introducing a
new paradox regarding the varied effects of the same

microorganism on cancer occurrence, prognosis, and treatment
efficacy. Fungi also play a role in immunotherapy response in
metastatic melanoma, with the Cladosporium genus significantly
enriched in non-responders.12 Therefore, further understanding of
whether intracellular microbiota could interfere with drug efficacy
is essential as well as exploring whether targeted microbiota
therapy represents an effective strategy to improve tumour
efficacy and patient prognosis.
Prospective microbiome studies have aided in cancer diagnosis

and prognosis. Although the microbiome as a prognostic factor
requires further research and validation, if its predictive and
prognostic capabilities are confirmed, this biomarker could
significantly advance the goal of precision medicine for patients
with cancer. Unlike intestinal and blood microbiota, intratumoural
microbiota is in close proximity to tumour cells, allowing for a
more accurate reflection of the actual state of the tumour.
However, given that obtaining tissue samples are invasive and
difficult, many current studies often use alternative specimens,
such as sputum, BALF, and airway brushing tissue, to screen for
lung cancer; however, they may introduce certain errors. With the
rapid advances in technology and bioinformatics approaches,
combining microbiome-based blood diagnostics and imaging
evidence of their spatial distribution may improve cancer
detection and prognosis. Furthermore, integrating multiple-

Fig. 4 Application of intratumoural microbiota in cancer therapy. a Antibiotics. Cell membrane-penetrating antibiotics and nano-antibiotics
can target intratumoural microorganisms, thereby improving clinical drug efficacy. b Bacteriophages. Bacteriophages can precisely target and
eliminate harmful microbes within tumours and provide an effective therapeutic load to attract antitumour immune cells to the attack site by
being modified into programmable bacterial assassins. c Engineered bacteria. Engineered bacteria can exert significant antitumour effects
through a variety of payload delivery and effector systems, such as the production of prodrug-converting enzymes, expression of controlled
cytotoxic agents, stimulation of immune responses, and targeting of tumour stroma. d Oncolytic viruses. Oncolytic viruses can exploit
dysregulated signalling pathways to cause cell lysis and death or damage blood vessels to reduce tumour cell growth. Oncolytic viruses can
also increase PD-L1 expression in tumours and immune cells, resulting in more sensitive targets for anti-PD-L1 immunotherapy. Created with
BioRender.com
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omics data through artificial intelligence with other emerging
sampling techniques, such as ingestible capsules for microbiome
sampling, will enable further precision diagnosis and prognostic
strategies.276–278

Nevertheless, challenges still exist regarding environmental
pollution, low microbial biomass, and antibiotic perturbation.
Moreover, most research has focused on advanced tumours,
highlighting the need for future work to focus on detecting
precancerous lesions or early-stage tumours to achieve early
diagnosis and treatment.

APPLICATIONS OF INTRATUMOURAL MICROBIOTA IN CANCER
THERAPY
Rapid identification and treatment achieve better outcomes in
patients with cancer; treatment strategies vary depending on the
type of cancer. Different cancer subtypes, mutation states, and
degrees of invasion need specific treatment for optimal efficacy,
making individualised treatment particularly important.279 Some
specific microorganisms have been reported as direct factors
responsible for the development of cancer. Certain medications
have been used clinically to eradicate microorganisms to prevent
cancer as much as possible and to assist in the treatment of
cancer; these include the use of quadruple antibiotics to prevent
and treat H. pylori-derived GC,280–282 direct antiviral drugs (DAAs)
against HCV,283,284 as well as vaccination against HPV and HBV to
prevent cervical, head-and-neck, and liver cancer.285,286 Due to the
significance of the microbiome in carcinogenesis, targeting
intratumoural pathogenic microbiota may be beneficial for precise
cancer therapy and prevention of recurrence.

Antibiotics
Gamma-Proteobacteria present in PDAC produces the bacterial
enzyme cytidine deaminase (CDD) to metabolise the chemother-
apy drug gemcitabine (2’, 2’-difluorodeoxycytidine) into its
ineffective form (2’, 2’-difluorodeoxyuridine), thereby reducing its
efficacy and leading to drug resistance in PC.90 F. nucleatum is
abundant in CRC chemotherapy patients’ tissues, reduces CRC
apoptosis, and causes CRC resistance to Oxaliplatin and
5-fluorouracil.287 Multiple retrospective investigations have found
that antibiotic therapy improves cancer patients’ survival (Fig. 4a).
For example, patients treated with gemcitabine-based and 5-FU-
based chemotherapy respectively, were found to have signifi-
cantly prolonged PFS after antibiotic therapy.288 In addition,
metronidazole reduced the amount of Fusobacterium, reproduc-
tion of carcinoma cells, and development of tumours in a mouse
model of CRC.289 A recent study found that aerosolised and oral
absorbable antibiotics can reduce mouse mammary tumour
growth, and it also showed that paclitaxel treatment in combina-
tion with ampicillin improved the chemotherapeutic efficacy in
BC.290 Another mouse study indicated that antibiotics could
counteract the metastatic effects of F. nucleatum in BC.33

