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Metatranscriptome of human lung microbial communities in a
cohort of mechanically ventilated COVID-19 Omicron
patients
Lin Wang1, Jia-Bao Cao2, Bin-Bin Xia 2,3, Yue-Juan Li2,3, Xuan Zhang2,4, Guo-Xin Mo1, Rui-Juan Wang5, Si-Qi Guo2, Yu-Qing Zhang2,3,
Kun Xiao1, Guang-Fa Zhu6, Peng-Fei Liu1, Li-Cheng Song1, Xi-Hui Ma7, Ping-Chao Xiang8, Jiang Wang1, Yu-Hong Liu1, Fei Xie1,
Xu-Dong Zhang2,3, Xiang-Xin Li9, Wan-Lu Sun10, Yan Cao11, Kai-Fei Wang12, Wen-Hui Zhang2,3, Wei-Chao Zhao5, Peng Yan13,
Ji-Chao Chen14, Yu-Wei Yang7, Zhong-Kuo Yu1, Jing-Si Tang2, Li Xiao7, Jie-Min Zhou15, Li-Xin Xie1✉ and Jun Wang 2,3✉

The Omicron variant of the severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2) infected a substantial proportion of
Chinese population, and understanding the factors underlying the severity of the disease and fatality is valuable for future
prevention and clinical treatment. We recruited 64 patients with invasive ventilation for COVID-19 and performed
metatranscriptomic sequencing to profile host transcriptomic profiles, plus viral, bacterial, and fungal content, as well as virulence
factors and examined their relationships to 28-day mortality were examined. In addition, the bronchoalveolar lavage fluid (BALF)
samples from invasive ventilated hospital/community-acquired pneumonia patients (HAP/CAP) sampled in 2019 were included for
comparison. Genomic analysis revealed that all Omicron strains belong to BA.5 and BF.7 sub-lineages, with no difference in 28-day
mortality between them. Compared to HAP/CAP cohort, invasive ventilated COVID-19 patients have distinct host transcriptomic
and microbial signatures in the lower respiratory tract; and in the COVID-19 non-survivors, we found significantly lower gene
expressions in pathways related viral processes and positive regulation of protein localization to plasma membrane, higher
abundance of opportunistic pathogens including bacterial Alloprevotella, Caulobacter, Escherichia-Shigella, Ralstonia and fungal
Aspergillus sydowii and Penicillium rubens. Correlational analysis further revealed significant associations between host immune
responses and microbial compositions, besides synergy within viral, bacterial, and fungal pathogens. Our study presents the
relationships of lower respiratory tract microbiome and transcriptome in invasive ventilated COVID-19 patients, providing the basis
for future clinical treatment and reduction of fatality.
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INTRODUCTION
The coronavirus disease 2019 (COVID-19) pandemic has caused
over 6.8 million deaths worldwide since the beginning of 2020.1

The most recent variant, Omicron, has the highest transmissi-
bility (R0 > 7) of all variants to date.2 In December 2022, China
relaxed the national “zero COVID” policy; and by January 2023, it
was estimated that ~80% of individuals in China had been
infected by the Omicron variant, and the general population may
have established herd immunity. Despite the decreased fatality
and lower proportion of severe cases caused by Omicron
compared to previous variants (such as Beta and Delta), the

large number of infections still led to a large number of
hospitalizations and deaths. Official reports state that the current
wave has caused over 1.6 million in-patient hospitalizations and
~60,000 COVID-related deaths in China.3 Thus far, several
parameters have been linked to increased COVID-19 severity
and fatality rates, namely patient age (older), sex (male), and the
presence of underlying diseases (especially diabetes, hyperten-
sion, and those causing immune suppression).4 However,
additional contributing factors remain identification which may
aid in establishing disease prognoses and developing axillary
therapies.
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The microbiome of the lower respiratory tract has increasingly
been recognized for its importance in both infectious and non-
infectious respiratory diseases, refuting an earlier hypothesis that
the lung is a sterile environment.5 In chronic obstructive
pulmonary disease (COPD), the third most common cause of
death worldwide, exacerbation of the disease is associated with
increases in pathogenic bacteria such as Proteobacteria and
Moraxella in the commensal microbiome6; host immune system
stimulation by such microbes increases inflammation.7 In bacterial,
fungal, and viral pneumonia, co-infections commonly occur with
opportunistic pathogens present in the commensal microbial
community.
Microbiome-based analyses of sputum and fecal samples

collected from individuals with COVID-19 have revealed significant
shifts in the microbial communities compared to healthy
controls,8,9 and additional bacterial signatures have been asso-
ciated with disease severity.10 However, the microbiome of the
lower respiratory tract (which theoretically has closer interactions
with COVID-19, a pneumonic disease) has not been thoroughly
characterized; as in severe and fatal cases, the disease manifesta-
tion is most prominent in the lower respiratory tract, and the
lower respiratory tract microbiome would be the most relevant.
We hypothesized that the eventual clinical outcomes (survival

or death) in invasive ventilated cases of COVID-19 were associated
with the lung microbiome, and that co-infections and shifts in the
commensal microbiome could be identified from analysis of the
BALF. Additionally, host gene transcripts from the BALF would
provide information regarding differences in immune responses
and other potential responses to microbiome changes. To assess
this hypothesis, we carried out transcriptomic analysis using both
the Oxford Nanopore Technology (mtTGS)11 and Illumina (mtNGS)
platforms. Analyses were conducted on BALF samples collected
within a short period between the end of 2022 and the beginning
of 2023 from a Beijing cohort of invasively ventilated COVID-19
patients who required intubated ventilation and had not been
exposed to previous variants of severe acute respiratory syndrome
coronavirus (SARS-CoV)-2.

RESULTS
Cohort description
Between December 7th, 2022, and January 25th, 2023, we
collected BALF and blood samples from a total of 64 individuals
who were intubated due to severe pneumonia and tested positive
for SARS-CoV-2. The individuals were sampled from among eight
medical centers in the Beijing area of China. The median age of
the probands was 80.00 (70.00–85.00), and 48 (75.00%) were male.
Among the 64 probands, a total of 45 died within 28 d of
intubation (non-survivors) and the remaining 19 were discharged
after recovery (survivors). Samples were also collected from an
additional cohort of severe Hospital Acquired Pneumonia/Com-
munity-Acquired Pneumonia (HAP/CAP) patients from November
to December 2019 (before the COVID-19 pandemic), consisting of
20 survivors and seven non-survivors; there were no significant
differences in the age or gender distributions compared to the
COVID-19 patient cohort (Supplementary Table. 1).

