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Programmable synthetic receptors: the next-generation of cell

and gene therapies

Fei Teng'™, Tongtong Cui??, Li Zhou'??, Qingqin Gao'?*?, Qi Zhou®'***™ and Wei Li@®">>4>

Cell and gene therapies hold tremendous promise for treating a range of difficult-to-treat diseases. However, concerns over the
safety and efficacy require to be further addressed in order to realize their full potential. Synthetic receptors, a synthetic biology
tool that can precisely control the function of therapeutic cells and genetic modules, have been rapidly developed and applied as a
powerful solution. Delicately designed and engineered, they can be applied to finetune the therapeutic activities, i.e., to regulate
production of dosed, bioactive payloads by sensing and processing user-defined signals or biomarkers. This review provides an

overview of diverse synthetic receptor systems being used to reprogram therapeutic cells and their wide applications in biomedical
research. With a special focus on four synthetic receptor systems at the forefront, including chimeric antigen receptors (CARs) and
synthetic Notch (synNotch) receptors, we address the generalized strategies to design, construct and improve synthetic receptors.
Meanwhile, we also highlight the expanding landscape of therapeutic applications of the synthetic receptor systems as well as

current challenges in their clinical translation.
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INTRODUCTION

As the next milestone in fighting diseases, cell and gene therapies
are transforming the field of medicine by offering targeted and
personalized treatments to patients that are not achievable by
conventional pharmaceutics." As of now, chimeric antigen
receptor T (CAR T) cell therapies for blood cancers,*® genetically
engineered hematopoietic stem cells for hematologic disorders’®
and gene therapies to treat a range of rare diseases includin
inherited retinal dystrophy and spinal muscular atrophy (SMA)°™
are already clinically approved products on the market. The
research and development continue to grow at a fast rate, with
more novel therapies advancing in clinical development. However,
moving to the next stage, there are major issues to be addressed.
For cell and gene therapies, as the basic safety and efficacy
feature, to precisely adjust the activity levels of the therapeutic
cells or genes by controlling the active dosage, timing and
localization is crucial.”® But currently, the overactivity of ther-
apeutic cells and off-target effects in gene therapies are still
significant obstacles to overcome. Uncontrolled CAR T cell activity
can lead to the development of cytokine release syndrome (CRS)
and neurotoxicity when infused CAR T cells become overactivated,
causing severe or even life-threatening adverse events.'*'> While
gene therapies involving introducing genetic materials into
patients’ cells might disrupt the function or regulation of non-
targeted genes, therefore causing serious consequences. As an
intriguing and rapidly evolving field, synthetic biology is offering
new solutions to address these problems.'*'®'” Novel synthetic
receptor platforms are established as powerful tools to precisely
control the function of engineered cells.'®'® They can be applied

; https://doi.org/10.1038/541392-023-01680-5

to finetune the therapeutic activities like adjusting production of
dosed, bioactive payloads by sensing and processing user-defined
signals or biomarkers.'® The convergence of synthetic biology
with therapeutic strategies might substantially accelerate the
evolvement of cell and gene therapies to the next generation.
Here, we review the current knowledge of synthetic receptor
systems, including their characteristics and applications, as well as
strategies to engineer and improve synthetic receptors. We also
discuss the challenges for developing and adapting synthetic
receptor platforms to program novel gene and cell therapies.

SYNTHETIC RECEPTORS: AN OVERVIEW
Receptors empower cells to timely sense and respond to extrinsic
(extracellular) and intrinsic (intracellular) stimuli in the complex
environment. Based on the in-depth studies of various natural
receptors over the past decades, synthetic biologists have been
able to deconstruct and reconstruct receptors, and rationally
engineer synthetic receptors. For a functional synthetic receptor,
there are at least two domains: a sensor domain for specific
binding with input signals, and an actuator domain to transduce
sensor activity into outputs.®® Synthetic receptors can be
engineered using natural components and/or artificial ones in
origin,?® which endows cells (termed as ‘designer cells’) with
customized functionalities by rewiring cellular input-output
relationships.?>?' Figure 1 summarizes the timeline of key
discoveries in synthetic receptor research.