However, the systemic administration of antibiotics can not only
eliminate the tumour microbiota but also disturb the gut
microbiome, which further affects the efficacy of antitumour
therapy. As the intestinal microbiota plays a crucial role in tumour
development, the consequences of antibiotic use via different
administration routes can be complicated.85 A study demon-
strated that exposure to antibiotics shortly before or after the start
of ICI could lead to the disruption of microbiota, which may be
detrimental to ICI efficacy.291 Moreover, Jing et al. found that
antibiotic treatment was linked with an increased risk of immune-
related adverse events among cancer patients receiving anti-
programmed cell death protein 1 (PD-1)/PD-L1 therapies.292 Stein-
Thoeringer et al. recently demonstrated that treatment with wide-
spectrum antibiotics before CD19-targeted chimeric antigen
receptor (CAR)-T cell therapy is associated with adverse out-
comes.293 Additionally, Laura et al.’s study indicated that gut

dysbiosis induced by the wide-spectrum antibiotic cocktail
treatment in mouse epithelial ovarian cancer could promote
tumour growth and suppress cisplatin sensitivity.294 Although the
advantages and disadvantages of implementing antibiotics in
cancer treatment are still difficult to clarify due to their intricate
effects on gut microbiota, clearance of the tumour-infiltrating
microbiome (TIM) is a key point in cancer therapy. Thus, further
exploration is required into precisely targeting TIM without
disrupting the gut microbiome. Administration of the cell
membrane-penetrating antibiotics, such as doxycycline, can be a
potential choice.85 Gao et al. developed metronidazole-
fluorouridine nanoparticles (MTI-FDU) in a hydrophilic solution,
and they achieved TIM targeting through increasing penetrability
and retention effect in solid tumours.295 Further in-depth analysis
of how to efficiently eliminate the pro-tumoural TIM and keep a
balanced microbiota system will provide more insights into cancer
therapies.

Bacteriophages
The dysbiotic influence of antibiotics on microorganisms, bacterial
resistance, and the impenetrability of biofilms have made it
challenging to accurately ablate the microbiome in tumours using
antibiotics.296–299 However, bacteriophages can precisely target
and eliminate harmful microbes within tumours,300 and several
Fusobacterium-targeted phages were shown to effectively invade
bacteria within tumours (Fig. 4b). Researchers are now utilising
synthetic biology techniques to modify phages into program-
mable bacterial assassins capable of delivering an effective
therapeutic load to attract antitumour immune cells to the attack
site.301 For example, azide-modified phages targeting F. nucleatum
have been studied to covalently bind irinotecan nanoparticles and
improve their delivery to mouse colon tumours.302 Although many
studies have reported the safety of bacteriophages because they
only reproduce in bacteria, they have been shown to induce host
inflammation and immune responses.303,304 Therefore, determin-
ing the type, dosage, and mode of administration of bacter-
iophages is essential.305

Specificity, one of the advantages of bacteriophages as a
customised fungicide, instead limits the therapeutic efficacy of
bacteriophages by restricting their ability to kill only a specific
type of bacteria. In this case, therapeutic bacteriophages must be
specially selected and produced according to the different
bacterial strains of different patients. Expanding the bactericidal
range of bacteriophages is the focus of current research. Of those,
cocktail therapy with a mixture of multiple bacteriophages is
currently considered the best bacteriophage regimen.306 Bacter-
iophages are more suitable as a complement for antibiotics or a
last resort when other effective therapies are not available;
however, they are not a complete substitute for antibiotics.307

Engineered bacteria
Given the advent of synthetic biology, multiple bacteria have been
modified to have lower toxicity and higher capability to accurately
target tumour tissues.308 These tumour-targeting bacteria play a
significant antitumour role via a variety of payload delivery and
effector systems, such as the production of prodrug-converting
enzymes, expression of controlled cytotoxic agents, stimulation of
the immune response, and targeting the tumour stroma (Fig.
4c).309