Clinical parameters associated with 28-d mortality
We first investigated anthropometric characteristics, clinical
parameters, and cytokine profiles associated with clinical out-
comes in invasive ventilated COVID-19 patients. We found no
significant differences between survivors and non-survivors with
respect to age distribution (Mann–Whitney U-test, one-tailed
p= 0.49), age, or blood parameters (Table 1); however, the
survivors had significantly lower levels of SOFA (11.00, 9.50–14.00
in non-survivors compared to 8.00, 7.00–11.00 in survivors;
p < 0.01), lower APACHE II scores (26.00, 24.00–27.00 in non-
survivors and 19.00, 17.00–21.00 in survivors; p < 0.01), and higher

Table 1. Clinical Characteristics of the Study Population

Survival (n= 19)
Median (IQR)

Death (n= 45)
Median (IQR)

P value

Age, yr 80.00 (16.00) 80.00 (13.00) 0.49

Sex 0.22

Male, n (%) 16.00 (84.21) 32.00 (75.00)

Female, n (%) 3.00 (15.79) 13.00 (25.00)

Co-morbiditya, n (%) 16.00 (84.21) 42.00 (93.33) 0.25

SOFA score 8.00 (4.00) 11.00 (5.00) <0.01

APACHE II score 19.00 (4.00) 26.00 (3.00) <0.01

PaO2/FiO2 188.00 (199.00) 132.86 (144.35) 0.02

D-dimer (μg/L) 2270.00
(5626.00)

2012.00
(3492.00)

0.45

Lactic acid(mmol/L) 1.50 (1.30) 2.00 (1.30) 0.15

BNP(pg/ml) 209.00 (615.00) 278.50 (717.00) 0.33

TnI(pg/mL) 21.89 (128.65) 13.50 (49.20) 0.70

CK-MB(ng/mL) 3.00 (5.77) 3.58 (12.70) 0.19

ALT(U/L) 21.00 (54.40) 22.80 (25.20) 0.92

AST(U/L) 29.90 (42.90) 36.05 (24.70) 0.71

Total bilirubin (μmol/L) 12.90 (9.00) 13.60 (9.55) 0.49

Albumin (g/L) 30.60 (7.80) 30.10 (7.35) 0.06

Creatinine (μmol/L) 88.00 (67.55) 81.50 (89.44) 0.38

BUN(mmol/L) 11.33 (9.16) 11.90 (11.08) 0.73

UA(μmol/L) 262.30 (184.80) 292.80 (171.80) 0.55

GLU(mmol/L) 8.12 (5.24) 9.93 (8.05) 0.51

Neutrophil(109/L) 7.75 (6.36) 10.12 (8.40) 0.21

Neutrophil
percentage(%)

91.00 (6.30) 92.40 (10.00) 0.17

Lymphocyte (109/L) 0.51 (0.40) 0.45 (0.37) 0.19

Lymphocyte percentage
(%)

5.00 (4.20) 4.20 (5.10) 0.16

Platelet (109/L) 124.40 (85.00) 171.00 (138.50) 0.10

Erythrocyte(1012/L) 3.71 (1.58) 3.74 (1.07) 0.99

Leukocyte(109/L) 8.57 (6.37) 11.60 (8.73) 0.44

Monocyte(109/L) 0.39 (0.67) 0.39 (0.36) 0.93

BALF cytokine Survival (n= 19) Death (n= 45)

IL-5(pg/mL) 3.15 (6.30) 4.95 (3.53) 0.18

IFN-α(pg/mL) 4.56 (3.27) 5.99 (4.86) 0.05

IL-2(pg/mL) 2.32 (1.96) 2.67 (2.02) 0.07

IL-6(pg/mL) 506.78 (1448.00) 610.73 (1386.36) 0.30

IL-1β(pg/mL) 277.98 (1255.93) 919.89 (3290.46) 0.05

IFN-γ(pg/mL) 12.85 (8.13) 19.61 (28.10) 0.05

IL-8(pg/mL) 7864.79
(9553.95)

8930.17
(8409.79)

0.25

IL-17(pg/mL) 3.53 (2.74) 4.39 (2.89) 0.04

IL-12P70(pg/mL) 2.73 (1.25) 2.90 (1.64) 0.15

TNF-α(pg/mL) 9.24 (23.08) 22.14 (46.99) <0.01

IL-4(pg/mL) 2.98 (1.92) 3.00 (2.04) 0.25

IL-10(pg/mL) 3.58 (2.60) 3.53 (3.67) 0.05

Plasma cytokine Survival (n= 18) Death (n= 42)

IL-5(pg/mL) 2.86 (2.23) 1.81 (2.56) 0.02

IFN-α(pg/mL) 1.65 (2.50) 1.25 (1.89) 0.17

IL-2(pg/mL) 1.41 (1.60) 1.25 (0.72) 0.22

IL-6(pg/mL) 21.16 (294.59) 254.58 (761.84) 0.03

IL-1β(pg/mL) 1.57 (11.70) 0.00 (4.52) 0.20

IFN-γ(pg/mL) 4.44 (7.97) 3.79 (7.97) 0.39
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levels of PaO2/FiO2 (132.86, 86.65–231.00 in non-survivors and
188.00, 145.00–344.00 in survivors; p < 0.05) at the time of
intubation (Table 1). Cytokine levels in the BALF and plasma
indicated that the BALF of non-survivors had significantly higher
levels of interleukin (IL)-17 (4.39, 3.53–6.42 in non-survivors and
3.53, 2.73–5.47 in survivors; one-tailed p < 0.05), IL-6 (254.58,
21.09–782.93 in non-survivors and 21.16, 10.75–305.34 in survi-
vors; one-tailed p < 0.05), IL-10 (4.66, 2.25–9.83 in non-survivors
and 2.17, 1.71–4.13 in survivors; one-tailed p < 0.01), and TNF-α
(22.14, 11.83–58.82 in non-survivors and 9.24, 4.68–27.76 in
survivors; one-tailed p < 0.01), and significantly lower levels of IL-
5 (1.81, 1.20–3.76 in non-survivors and 2.86, 1.84–4.07 in survivors;
one-tailed p < 0.05) (Table 1). We also investigated the percentage
of co-morbidities in non-survivors and survivors, but found no
significant differences with respect to diabetes, hypertension, or
respiratory system diseases.

SARS-CoV-2 genome analysis
Using long reads generated from the Oxford Nanopore Technol-
ogy (ONT) platform and short reads from Illumina sequencing
(Fig. 1a), we assembled and examined the genomes of the SARS-
CoV-2 strains infecting our cohort. A total of 27 complete or near-
complete and five partial genomes were assembled from the 64
patients (Supplementary Table. 2). Phylogenetic analysis indicated
that each genome belonged to one of the two SARS-CoV-2
lineages that dominated this wave of Omicron infections, BA.5 and
BF.7 (Fig. 1b, c). We examined the distribution of the BA.5 and BF.7
lineages between survivors and non-survivors, and found no
significant difference in the survival rate between those infected
with the two lineages; two survivors and 10 non-survivors were
infected with BA.5, whereas six survivors and 14 non-survivors
were infected with BF.7 (p= 0.41, Spearman’s rank sum test) (Fig.
1d). Single nucleotide polymorphism (SNP) analysis revealed a
total of 319 and 243 SNPs in the BA.5 and BF.7 lineages,
respectively. A recent genomic analysis of Beijing Omicron strains
incorporated 682 genomes assembled primarily from the general
population of COVID-19 patients in Beijing during the same time
period as our cohort collection; 131 of the SNPs we identified here
were also reported in that analysis (Supplementary Table. 3). There
was no significant enrichment of individual SNPs in our cohort of
invasive ventilated COVID-19 patients compared to the percen-
tages among the 682 genomes (p > 0.05, Fisher’s exact test for all
SNPs), nor were there significant differences in particular SNPs
between the survivor and non-survivor groups (p > 0.05, Fisher’s
exact test for all SNPs). Thus, it was not likely that particular SARS-
CoV-2 Omicron lineages or individual SNPs were responsible for a

higher occurrence of invasively ventilated COVID-19 cases or
increased mortality.