Armed with synthetic receptors, designer cells are programmed
to respond to multiple signals, achieving a spatiotemporal

'University of Chinese Academy of Sciences, Beijing 101408, China; State Key Laboratory of Stem Cell and Regenerative Biology, Institute of Zoology, Chinese Academy of
Sciences, Beijing 100101, China; 3Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China and “Beijing Institute for Stem Cell and

Regenerative Medicine, Beijing 100101, China

Correspondence: Fei Teng (tengfei@ucas.ac.cn) or Qi Zhou (zhougi@ioz.ac.cn) or Wei Li (liwei@ioz.ac.cn)

These authors contributed equally: Fei Teng, Tongtong Cui

Received: 30 May 2023 Revised: 22 September 2023 Accepted: 11 October 2023

Published online: 03 January 2024

© The Author(s) 2023

SPRINGER NATURE


http://crossmark.crossref.org/dialog/?doi=10.1038/s41392-023-01680-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41392-023-01680-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41392-023-01680-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41392-023-01680-5&domain=pdf
http://orcid.org/0000-0002-6549-9362
http://orcid.org/0000-0002-6549-9362
http://orcid.org/0000-0002-6549-9362
http://orcid.org/0000-0002-6549-9362
http://orcid.org/0000-0002-6549-9362
http://orcid.org/0000-0001-7864-404X
http://orcid.org/0000-0001-7864-404X
http://orcid.org/0000-0001-7864-404X
http://orcid.org/0000-0001-7864-404X
http://orcid.org/0000-0001-7864-404X
mailto:tengfei@ucas.ac.cn
mailto:zhouqi@ioz.ac.cn
mailto:liwei@ioz.ac.cn
www.nature.com/sigtrans

Programmable synthetic receptors: the next-generation of cell and gene...
Teng et al.

1993
» First-generation (1G) CAR developed''® %%

2002
»2G CAR with an additional costimulatory domain'> %6

2010-2012

» 4G CAR secreting additional immunomodulatory
molecules, also known as TRUCK'"14®

2007
» DREADD, a second-generation RASSL**

2013
» Tandem CAR can perform OR logic control™
» Dual CAR can perform AND logic control'6® 274275

2015
» Switch CAR can be precisely
controlled by inducers'®® |

2017
» FDA approves the first CAR T therapy

1998
» RASSL, mutant GPCR

| solely activated by synthetic agonists*

2005-2010
» 3G CAR with two costimulatory domains'2-132 267

2008
» Tango, a synthetic receptor system
based on TEVp cleavage of synTFs*

2008-2014
» Chimeric cytokine receptor??®212 291

2012
» Switchable CAR, a universal CAR system®: &’
2014
»MESA, activated by cell permeable ligands*”
2016
» synNotch®'

» synNotch CAR, synNotch controls the expression of CAR* #'

2017

2018

» Synthetic cytokine receptor®’

» Orthogonal cytokine-receptor pairs**

» GEMS, an intracellular signaling pathway-dependent
cell-surface receptor system® 2#

» Intrabody sensor, activated by intracellular protein®®

» CHOMP, split-protease-mediated intracellular switch®®

»2G MESA, can be activated by purifed proteins*
»dCas9-synR, a synthetic receptor system mediated
by split-TEVp-cleavage of dCas9'*
» ChaCha, a GPCR- and dCas9-based
synthetic receptor design similar to Tango*
»iTango, Cal-Light**, FLARE®*® and SPARK®"?,
different synthetic receptors mediated
by split-TEVp-cleavage of synTFs

2019

» RASER, ErbB-induced cancer killing system?”
»LOCKR, de novo designed protein switch®’: >