Some bacteria produce prodrug-converting enzymes that
enhance drug efficacy, including CDD. A study discovered that
intratumoural injection of attenuated Salmonella typhimurium (S.
typhimurium) strains VNP20009 expressing E. coli CDD significantly
increased intratumoural 5-FU levels in cancer patients.310 The
Bifidobacterium infantis-mediated prodrug enzyme delivery system
of herpes simplex virus type I thymidine kinase/ganciclovir (HSV1-
TK/GCV) significantly reduced bladder cancer progression in a rat
model.311 Moreover, tumour-targeting bacteria can be engineered
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to express controlled cytotoxic drugs with antitumour effects.
Utilising tumour-targeting systems with the non-pathogenic E. coli
strain, MG1655 induced targeted production of TNF-α in mouse
tumours, which demonstrated the tumour-suppressive effect.312 In
two other mouse studies, the expression of cytolysin A (Cly A) in E.
coli or S. typhimurium was regulated by inducible or constitutive
promoters, achieving localisation to tumour tissue.313,314 Engi-
neered bacteria can enhance antitumour activity by stimulating
immune responses. A probiotic strain of E. coli Nissle 1917 was
engineered to target mouse tumours and transform the accumu-
lated metabolic waste product, ammonia, in the TME into L-
arginine, which increased T cell activity and enhanced the efficacy
of immunotherapy.315 Moreover, researchers designed an atte-
nuated S. typhimurium strain that released Vibrio trauma flagellum
B (FlaB) in the tumour tissue of the mouse and caused M1-like
macrophages to increase and M2-like macrophages to decrease
through TLR4 signalling.316 In addition, Listeria harbouring-
galactosylceramide could enhance the activity of NKT cells and
further reduce metastasis in a mouse breast tumour model.317 By
taking advantage of bacterial enzymes targeting the tumour
stroma, engineered bacteria can also be applied to treat solid
tumours that are difficult to target using conventional therapies.
Ebelt et al. engineered an attenuated tumour-targeting strain of S.
typhimurium secreting functional bacterial hyaluronidase that
degraded the deposition of human hyaluronic acid and signifi-
cantly enhanced penetration of chemotherapeutic agents in
orthotopic human PDAC mouse models.318 Moreover, many
natural bacteria have antitumour effects, such as Staphylococcus
epidermidis, which is capable of producing 6-N-hydroxy-amino-
purine, a molecule that inhibits DNA polymerase activity to
selectively inhibit the proliferation and development of skin
tumours in mouse.319 Modifying these natural bacteria to target
tumour inhibition will be a new research prospect.
Bacteria-based tumour therapy could provide multiple oppor-

tunities, but most research is still in the preclinical phase. This may
be due to underlying differences between model organisms and
humans in their genetic backgrounds or disease heterogeneity.
Moreover, safety issues cannot be ignored. First, as the
pharmacokinetics and dose responses of live bacteria differ from
the norm, it poses a challenge in determining the optimal initial
dose and schedule of administration. Secondly, engineered
bacterial therapy involves transforming tumour foci into locally
destructive tumour infections that, if not managed properly, can
result in life-threatening infections or sepsis. Third, it is essential to
prevent the contamination of the adjacent medical environment
by living bacteria.

Oncolytic viruses
Oncolytic virus (OV) therapy involves intratumoural injection of
genetically modified and attenuated viruses to selectively target
cancer cells. OVs utilise the susceptibility of tumour cells to viral
infection and exploit dysregulated signalling pathways to cause
cell lysis and death. The antigens secreted from tumour cell lysis
are taken up by antigen-presenting cells to further stimulate
antitumour immunity. Moreover, OV can damage blood vessels,
thus reducing tumour cell growth (Fig. 4d).320

Both in vivo and in vitro studies have demonstrated that the
oncolytic poxvirus JX-594 replicates within and attacks tumour
cells of various types of cancer by activating the EGFR/Ras
signalling pathway and deactivating the type I IFN response
pathway.321 Moreover, the arenavirus lymphocytic choriomenin-
gitis virus replicates within tumour cells in multiple mouse and
human cancers, inducing antitumour immunity by enlisting IFN-
producing Ly6C+ monocytes and increasing the abundance of
tumour-specific CD8+ T cells.322 Chen et al. found that variant
OVs generating IL-23 increased the level of antitumour factors and
infiltration of activated T cells in the TME, thereby converting the
immunosuppressive phenotype and eliciting antitumour