Host transcriptomic signatures in survivors and non-survivors of
COVID-19
Human transcripts accounted for the majority of the BALF
metatranscriptomic data, averaging 56.47% of the reads. These
transcripts were used to profile host gene expression in the lung
tissue of invasive ventilated COVID-19 patients and to identify
signatures specific to COVID-19 patients through comparison to
data from severe HAP/CAP patients before the pandemic. First, in
comparing gene expression in the invasive ventilated COVID-19
patients compared to the severe HAP/CAP patients, we found a
total of 2,324 significantly up-regulated genes (|fold change
[FC]| > 1.5, p < 0.05) and 33,668 down-regulated genes (|FC | > 1.5,
p < 0.05) (Supplementary Fig. S1a). Pathway enrichment analysis of
the differentially expressed genes suggested that the intrinsic
apoptotic signaling and response to virus pathways were
significantly elevated in COVID-19 compared to HAP/CAP patients,
reflecting a distinct host response to SARS-CoV-2 infections
(Supplementary Fig. S1b).
Next, we compared gene expression between invasive venti-

lated COVID-19 survivors and non-survivors. In survivors, there
were 489 significantly up-regulated genes, with the most strongly
up-regulated genes including EGFR, PTPN23, and PANX1. There
were 187 significantly up-regulated genes in non-survivors, the
most strongly up-regulated of which included CXCL10, CCL20, and
CCL8 (Fig. 2a). Pathway enrichment analysis indicated that genes
associated with viral processes were significantly up-regulated in
survivors. Neutrophil chemotaxis and neutrophil migration could
be observed to be significantly enriched in non-survivors (Fig. 2b).
Further, we compared the intersection of external differential
genes (compared to HAP/CAP) with internal differential genes
(COVID-19 survivors compared to non-survivors), and we identi-
fied 268 and 97 significantly up-regulated genes in survivors and
non-survivors in COVID-19 patients, respectively (Fig. 2c). These
genes demonstrate both up- and down-regulated genes in COVID-
19 survivors, but exclude the portion shared by HAP/CAP that is
specific to COVID-19 patients. Among the overlapping differential
KEGG pathways in COVID-19 patients vs HAP/CAP patients, and
COVID-19 Survivors vs. Non-survivors. Cytokine-cytokine receptor
interaction, Chemokine signaling pathway, and IL− 17 signaling
pathway were significantly enriched in non-survivors (Fig. 2d),
agreeing with previous reports on COVID-19 patients.12 Further
examination of the intersection of internal differential genes in
COVID-19 patients and internal differential genes in HAP/CAP
patients, eight of which were shared with survivors and non-
survivors of invasive ventilated COVID-19: IGHA1, CACNA1C-AS3
upregulated in survivors of both cohorts, and BPIFA1, RIT1,
CCDC146, CFAP300, ENSG00000290744, WTAP upregulated in non-
survivors of both cohorts (Supplementary Fig. S1c). The gene
BPIFA1 encodes a product with antimicrobial activity13 and was
significantly down-regulated in survivors of COVID-19 patients
with bacterial co-infections, suggesting attenuated host responses
as a result of co-infection. IGHA1, which is associated with an
antibody immune response, was significantly up-regulated in
survivors, suggesting an increased immune response in COVID-19
patients. These genes were significantly associated with clinical
outcomes in both COVID-19 and HAP/CAP patients. In addition,
COVID-19 non-survivors showed significant enrichment of genes
associated with neutrophil chemotaxis and lymphocyte migration
compared to the HAP/CAP non-survivors, indicating that these
factors may specifically explain clinical outcomes in those infected
with COVID-19 (Fig. 1d).

The lower respiratory tract microbiome and COVID-19 outcome
We next analyzed the lung microbial community composition of
each patient by mapping metatranscriptomic data to reference

Table 1. continued

Survival (n= 19)
Median (IQR)

Death (n= 45)
Median (IQR)

P value

IL-8(pg/mL) 14.51 (15.87) 21.25 (38.41) 0.06

IL-17(pg/mL) 2.95 (1.73) 3.11 (2.33) 0.25

IL-12P70(pg/mL) 1.75 (0.35) 1.76 (0.35) 0.47

TNF-α(pg/mL) 0.41 (4.71) 0.77 (2.57) 0.46

IL-4(pg/mL) 1.46 (0.31) 1.48 (0.42) 0.49

IL-10(pg/mL) 2.17 (2.42) 4.66 (7.58) <0.01

aCo-morbidity is defined as ≥1 of the following conditions: hypertension,
diabetes, cardiac disease, kidney disease, digestive system disease,
autoimmune disease, thma, chronic obstructive pulmonary disease, and
malignancy. SOFA sequential organ failure assessment, APACHE II Acute
Physiology and Chronic Health Evaluation II, PaO2 /FiO2 partial pressure of
oxygen (PaO2)/fraction of inspired oxygen (FiO2), BNP brain natriuretic
peptide, TnI troponin I, CK-MB Creatine Kinase MB, BUN blood urea
nitrogen, UA blood uric acid, GLU glucose, IQR interquartile range

Metatranscriptome of human lung microbial communities in a cohort of. . .
Wang et al.

3

Signal Transduction and Targeted Therapy           (2023) 8:432 



genomes of viral, bacterial, and fungal species. Comparative to
negative controls, BALF samples of our cohorts exhibited
significant differences in microbial compositions in each compar-
ison, in addition to significantly higher concentrations of nucleic
acid after extraction and library construction (Supplementary Fig.
S2; Supplementary Table. 4). Of the fragments that could not be
mapped to the human transcriptome (i.e., microbial reads),
sequences from the virome accounted for an average of 34.82%
of the total microbial reads; these were primarily from SARS-CoV-2
(averaging 75.97% of the viral reads) and Human betaherpesvirus
(averaging 8.89% of the viral reads) (Fig. 3a). Bacterial reads
accounted for 40.52% of all microbial reads, with the most
abundant phyla being Proteobacteria, Firmicutes, Actinobacteriota,
and Bacteroidota (averaging 39.49%, 38.31%, 12.60%, and 7.64% of
the bacterial reads, respectively). At the genus level, the most
abundant taxa included Acinetobacter, Pseudomonas, and Klebsiella
(averaging 12.14%, 9.48%, and 1.76% of the bacterial reads,
respectively), all of which belong to the phylum Proteobacteria and
are pathogens that have previously been reported in co-infections