» SPOC, split-protease-mediated intracellular switch®"

2021
» Split-TEVp-mediated MESA, achieving
optimized MESA performance'®

2022

»SNIPR, a humanized synNotch system
by systematic and rational engineering*

» AMBER, a derivative of GEMS?"®

» OCAR, a synNotch system activated
via ligand-induced dimerization'®*

2023
» DocTAR, a synthetic orthogonal cell-surface receptor'®®

2018

»5G CAR containing an extra intracellular signaling
domain compared with 2G CAR"™*

» SUPRA CAR, a universal CAR system®*

» Soluble ligand-sensing CAR®

2020

»esNotch, an enhanced version of synNotch'®?

» Soluble ligand-sensing synNotch**

» TMD-modified MESA, MESA performance
optimized by changing TMDs'*

» GEAR, a derivative of GEMS*?

» Synthetic TCS® and POST®, two
mammalian receptor systems based on
the bacterial signal transduction system

Fig. 1

Landmark research achievements of the synthetic receptor over the past three decades. A timeline is shown with brief summaries of

some of the key research milestones in the synthetic receptor field published in the past 30 years. CAR chimeric antigen receptor, RASSL
receptor activated solely by a synthetic ligand, DREADD designer receptors exclusively activated by designer drug, TRUCK T-cells redirected
towards universal cytokine killing, TEVp tobacco etch virus protease, synTF synthetic transcription factor, MESA modular extracellular sensor
architecture, synNotch synthetic Notch, FDA the U.S. Food and Drug Administration, dCas9-synR dCas9 synthetic receptor, GPCR G protein-
coupled receptor, iTango inducible Tango, Cal-Light calcium- and light-gated switch, FLARE fast light- and activity-regulated expression,
SPARK specific protein associated tool giving transcriptional readout with rapid kinetics, SUPRA CAR split, universal and programmable CAR,
RASER rewiring of aberrant signaling to effector release, LOCKR latching orthogonal cage-key protein, SPOC split-protease-cleavage
orthogonal-coiled coil-based logic circuit, GEMS generalized extracellular molecule sensor, CHOMP circuits of hacked orthogonal modular
protease, esNotch enhanced synNotch, TMD transmembrane domain, GEAR generalized engineered activation receptor, TCS two component
system, POST phosphoregulated orthogonal signal transduction system, SNIPR synthetic intramembrane proteolysis receptor, AMBER
advanced modular bispecific extracellular receptor, OCAR orthogonal chemically activated cell-surface receptor, DocTAR double-cut

transcription activation receptor

signaling and a subsequent behavior control'® (Fig. 2a). In a
designer cell, there are three modules: the sensing module, the
processing module and the response module.'*?%?* The sensing
module includes but is not limited to various receptors that can
detect a range of environmental cues, followed by signal
transduction via downstream pathways.'>?>?*> The processing
module consists of rewired endogenous signaling pathways and
orthogonal synthetic genetic circuits, which can process signals
from multiple receptors.’>*??® The response module are compo-
nents generating measurable outputs, therefore employ user-
defined changes (e.g., therapeutic effects)'>?%? (Fig. 2a).

In recent years, the modular synthetic receptors have been
constantly engineered and evolved for biomedical applications.
As a well-known example, CARs are synthetic receptors to
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interact with target cells with high specificity. CAR T cell
therapies (Fig. 2b) are now market-approved pharmaceuticals,?*
which has convincingly demonstrated the great potential of
synthetic receptors to be applied in therapeutics. Another
widely used synthetic receptor is synthetic Notch (synNotch),
which is able to conditionally drive the expression of the CAR as
well as additional payload in engineered T cells when targeting
a secondary antigen®>%® (Fig. 2c). Besides, synthetic receptors
have been used to engineer therapeutic cells, which can sense
arbitrary inputs, such as small molecules and disease-associated
biomarkers, and secrete therapeutic molecules in response in
animal models'®?® (Fig. 2d). Also, synthetic receptors with
compact sizes (e.g.,, RASER (rewiring of aberrant signaling to
effector release) as shown in Fig. 2e) can be directly delivered in
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targeted gene therapies by the AAV vector to treat ErbB-
hyperactive cancers.’*