immunity in multiple mouse tumour models.323 In addition, OVs
enhance PD-L1 expression in tumours and immune cells, resulting
in more sensitive anti-PD-L1 immunotherapy targets. Coxsack-
ievirus A21 combined with pembrolizumab partially increased the
number of PD-L1+ tumour cells and exhibited well tolerance in a
clinical trial.324 This indicates that the combination of OVs and ICIs
may enhance antitumour efficacy while limiting toxicity, com-
pared with that of monotherapy.325 Thus far, four OVs have been
approved for cancer treatment worldwide, among which Talimo-
gene laherparepvec (T-VEC) for melanoma is the first widely
approved and recognised OV.326

However, the clinical transformation of OVs remains challen-
ging. Combining OVs and radiotherapy, chemotherapy, or
immunotherapy generally achieves a better therapeutic effect
than the modalities alone. As replicable live viruses, OVs have
received considerable attention in terms of safety. It is necessary
to carefully examine the administration method, dosage, volume,
time, and drug preservation method. Although intratumoural
injection is the main administration route of the OVs,326 growing
evidence has supported the possibility of intravenous injection.327

This possibility raises new problems; for example, OVs may be
recognised and eliminated by the immune system, which would
significantly decrease their efficacy. Therefore, new delivery
methods for OVs have been in development, such as polymer
coating or cell vectors.328–330 In addition, no reliable predictive
biomarkers are available to identify which patients are candidates
for OV treatment. Song et al. found that matrix remoulding
associated 8 (MXRA8), which is widely and highly expressed in
multiple solid tumours, is the receptor and therapeutic biomarker
of oncolytic virus M1 (OVM). Further research showed that the
tumour selectivity of OVM mainly hinges upon the combination of
MXRA8 and zinc-finger antiviral protein.331 More similar studies
are needed to provide precision medicine guidance for OV
treatment.

Microbial intervention in the context of immunotherapy
Cancer immunotherapy has emerged as a significant means of
combating cancer, mainly including immune checkpoint therapy
represented by CTLA-4 and PD-1 and adoptive T cell therapy
represented by CAR-T therapy.332 Based on the established role of
host microbiota in modulating immunotherapy responses, many
studies have begun to attempt to manipulate the microbiome for
therapeutic purposes; faecal microflora transplantation (FMT),
probiotics, and antibiotics are examples of this approach.
Vetizou et al. revealed the correlation between Bacteroides

fragilis (B. fragilis) and the efficacy of CTLA-4 blocking in mouse
models and melanoma patients. Oral gavage (OG) with B. fragilis
and FMT from responding humans to mouse altered the
immunotherapy response of germ-free, non-responding
mouse.333 In addition, through FMT from JAX mouse that were
effective for anti-PD-L1 therapy to TAC mouse, Sivan et al. showed
that PD-L1 antibody levels were enhanced to inhibit melanoma in
TAC mouse and further identified Bifidobacterium to be the
responsible microbe.334 Other studies have reported similar results
that microbial intervention boosts immunotherapy.223,335

These results indicate the benefits of microbial-based interven-
tions in the context of immunotherapy; nevertheless, further
studies in patients with different cancer types are warranted.
Given the feasibility of stool collection from human donors, the
use of FMT in immunotherapy is undoubtedly a promising area.
Clinical trials have shown that FMT can benefit melanoma
patients.336,337 In addition, immunotherapy combined with
probiotic administration is another powerful research direction,
which is more targeted to combine one or multiple microorgan-
isms into a single formula.338 It is worth noting that there are few
studies on whether bacteriophages affect immunotherapy
responses in cancer patients. A study has shown that a
bacteriophage-specific T cell epitope is correlated with anti-PD-1
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therapy response in mouse.339 Accordingly, screening for differ-
ential bacteriophages from patients with different immune
response states and combined immunotherapy through an
approach similar to probiotic supplementation may help maximise
benefits.
However, integrating animal model data into complex human

tumours and antitumour immunotherapy is challenging. As
mentioned earlier, broad-spectrum antibiotics disrupt the gut
microbiota and impair immunotherapy efficacy and long-term
patient survival. How to use specific antibiotics to remove
immunosuppressive microbes is a key question. In addition,
studies have found that non-targeted use of commercially
available probiotics may not be beneficial to immunotherapy
efficacy and may cause immunotherapy-related autoimmune
events.340–342 Therefore, additional research is required to identify
the underlying mechanisms of these microbial interventions and
to develop personalised beneficial probiotics for patients with
different living environments and dietary habits.343 Meanwhile, in
order to avoid the risk of infection in cancer patients with
weakened immune systems, beneficial substances produced by
microorganisms or prebiotics can be used instead of probiotics.344