with COVID-19 (Fig. 3b). Importantly, fungal reads were found in
all of the invasive ventilated COVID-19 individuals and accounted
for an average of 24.65% of the microbial reads, with most of
these mapping to Candida species (an average of 51.11% of fungal
reads) (Fig. 3c).
Compared to the severe HAP/CAP patients from 2019, our

cohort of invasive ventilated COVID-19 patients had significantly
different microbial signatures. First, invasive ventilated COVID-19
patients showed significant enrichment of SARS-CoV-2 (99.74%,
0–100 in invasive ventilated COVID-19 patients compared to 0 in
HAP/CAP patients; p= 8.5e-14) Rhinovirus A (0%, 0–25.09 com-
pared to 0; p= 0.0011) and Alphaherpes virus (0%, 0–5.82
compare to 0; p= 0.00079) among the viral reads (Fig. 3d). In
the bacteriome, invasive ventilated COVID-19 patients were
significantly enriched in Halanaerobiaeota at the phylum level
(0.006%, 0–2.70 compared to 0%, 0–0.0051 in HAP/CAP patients;
p= 3.7e-07) and Pseudomonas at the genus level (4.85%,
0.0026–42.12 compared to 0.46%, 0–56.55 in HAP/CAP patients;
p= 0.04) (Fig. 3e). Several fungal species were also significantly

Fig. 1 Analysis of SARS-CoV-2 genomes in the BALF samples. a Coverage distribution of reads mapped to reference SARS-CoV-2 genome, in
which we found 8 complete genomes and 43 > 50% completeness. COVID-19 patients (n= 63). b Overview of SNP variant types in the
assembled genome, in total we found 34 insertions, 18 deletions, and 583 substitutions. COVID-19 patients (n= 51). c Phylogenetic
relationships of the 51 genomes assembled in this study vs. 682 SARS-CoV-2 genomes sampled in Beijing general population from the same
period and deposited in GISAID. 20 genomes belong to BA.5 and 24 to BF.7 lineages. COVID-19 patients (n= 44). d The correlation between
SARS-CoV-2 genomes of BF.7 and BA.5 lineages and 28-day mortality (survivors or non-survivors) based on Spearman’s rank test, no significant
differences were found between the 28-day mortality rate in the two strains. COVID-19 patients (n= 32)
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enriched in invasive ventilated COVID-19 patients, such as Candida
glabrata (0%, 0–86.95 compared to 0%, 0–64.66 in HAP/CAP
patients; p= 5.7e-03) and Candida parapsilosis (0.0049%, 0–95.07
compared to 0%, 0–0.44 in HAP/CAP patients; p= 6.6e-07) (Fig. 3f).
In contrast, we found no significant differences in the

percentages of SARS-CoV-2 reads out of all viral reads between
invasive ventilated COVID-19 survivors and non-survivors (99.75%,
0.05–99.96 and 99.52%, 0–100, respectively; p= 0.48) (Supple-
mentary Fig. S3), or other viruses. However, among bacterial reads,
there were significant differences in the percentages of Allopre-
votella (0.0006%, 0–1.41 in survivors and 0.023%, 0–32.86 in non-
survivors; p < 0.05), Caulobacter (0.0002%, 0–1.14 in survivors and
0.0046%, 0–5.12 in non-survivors; p= 0.026), Escherichia-Shigella
(0.000018%, 0–1.17 in survivors and 0.0016%, 0–5.91 in non-
survivors; p= 0.023) and Ralstonia (0.0011%, 0–0.37 in survivors
and 0.064%, 0–1.58 in non-survivors; p= 0.024) (Fig. 3g). Among
non-survivors, the fungal reads showed significant enrichment of
Aspergillus sydowii (0.029%, 0–0.56 in survivors and 0.048%, 0–5.88
in non-survivors; p= 0.05) and Penicillium rubens Wisconsin
(0.00019%, 0–3.51 in survivors and 0.042%, 0–23.09 in non-
survivors; p= 0.04). These enriched species indicated likely
synergistic effects between bacterial, fungal, and viral pathogens
that contributed to worse outcomes (Fig. 3h). Sputum culture
results for a number of patients in the COVID-19 cohort were
indeed positive for Escherichia or Aspergillus (Supplementary table.
5). Among the KEGG pathways enriched in COVID-19 Survivors
compared to HAP/CAP Survivors (Supplementary Fig. S1d) and

COVID-19 Non-survivors compared to HAP/CAP Non-survivor
(Supplementary Fig. S1e), Coronavirus disease -- COVID-19 path-
ways and Pathogenic Escherichia coli infection and Salmonella
infection pathways were both enriched, indicating the importance
of co-infection of bacteria, especially Escherichia/ Salmonella with
SARS-CoV-2 is signature of the COVID-19 cohort non-survivors and
play important role in shaping the clinical outcome. We also found
significant differences between severe HAP/CAP survivors and
non-survivors in the abundance of Cardiobacterium (0%, 0–3.39 in
survivors and 0.00028%, 0–0.0032 in non-survivors; p < 0.05),
Ligilactobacillus (0.0036%, 0–0.66 in survivors and 0.035%,
0.004–1.41 in non-survivors; p= 0.011), and Lactobacillus
(0.0013%, 0–0.15 in survivors and 0.025%, 0.00094–3.59 in non-
survivors; p= 0.0083) among the bacterial reads (Supplementary
Fig. S4); in the mycobiome, Aspergillus aculeatus (0%, 0–1.94 in
survivors and 0.023%, 0–0.88 in non-survivors; p= 0.0014) and
Aspergillus flavus (0%, 0–0.6 in survivors and 0%, 0–11.08 in non-
survivors; p= 0.0091) were significantly enriched in non-survivors
(Supplementary Fig. S5).
We also examined the toxicity factors that may have

contributed to clinical outcomes. Among invasive ventilated
COVID-19 patients, the most common toxicity factors included
VF0273 (flagella), which was present in 92% of patients, VF0084
(Xcp secretion system), which was present in 65% of patients, and
VF0467 (acinetobactin), which was present in 60% of patients (Fig.
3i). Among invasive ventilated COVID-19 patients compared to
severe HAP/CAP patients in 2019, there was significant enrichment