Apart from biomedical applications, synthetic receptors have
been widely adopted in the fundamental research.’® They are
powerful tools to investigate various aspects of cell signaling and
behaviors, including cell differentiation, migration and morpho-
genesis, in a controlled and precise manner3® For example,
researches have used synNotch receptors to program engineered-
cells to self-organize into multicellular structures in response to
juxtacrine signaling®'* (Fig. 2f). Meanwhile, synthetic receptors
can also be engineered as part of synthetic orthogonal morpho-
gen systems to pattern three-dimensional (3D) tissues in a tightly
controlled manner**** (Fig. 2f).

DIVERSE TYPES OF SYNTHETIC RECEPTORS
Mammalian synthetic receptors can be classified based on
different classification criteria. In this section, we provide an
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overview of diverse available synthetic receptors classified under
four distinct principles. A summarization of the classified synthetic
receptors is shown in Table 1, with their comparative advantages
and limitations further discussed.

Cell-surface receptors and intracellular receptors
According to the location to bind ligands, synthetic receptors can
be divided into cell-surface receptors (also known as transmem-
brane receptors) and intracellular receptors.>®

Cell-surface receptors generally comprise three types of
transmembrane receptors (i.e, enzyme-linked receptors, G-
protein-coupled receptors and ion channel-liked receptors), which
span the plasma membrane and convert extracellular signals into
intracellular signals.>”® For this category, each synthetic receptor
contains an extracellular ligand-binding domain, at least one
transmembrane domain and an intracellular effector domain.
Besides the best-known CAR,>*3? synNotch,>'4%*! SNIPR (synthetic
intramembrane proteolysis receptor),** RASSL (receptor activated
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Fig. 2 Programming cell and gene therapies using synthetic receptors. a Mammalian cells can be designed and engineered to sense and
respond to a variety of stimuli such as chemicals and disease biomarkers, and subsequently trigger downstream signaling pathways, which
can finetune customized therapeutic effects (e.g., gene expression, protein activity and secretion, etc.).'>* b Engineering CAR T cell
therapy.®%® T cells are genetically engineered to express specific CAR proteins on their surface. When infused back into the body, CARs
interact with the targeted antigens on cancer cells, causing the activation of CAR T cells for cancer-killing. Pcyy cytomegalovirus promoter,
scFv single-chain fragment variant, TMD transmembrane domain, CD costimulatory domain, CD3({ CD3 zeta signaling domain, pA poly(A)
signal. ¢ Synthetic receptor applications in CAR T cell therapy.?>®” T cells can be engineered with a combination of CARs and synthetic
receptors like synNotch for a more precise tumor recognition to reduce off-target toxicity. Synthetic receptors like MESA could also be used in
combination with CAR to sense a soluble biomarker. In addition to driving CAR expression, synthetic receptors are also able to express
additional beneficial payloads alongside the CAR, such as cytokines, chemokines, enzymes, single-chain fragment variants (scFvs), mono-
antibodies (mAbs), ligands or receptors. TF transcription factor, SynP synthetic promoter, Prom promoter, synR synthetic receptor, pA poly(A)
signal. d Therapeutic cell engineering.'®'® By incorporating synthetic receptors, therapeutic cells are designed to act as ‘smart drugs’ that can
sense disease biomarkers or user-defined inputs, and trigger a therapeutic response, such as the release of a drug or a therapeutic protein.
These engineered cells present clinical potentials as they were encapsulated and implanted in mouse to treat diseases in proof-of-concept