In addition, most current studies are based on gut microbes,
and there are few studies on the role of tumour microbes in
immunotherapy efficacy. It remains unknown whether there is a
crosstalk between the gut microbes and the intratumoural
microbes and whether changing the gut microbes will affect the
intratumoural microbes and the characteristics of the host
immune microenvironment; these aspects need to be explored.
The study by Riquelme et al. may provide a way forward.264 Using
human-mouse FMT from short- and long-term survival or control
donors, they found that gut microbes can differentially regulate
pancreatic tumour microbiome, thereby affecting tumour growth
and tumour immune infiltration. Moreover, a recent study showed
that OG probiotic Lr translocated from the gut and persistently
colonised the tumours in melanoma mice, promoting the
response of CD8+ T cells in TME and enhancing the therapeutic
effect of anti-PD-L1.221 Thus, these microbial interventions may
function through the gut-tumour microbiome crosstalk or a
suitable niche provided by the TME, and direct intratumoural
targeting may further enhance immunotherapy efficacy in the
future. In addition, the research progress of CAR-T therapy for solid
tumours is limited, so there are few studies on the influence of
intratumoural microorganisms on CAR-T therapy. It is not yet
known whether microorganisms can be a new breakthrough for
CAR-T treatment of solid tumours.

CONCLUSION AND OUTSTANDING QUESTIONS
The microbiota has received widespread attention as a critical
component in tumours. TME microbiota that modulates tumour
development and affects cancer therapy is drawing increasing
attention. Multiple tumours are thought to harbour distinct
microbial communities, and the intratumoural microbiota may
facilitate cancer development through various mechanisms, such
as genomic instability and mutation, epigenetic modification,
tumour-promoting inflammation, immune evasion, metabolic
regulation, and activation of invasion and metastasis. Under-
standing this complex relationship between microbes and
tumours could provide valuable insights into potential and
existing cancer treatment options. Many bacteria that have been
modified to be less virulent and accurately target tumour tissues
have shown significant antitumour effects in preclinical studies.
Moreover, microbial combinations with chemotherapy/immu-
notherapy may reduce drug resistance and improve anticancer
efficacy.
Several studies have reported contradictory conclusions when

describing the relationship between microorganisms and
tumours.60,61,110–112 Therefore, standardised protocols for the

study of intratumoural microorganisms should be developed
and generally adopted. In addition, most studies are microbe-
based cross-sectional studies that could not determine a causal
relationship between intratumoural microorganisms and tumor-
igenesis. Although many studies have suggested that intratu-
moural microbes are the cause of cancer, we cannot deny the fact
that microbial changes are the result of the development of
certain cancers. Nevertheless, it is meaningful to use longitudinal
prospective studies with large sample sizes and further explore
the effects of the intratumoural microbiota on cancer cells of
different phenotypes as well as immune cells. Recently, Bullman
proposed that cancer cells and intratumoural microbiota may
have a mutualistic relationship; that is, they both need to evade
the immune system, and both have the capability to migrate or
spread to new permitted niches.345 Therefore, despite the
complex crosstalk between microbiota and tumours, it may be
possible to treat tumours by modifying or manipulating the
intratumoural microbiota.
The study of intratumoural microbiota in tumorigenesis and

progression is just the beginning. Sophisticated animal models are
needed in the future to trace tumour cells affected by
microorganisms to provide more preclinical evidence. Interdisci-
plinary approaches are also necessary to quantitatively under-
stand the relationship between microbes in tumours and tumour
formation and development. Future work should also focus on the
relationship between intratumoural microbes and other clinical
factors known to be linked to the risk of various cancers, such as
inflammatory and metabolic markers, to determine whether these
factors have an additional effect on the composition of
intratumoural microbiota. In addition, linking tissue microbial
differences between healthy and high-risk individuals with cancer
development might contribute to establishing more effective
cancer prevention and diagnosis methods; however, the effort is
complicated by the ethical and accessibility challenges associated
with normal human tissue. In terms of antitumour therapy, studies
linking identified microbial signatures to tumour response
regulation could identify new targets for clinical intervention.
Exploring combination therapy strategies based on microbial
intervention to improve the clinical treatment effect is another
promising research direction.
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