Fig. 2 Gene Differential Expression Analysis in BALF of COVID-19 Patients. a Volcano plot comparing gene expression between the survival
and non-survival groups of COVID-19 patients. 489 genes were up-regulated and 187 genes were down-regulated in the survival group
(abs(FC) > 1.5, p-value < 0.05), including red-highlighted genes that were functionally characterized or implicated in subsequent analyses.
b Gene Ontology (GO) enrichment analysis (Biological Process) of the differentially expressed genes identified in (a), where the representative
genes involved in each GO term are indicated in parentheses. c Volcano plot displaying genes with differential expression between COVID-19
patients and HAP/CAP patients, which are also differentially expressed in the survival group of COVID-19 patients. These genes are specific to
COVID-19 survival patients and include 268 up-regulated and 97 down-regulated genes. d KEGG enrichment analysis of the differentially
expressed genes identified in (c). HAP/CAP patients (n= 27), COVID-19 patients (n= 63), non-survivors of the invasive ventilated COVID-19
patients (n= 45), survivors of the invasive ventilated COVID-19 patients (n= 18)
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(one-sided Wilcoxon test, p < 0.05) of factors involved in motility
(VF0237 [flagella], VF0430 [flagella], and VF0473 [polar flagella]);
immune modulation (VF0367 [LPS] and VF0309 [PDIM]); adher-
ence (VF0525 [PfbA], VF0418 [Scm], VF0145 [CBPs], and VF0354
[EfaA]); nutritional/metabolic factors (VF0151 [PsaA]), and the
effector delivery system (VF0084 [Xcp secretion system]) (Fig. 3k).
Toxicity factors that were significantly enriched in non-survivors of

COVID-19 cohort included VF0504 (AdeFGH efflux pump) (0 in
survivors and 0%, 0–2.85 in non-survivors; p= 0.04), VF0944 (HSI-
3) (0 in survivors and 0%, 0–4.27 in non-survivors; p= 0.04),
VF0469 (phospholipase D) (0 in survivors and 0%, 0–2.91 in non-
survivors; p= 0.03), VF0472 (PNAG) (0 in survivors and 0%, 0–11.09
in non-survivors; p= 0.03), and VF0571 (RcsAB) (0 in survivors and
0%, 0–10.38 in non-survivors; p= 0.04) (Fig. 3j). We found also
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significant positive correlation between cytokine levels in the
BALF and blood with the common toxicity factors. In the BALF, the
strongest positive correlation was between IL-1β and VF0504
(AdeFGH efflux pump) and VF0470 (Phospholipase C). In the
blood, all the cytokine levels except IL-6 were positively correlated
with six toxicity factors including VF0368 (BvrR-BvrS), VF0003
(Capsule), VF0560 (Capsule), VF1138 (Curli fibers), VF0228 (Enter-
obactin) and VF0521 (ESX-3) (Supplementary Fig. S6). There were
also significant differences between severe HAP/CAP survivors and
non-survivors, however, none overlapped with the differential
virulence factors we found in the COVID-19 cohort (Supplemen-
tary Fig. S7).

Correlational analysis of lung microbiome, host transcriptome, and
immune responses
Last, we probed potential interactions between the microbiome
and invasively ventilated COVID-19 host responses by analyzing
correlational networks between and among omics datasets (Fig.
4). The virome had the largest number of significant correlations
with host gene expression (76 pairs with |r | > 0.5) and with
cytokine expression (12 pairs with |r | > 0.5). The most highly
correlated pairs were Chelonid alphaherpesvirus 5 and RPS15
(r= 0.66), Chelonid alphaherpesvirus 5 and SRRM2 (r= 0.72).
Chelonid alphaherpesvirus 5 and IL-4 were significantly positively
correlated (r= 0.60). Chelonid alphaherpesvirus 5 and Human
betaherpesvirus 6 A were showed positive correlations with IL-2
(both r= 0.59). The abundance levels of specific bacteria were
positively correlated with the differential expression of 14 genes
and three cytokines. Notably, the strongest negative correlation
(r= -0.70) was between the genus Delftia and PSMC3IP expression
levels, and the strongest positive correlation was between the
genus Exiguobacterium and RPS15 expression (r= 0.66). Three
fungal taxa were correlated with differential host gene expression,
including correlations between Sordaria macrosporak-hell and
OR5BD1P, Y. lipolytica CLIB89W29 and MUC5B (r= -0.62 and
r= 0.603, respectively) (Fig. 4a). Positive correlations between
bacteria and cytokines included Exiguobacterium and IL-4
(r= 0.64), Catellicoccus and IL-2 (r= 0.61), and an uncultured
Catellicoccus strain and IL-2 (r= 0.60) (Fig. 4b). Potential synergistic
effects were also observed within the microbiome, such as a
significant correlation between flagella (VF0273) and 23 bacterial
genera; the strongest correlation was with Allorhizobium-
Neorhizobium-Pararhizobium-Rhizobium (r= 0.68). Notably, there
were also strong positive correlations between flagella (VF0273)
and the fungal strains Y. lipolytica CLIB122 and Y. lipolytica
CLIB89W29 (r= 0.65 and r= 0.66, respectively) (Supplementary
Fig. S8).

DISCUSSION
In the present study, we profiled clinical parameters, the host
transcriptome, and the lower respiratory microbial community in a
cohort of invasive ventilated COVID-19 patients infected with

Omicron variants. Several signatures were significantly associated
with 28-d mortality. There were no significant differences between
survivors and non-survivors with respect to age or gender, but
SOFA levels, APACHE II scores, and PaO2/FiO2 levels were
associated with mortality, as were levels of IL-17 and TNF-α in
the lung and of IL-6 and IL-10 in the serum. The two major variants
forming this Omicron wave in Beijing, which affected over 80% of
the population within a single month, were BA.5 and BF.7; there
were no significant differences between the mortality rates of
those they infected. The SARS-CoV-2 viral load was not
significantly different between survivors and non-survivors, but
we did find significant enrichment among non-survivors of
opportunistic bacterial pathogens including Alloprevotella, Caulo-
bacter, Escherichia-Shigella, and Ralstonia, and of fungal species in
the genera Aspergillus and Penicillium. These genera were thus
associated with worse outcomes, which could be further
examined in future clinical samples and animal experiments. Host
transcriptomic analysis in the lung tissue revealed that genes
related to myeloid leukocyte migration and neutrophil migration
(namely CXCL10, CCL20, and CCL8) were significantly enriched
among non-survivors. Lastly, the microbial compositions in BALF
samples are significantly associated with the inflammation levels,
and non-survivors did have higher signatures of inflammation,
further hinting at the importance of lung microbiome. Our study
thus investigated, for the first time, the lung microbiome and host
immunological responses in intubated and mechanically-
ventilated cases of SARS-CoV-2 Omicron infections, the current
most dominant variants that would continue to infect the global
populations, and we demonstrate that lower-respiratory tract
microbiome is indicative of the clinical outcome and could
provide new insights into the diagnosis and treatment of this
important disease.
The Omicron variant of SARS-CoV-2 appeared in Oct 2021, and

has been associated with a decrease in the percentages of severe
and lethal cases. However, the significantly higher transmissibility
of Omicron compared to the earlier Beta and Delta variants
presents new challenges in public health and medicine.14 We here
found no difference in SARS-CoV-2 viral load between survivors
and non-survivors using sequencing-based or reverse transcrip-
tion (RT)-PCR approaches; furthermore, there were no significant
differences in mortality between the Omicron strains BA.5 and
BF.7, suggesting that other patient characteristics or the microbial
community structure may have been associated with mortality.15