studies.?'*?' STAT3, signal transducer and activator of transcription 3; P, phosphorylation; shGLP-1, synthetic human glucagon-like peptide 1.
e Rewiring of aberrant signaling to effector release (RASER).>”?® In RASER, a hepatitis C virus protease (HCVp) and an effector protein (e.g.,
OFP-Bid) are fused to two different domains that can sense overactive ErbB signaling. When ErbB activity is detected, the two domains are co-
recruited together, causing HCVp to cleave and activate OFP-Bid. This leads to the induction of apoptosis specifically in ErbB hyperactive
cancer cells, sparing normal cells. The compact size of RASER construct makes it suitable for AAV-delivered gene therapy. Pcuy
cytomegalovirus promoter, TMD transmembrane domain, SH2 Src homology 2 domain, CS cleavage site, Bid BH3 interacting domain death
agonist, OFP orange fluorescent protein, P2A 2A peptide derived from porcine teschovirus-1, PTB phosphotyrosine-binding domain; NS3,
hepatitis C virus nonstructural protein 3, pA poly(A) signal. f Engineering multicellular behaviors with sg/nthetic receptor systems.>>3* (Left) To
construct a three-layer structure, two separate cell lines are constructed using synNotch systems.3? CD19 ligands on the A-type cells can
activate anti-CD19 synNotch receptors on the B-type cells, which induces the expression of Ecad" (E-cadherin, high expression) and GFPjq
(surface-bound GFP) in the B-type cells. Subsequently, these cells will form a two-layer structure with a green core and blue outer layer. Then,
GFPiy on the B-type cells can send reciprocal signals to the A-type cells via anti-GFP synNotch, leading to the activation of Ecad'® (E-cadherin,
low expression) and mCherry, which will induce the stepwise formation of the three-layer structure. (Right, Upper) Synthetic diffusive
morphogen systems can be engineered using synNotch.> In these systems, soluble ligands can form an artificial morphogen gradient and
activate synthetic receptors on receiver cells. The gradient patterns can be tuned by modulating the expression level of synthetic morphogens
(e.g., soluble GFP). The synNotch-based synthetic morphogen systems require an extra anchor protein to be expressed on the hybrid anchor/
receiver cells (as shown here) or solely on the anchor cells. (Right, Lower) Another possible synthetic diffusive morphogen system using the
synthetic receptor, such as MESA. In this supposed system, soluble ligands induce the dimerization of synthetic receptors, activating
downstream gene transcription. GFP green fluorescent protein, mCherry a red fluorescent protein, BFP blue fluorescent protein, CD19 cluster

of differentiation 19

«

solely by a synthetic ligand),**** Tango,**® MESA (modular
extracellular sensor architecture),*”*® ChaCha,*® TCS (two-compo-
nent system),>® chimeric cytokine receptor®? and GEMS (gen-
eralized extracellular molecule sensor)** also fall into the category
of cell-surface receptors (Table 1). This type of synthetic receptors
can only sense external signals, making them suitable to detect
cellular (e.g. CAR, synNotch and SNIPR) and systemic disease
biomarkers (e.g. MESA and GMES).

Intracellular receptors can either locate in the cytoplasm or
nucleus, or be anchored to the intracellular membrane of the cell.
Cal-Light (calcium- and light-gated switch),>* CHOMP (circuits of
hacked orthogonal modular protease)® intrabody sensor,”®
RASER (rewiring of aberrant signaling to effector release),”” LOCKR
(latching orthogonal cage-key proteins),””*® COMET (composable
mammalian elements of transcription)®®> and POST (phosphor-
egulated orthogonal signal transduction)®® belong to the category
of intracellular receptors (Table 1). Notably, the synthetic receptors
discussed here could also be referred to as synthetic protein
switches.®' Since intracellular receptors can only be activated by
intracellular input, many of them (e.g., LOCKR and COMET) are
designed as a switch induced by chemical molecules that can
cross the plasma membrane.