Further analysis indicated that none of the SNPs were linked to
increased fatality within each strain, thus at least according to our
study cohort, there were no mutations of concern. However, our
data could not test adaptation or transmission. The previous
studies were centered around the earlier variants of SARS-CoV-2
(e.g. Alpha, Beta, and Delta strains), which had higher fatality and
viral loads that were more important for clinical outcomes.16 While
our study focused on the Omicron variants, in particular BA.5 and
BF.7, which have higher transmissibility yet lower fatality, thus
other factors such as lung microbiome and other host responses

Fig. 3 Alternation of microbiome and virulence factors in COVID-19 and HAP/CAP patients. a Composition and relative abundance of the top
10 viruses in invasive ventilated COVID-19 patients. b Relative abundance of the top ten bacterial phylum levels in invasive ventilated COVID-
19 patients. c Relative abundance of fungi belonging to the genus Candida in COVID-19 patients. d Box plot of differential virus between
invasive ventilated COVID-19 and HAP/CAP patients, significance was derived from Wilcoxon tests. e Box plot of differential bacteria between
invasive ventilated COVID-19 and HAP/CAP patients, significance was derived from Wilcoxon tests. f Box plot of significantly different fungi
between invasive ventilated COVID-19 and HAP/CAP patients. g Box plot of significantly different bacterium between survivors and non-
survivors of the invasive ventilated COVID-19 patients. h Box plot of significantly different fungi between survivors and non-survivors of the
invasive ventilated COVID-19 patients. i Relative abundance of the top ten virulence factors in invasive ventilated COVID-19 patients.
j Heatmap of significantly different virulence factors between survivors and non-survivors of invasive ventilated COVID-19 patients. k Heatmap
of differential virulence factors between invasive ventilated COVID-19 and HAP/CAP patients. HAP/CAP patients (n= 27), COVID-19
patients (n= 63), non-survivors of the invasive ventilated COVID-19 patients (n= 45), survivors of the invasive ventilated COVID-19 patients
(n= 18). One-tailed wilcoxon rank-sum test was used for all significance statistics, *p-value < 0.05, **p-value < 0.01, ***p-value < 0.001,
****p-value < 0.0001
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play a more important role in shaping the clinical outcomes.
Among the cohort assessed in this study, 28-d mortality was
associated with generally worse respiratory function (indicated by
factors such as SOFA levels), elevated levels of IL-6 in the serum,
and increased levels of IL-17 and TNF-α in the lung; these
characteristics reflected a higher level of systemic and/or local
inflammation, consistent with previous studies.17 Moreover, the
host transcriptomic profiles indicated that immune globulin
responses were suppressed in non-survivors at the time of
mechanical ventilation, similar to findings during the earliest
wave of infections.18 As reported in previous studies, SARS-CoV-2

induce host cell death via apoptosis, necroptosis, pyroptosis,
autophagy, and PANoptosis, in turn, these are processes that can
be targeted in therapies. Our study found that COVID-19 patients
have upregulated pathways in apoptotic signaling pathways and
response to virus/viral process, including genes TNF, TNFAIP3,
TNFSF10, TNFRSF1B, TNFRSF1. Macrophage-produced TNF-α can
directly inhibit viral replication and indirectly activate tissue-
resident macrophages, dendric cells, innate NKs and neutrophils;19

they are upregulated in COVID-19 infections as a response to viral
entry but also this induces cell apoptosis and potentially cytokine
storms.20 Our observation confirms that the TNF-α and associated

Fig. 4 Multi-omics correlation analysis of COVID-19 patients. a Heatmaps display the correlation analysis of viral, fungal, bacterial, and
virulence factor, with differentially expressed genes in COVID-19 patients. Spearman correlation coefficients with adjusted p-values < 0.05 are
marked in colored cells. b Heatmaps depicting correlation analysis between differentially expressed genes of viral and bacterial with cytokine
levels in invasive ventilated COVID-19 patients. Positions with adjusted p-values < 0.05 are shown in color code, and the Spearman correlation
coefficient numbers are within each grid. Only absolute correlation coefficients greater than 0.5 are displayed. COVID-19 patients (n= 63)
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genes are the major distinct responses in COVID-19 patients
compared to HAP/CAP patients, which potentially contribute to
the severity of the disease and has the potential to be targeted in
COVID-19 specific therapies. In addition, neutrophil migration was
among the most strongly enriched pathways in non-survivors; it
has previously been established that neutrophil dysregulation,
particularly of neutrophil activation and neutrophil extracellular
traps (NETs),21 can exacerbate acute respiratory distress (ARDS)
and cytokine storm in COVID-19, leading to higher fatality rates
among affected individuals. Intriguingly, differentially expressed
genes shared between non-survivors of COVID-19 and HAP/CAP
included genes associated with both innate immunity (e.g.,
BPIFA1) and adaptative immunity (e.g., IGHA1). In COVID-19 non-
survivor genes related to neutrophil chemotaxis and migration,
including CXCL10, CCL20, CCL8, C3AR1, CCL2, VAV3 are significantly
upregulated; increased neutrophil is a typical signature of COVID-
19 and closely linked to fatality, as already reported by other
studies. BPIFA1 is an important component of innate immunity,
the upregulation hints at co-infection of bacteria. We found that in
HAP/CAP and COVID-19 cohorts, non-survivors had significantly
higher levels of expression than survivors, presenting a novel
marker for prognosis and also demonstrating the potential
importance of bacterial infection to negative clinical outcomes.
BPIFA1 participates also in the inflammatory response of the upper
respiratory tract and stimulates the migration of macrophage and
neutrophils, agreeing well with the enrichment of neutrophil
chemotaxis and migration process in the COVID-19 non-survivors.
Additionally, we found increased expression of Histamine H2
Receptor (HRH2) and BPIFA1. Increased histamine and receptors
could elevate the inflammations in the lung, and facilitate the
invasion of SARS-CoV-2 into endothelial cells. Lastly in survivors
upregulated genes were mainly in protein localization and
transportand viral process, and the central gene EGFR is known
to be related to fibrosis after SARS-CoV-2 infections, suggesting
that it is potentially beneficial in terms of short-term clinical
outcomes (promoting tissue healing and fighting off infections),
yet there is a trade-off in the long term.
The impact of the host commensal microbiome on COVID-19

was first noticed very soon after the pandemic began. A series of
studies focused on the microbiota of the oral cavity, upper
respiratory tract, and gut because these sites could be readily
sampled; they concluded that there were significant changes in
microbial community structure in patients with mild to severe
COVID-19 compared to healthy individuals.10 However, BALF
samples, which would be more directly associated with this
pneumonic disease, were rarely studied due to the difficulties
associated with sampling. Here, metatranscriptomic analysis
revealed that a distinct microbiome signature was associated
with the clinical outcome (28-d mortality). Furthermore, opportu-
nistic bacterial pathogens and fungal species that are known to
cause secondary infections were significantly more abundant in
non-survivors at the time of mechanical ventilation,22 consistent
with previous studies in which the lung microbiota were analyzed
post-mortem.23,24 In severe COVID-19 patients, a disease that is
caused by a viral pathogen, we found that the clinical outcome
(28-d mortality) was not associated with viral load of SARS-CoV-2
or other viruses, but a significant increase of opportunistic
pathogens including Alloprevotella, Caulobacter, Escherichia-
Shigella, and Ralstonia, and of fungal species in the genera
Aspergillus and Penicillium; such sequence-based findings were
also supported by sputum culturing results, especially for
Escherichia and Aspergillus. Such pathogens strongly hints at
secondary infections or coinfections after being infected with
SARS-CoV-2, and further worsen the clinical outcome, a phenom-
enon that was observed in non-survivors of both COVID-19 and
HAP/CAP, and repeatedly reported in those with lung infections
caused by either viral or bacterial primary pathogens.24,25 Gram-
negative pathogens encode Flagella leading to significant

elevation in inflammation of the host and likely promoting the
pathologies of viral pathogens.26 Our correlational analysis also
found the typical virulence factors of Gram-negative bacteria lead
to worsened outcomes and higher degrees of inflammation.
Additionally, co-infections with bacterial pathogens disrupt the
mucosal layer and epithelial cells of the lung, interfere with host
metabolism, and could even develop into sepsis and cytokine
storm.27 Similarly, fungal species such as Aspergillus are known to
cause Aspergillosis by itself, while additional/pre-existing viral or
bacterial infections could lead to increased Aspergillus infections.
Aspergillus and other fungal pathogens cause persistent infections
via highly diverse toxins and pro-inflammatory pathogen-asso-
ciated molecular pattern molecules (PAMPs), and in severe cases
can cause fungal antigenemia and also cytokine storms.28 In
severe influenza infections the occurrences and importance of
Aspergillus are gaining wide attentions,29 as well as in COVID-19.
The lower respiratory tract microbiomes of COVID-19 non-

survivors also contained significantly higher abundances of
virulence factors related to LPS and flagella, both of which
indicated an increased presence of Gram-negative pathogens and
known inflammatory factors contributing to the severity of COVID-
19 and other pneumonic infections.30 Significant correlations
between bacterial, fungal, and viral abundance in the BALF
samples and cytokine levels in the BALF and/or serum samples
further imply an important role of the lower respiratory tract in
shaping patient immune responses31 and eventual mortality. In
the correlational analysis, we explored the co-infected viruses/
bacterial/fungi and the transcriptomes of the host, and further
revealed signatures associated with clinical outcome (28-day
mortality). A total of 19 differential genes between survivors and
non-survivors were positively correlated with viral abundances,
indicating the importance of co-infected viruses in shaping host
responses and eventual outcomes. Among those genes, MUC5AC
encodes the protective proteins for lung mucus,32 while CD74 is
essential for the processing of MHC II antigens by stabilizing the
heterodimers forming MHC II.33 Additionally, RPS15 encodes a
protein that participates in the processing and translation of viral
mRNAs.34 The results indicate that the progress and clinical
outcome are not solely dependent on SARS-CoV-2, and other viral
members influence the host immune responses as well and affect
the final outcome. The same correlations were also found to
bacterial and fungal abundances, as well as virulence factors. For
example, bacterial components such as Flagella (VF0273), LPS
(VF0367), Type IV pili (TFP, VF1334), and XCP secretion system,
TTSS, T2SS are significantly correlated to host immune genes, and
many parts of the lung microbiome could have contributed to the
progression of the disease, affected the severity and determined
the eventual outcome.
In this study, we conducted an extensive examination of patient

clinical and immune parameters, lower respiratory tract micro-
biomes, and lower respiratory tract transcriptomes. Using
transcriptome-targeted analysis and applying both Illumina
sequencing platform (mtNGS) as well as long-reads sequencing
of Nanopore (mtTGS),11 we provided deeper insights into the RNA
viral genome of SARS-CoV-2, and spontaneously profiled the
active microbial communities, their function and expressed
pathogenic factors, and the host gene responses. Commonly
used mNGS that target DNA in infection studies thus can be
significantly improved by the application of mtNGS/mtTGS.
However, these data can establish only correlations, not causality.
Furthermore, the sample sizes and patient types (i.e., those with
COVID-19 or HAP/CAP rather than healthy individuals) were
limited by the difficulties presented in collecting BALF samples,
and indeed correction for multiple testing would render no
significant differences in terms of bacterial and fungal composi-
tions, or transcriptomic differences between survivor and non-
survivor group. After patients began treatment in the intensive
care unit, antibiotic usage, and other medications may also have
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played roles in the mortality rate35; controlling for this effect will
require further analysis with continual sampling. The roles of
opportunistic bacterial and fungal pathogens in shaping the host
immune response and mortality will also require dedicated studies
in animal models in the future. In addition, there are known cases
of cross-kingdom interactions between gut virome, bacteriome,
and mycobiome in the context of healthy and SARS-CoV-2, but
further validations of their function, as well as extension into the
lung, requires further efforts.36,37

In summary, we here assessed the relationships between
patient parameters and lower respiratory tract microbiomes with
mortality resulting from invasive ventilated COVID-19. Overall,
higher levels of inflammation decreased respiratory function, and
increased abundance of opportunistic bacterial and/or fungal
pathogens in the BALF were indicative of eventual mortality
among the cohort studied here. The BALF microbiome was closely
associated with patient inflammation levels, as indicated by
cytokine levels, and virulence factors were significantly correlated
with host transcriptional responses. Taken together, these results
provide valuable insights into invasive ventilated COVID-19
prognoses based on clinical and microbial parameters and form
a basis for future differential treatment targeting opportunistic
pathogens and/or host immune factors.

MATERIALS AND METHODS
Study design and participants
In this study, a total of 64 patients admitted to the intensive care
units of eight hospitals in Beijing from Dec 7th 2022, and Jan 25th
2023 were included. They were diagnosed with SARS-CoV-2
infection through qPCR or antigen testing and required intubated
mechanical ventilation; patients younger than 18 years of age and
pregnant women were excluded. All of the patients of COVID-19
infections were from emergency clinics; our clinical records
indicated that no antibiotics, antivirals, or immune modulators
were used before admission. All patients or their legal represen-
tatives agree to join and obtain approval from the Ethics
Committee of the General Hospital of the People’s Liberation
Army of China (Ethics No.: 2022113030901836). Samples of
bronchoalveolar lavage fluid (BALF) are collected using a
standardized bronchoscopy protocol, and stored at −80 °C until
processing, time between admission and sampling was limited to
a few hours. Blood samples were collected from veins and stored
at 4 °C until they were processed as soon as possible. We collected
64 BALF and 60 blood samples immediately after invasive
mechanical ventilation. Blood parameters including lactic acid,
albumin, creatinine, and cytokine levels in blood and BALF were
also collected, and the patients were evaluated using SOFA and
APACHE II scores, plus PaO2/FiO2. In addition, a total of 27 BALF
samples were collected from patients diagnosed with Hospital-
acquired Pneumonia/Community-Acquired Pneumonia (HAP/CAP)
(Supplementary Table. 6) and all were on intubated mechanical
ventilation, collected from November to December 2019 in an
earlier study,11 were also included and subjected to the same
meta-transcriptomic analysis. Pathogens in the HAP/CAP cohorts
were confirmed by routine clinical testing, in addition to
sequencing analysis (Supplementary Table. 7).

Cytokine measurement
The plasma and BALF cytokines were detected using FACS Canto
Plus flow cytometry (BD, USA) and the multiplex bead-based flow
fluorescence immunoassay kit (Qingdao, China). Prepare standard
samples and test samples according to the kit instructions, and
then conduct tests to obtain results.

Meta-transcriptomic sequencing
Total RNA from BALF was extracted from BALF using Trizol, before
being treated with DNase I to remove the contaminating DNA,

and cDNA was obtained by reverse transcription using random
primers. For Oxford Nanopore sequencing (mtTGS), library
preparation was performed according to the manufacturer’s
instructions for barcoding cDNA/DNA (SQK-LSK109 and EXP-
FLP002). Eight samples were pooled together for one library and a
total of eight libraries were constructed for sequencing, Oxford
Nanopore PromethION R9 FLO-PRO002 flow cells for 48–72 h. For
meta-transcriptomic sequencing on Illumina platform (mtNGS),
total RNA was extracted using QIAamp UCP pathogen minikit
(Qiagen, Valencia, CA, USA), The RNAs were purified, fragmented,
and reverse-transcribed and enriched by PCR to construct the final
cDNA libraries, one sample failed to build a library. Sequencing
was performed on the NextSeq 550 System (Illumina, San Diego,
CA). At least 60 million paired-end 150 base pair (bp) reads were
generated for each sample. A total of four controls were included
to rule out environmental contaminants or nucleotides introduced
during library construction and sequencing.

SARS-CoV-2 genomic analysis
FASTQ reads from Oxford Nanopore Technology (ONT) and
Illumina platforms were mapped to the reference SARS-CoV-2
genome (GenBank accession number MN908947.3) using mini-
map2 v2.17-r94138 and STAR 2.7.10b,39 respectively. The mapped
Illumina sequences were dereplicated by sambamba 0.6.6,40 and
further applied to call single nucleotide polymorphism (SNP)
variants by gatk 4–4.3.0.0.41 All SNP variants were annotated and
their functional effect was predicted using SnpEff 5.1d.42 Assembly
of the SARS-CoV-2 genome was carried out using MEGAHIT
v1.2.9.43

The assembled genomes were compared to a total of 682 SARS-
CoV-2 genomes of BF.7 and BA.5 lineages collected from Beijing,
China during 2022.10.13 to 2023.1.31 from the GISAID database,
and phylogenetic tree was constructed using Neighbor-Joining
method using Phylip 3.697.44 Second, these genomes were
mapped to SARS-CoV-2 reference sequences using MUMmer
v3’s45 number alignment to call SNP.

Host gene expression profiling
Meta-transcriptomic sequencing using Oxford Nanopore Technol-
ogy (ONT) platform (mtTGS) and Illumina platform (mtNGS) was
performed to obtain host transcriptomic information. The fastq
files from NGS Sequencing were aligned to transcript reference
GRCh38 by Hisat2 (version 2.21) to get sam files. Next, the sam
files were converted to bam files by Samtools version (1.6). Next,
we used featureCounts (version 2.0.1) to quantify gene expression
(with parameter “-g gene_id”).
Differential expression analysis was performed with DESeq2

(version 1.34.0)46 by taking genes or transcripts count matrix as
input. We filtered out the genes/transcripts which were not
expressed in any sample. The Fold Change (FC) and p-value of
each annotated gene were calculated.
Gene Ontology (GO) and Gene Set Enrichment Analysis (GSEA)

were performed using version 4.2.0 of the R package clusterPro-
filer.47 The differentially expressed genes (DEGs) were subjected to
GO analysis using the enrichGO function to identify enriched
biological processes. To evaluate the biological significance of the
gene sets, GSEA was performed using the gseGO function.

Metatranscriptome analysis of Illumina reads
The quality-controlled illumina sequencing data were filtered out
of the human reference genome (GRCH38 reference database)
using KneadData (v0.10.0).48 Using the Virosaurus49 (downloaded
in January 2023) viral genome dataset as a reference, the
sequences after host removal were mapped and analyzed using
bowtie2 (v2.3.4.1),50 requiring genome coverage >30% and depth
>1X, then the taxonomic classification and relative abundance of
viruses were calculated using the ‘samtools idxstats’ command.51

Meanwhile, to obtain bacterial annotation information at the
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species level, read counts mapping to 16 S rRNA genes in the
SILVA52 database were calculated using the PhyloFlash (v3.4)53

selecting a similarity greater than or equal to 98% as the threshold
value. The eukaryotic pathogen genome database EUPATHDB-
4654 was used as a reference for qualitative and quantitative
analysis of fungal pathogens using bowtie2 and samtools.

Profiling of virulence factor in BALF of patients with invasive
ventilated COVID-19
Bacterial virulence factor searches were performed on the
metatranscriptome using the shortBRED toolkit (v0.9.5),55 using
the Virulence Factor Core Dataset (VFDB)56 (downloaded in March
2023) as a reference. Briefly, the shortbred_identify.py script was
used to identify and quantify unique markers of virulence factors.

Statistical analysis
Continuous data are presented as a median with an interquartile
range and analyzed using a Mann–Whitney test. For clinical
characteristics of the study chorts, One-tailed degree of signifi-
cance between groups was set at P < 0.05. The statistics for the
significance of differences in microbial abundance were all
performed using the one-tailed Wilcox test. All statistical analyses
were performed in Rstudio using R4.2.0, and plotted using the
ggplot2 package. Unless specified, multiple-testing correction was
not carried out due to the sample size of the cohort, and mainly
the non-corrected statistical tests were presented.

Multi-omics association analysis
In conducting correlation analysis, a minimum presence of 20 samples
for bacteria, fungi, viruses, virulence factors, BALF cytokines, and host
differential genes is mandatory, and the features that fail to meet this
criterion are omitted beforehand. We utilized the corAndPvalue
function of the R package WGCNA57 to perform the correlation
analysis, which enabled the calculation of the Spearman correlation
coefficient. Benjamini & Hochberg step-down false discovery rate
controlling procedure was then applied for P-value correction, using
an alpha value of 0.05. We set the threshold for selecting the
significant correlation matrix at an adjusted p-value < 0.05. For host
correlations with bacteria, fungi, and virulence factors, we displayed
only those rows and columns where the correlation coefficient was
greater than 0.6, while for other correlation matrices, the minimum
correlation coefficient threshold was 0.5.
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