Natural signaling-based receptors and orthogonal signaling-based
receptors

Activated receptors trigger signal transduction via multiple
downstream pathways. According to the downstream pathway
actuated, either natural or engineered, we divide synthetic
receptors into natural signaling-based receptors and orthogonal
signaling-based receptors.

Natural signaling-based receptors rewire endogenous signaling
pathways to either original or customized outputs. This category
of synthetic receptors includes RASSL,**** CAR?***° chimeric
cytokine receptor,’’”? GEMS>® and GEAR®? (Table 1). They
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inevitably activate native pathways to actuate outputs. Among
them, RASSL, CAR and chimeric cytokine receptor redirect
endogenous pathways to user-defined ligands to execute desir-
able functions, and are no longer responsive to their original
ligands."®2° While GEMS and GEAR hijack endogenous pathways
to generate additional customized outputs, they can simulta-
neousl}/ lead to activation of endogenous transcription net-
works.'®2° On the other hand, the capacity to modulate
transcriptional networks endows natural signaling-based recep-
tors with unique advantages over orthogonal signaling-based
receptors, allowing for the execution of natural and highly
complex programs. For example, CARs are invented to mimic
the function of T-cell receptor (TCR) to achieve antitumor activity®®
via modulating endogenous signaling pathways, but at the same
time, additional transgenes can be induced by CAR activation (e.g.,
nuclear factor of activated T cells (NFAT)-driven cytokine expres-
sion), which could not be achieved by orthogonal systems.

By contrast, orthogonal signaling-based receptors are comple-
tely independent of endogenous signaling pathways. This
attributes to the employment of orthogonal synthetic transcrip-
tion factors (syn-TFs) or orthogonal signal transduction systems, as
they cannot recognize endogenous regulatory elements and
activate endogenous signaling cascades, respectively.'’®2° Never-
theless, some syn-TFs like dCas9-based TFs and TALE-based TFs
can program endogenous gene expression without the require-
ment of extra synthetic promoters.'®*® The currently available
Tango,** MESA,**® synNotch,>'***" ChaCha,*® Cal-Light*
intrabody sensor,>® LOCKR®>”*® and COMET>° employ syn-TFs for
orthogonal signal pathway construction, while TCS>° and POST®°
utilize orthogonal signaling systems derived from prokaryotes
(Table 1).

Of note, the most widely used orthogonal TFs are of non-human
origin (e.g., yeast and bacteria), therefore carrying high risks of
immunogenicity in clinical applications. The use of humanized

Signal Transduction and Targeted Therapy (2024)9:7
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syn-TFs comprising both the DNA-binding domain and activation
domain derived from human TFs will largely reduce the
immunogenic risk. However, these fused TFs are still able to
activate endogenous signaling, which reduces their orthogonality.
Notably, Khalil and colleagues de novo designed a panel of fully
humanized synthetic zinc finger transcription regulators (syn-
ZiFTRs) engineered by an array of zinc finger domains, which can
specifically recognize their cognate short DNA-binding motifs,
achieving genome-orthogonal specificities.®* This kind of pioneer-
ing work will accelerate the progress of humanization of
orthogonal signaling-based receptors, which is pivotal to bridge
the translational gap to the clinic.

Soluble ligand-binding receptors and surface ligand-binding
receptors

Synthetic receptors can bind to a range of soluble and surface-
bound ligands with a high specificity and sensitivity. In line with
the features of ligands, the corresponding synthetic receptors can
be categorized into soluble ligand-binding receptors and surface
ligand-binding receptors.'8?’

A large variety of ligands are in the soluble form, including
most chemical molecules, hormones, cytokines, growth factors,
intracellular soluble proteins, and some peptides cleaved from
membrane proteins (e.g., carcinoembryonic antigen (CEA)®®
and amyloid-beta (AB)®®). The above listed soluble molecules
can induce the activation of soluble ligand binding-receptors,
such as Tango,***® ChaCha,*®* MESA,*"**® chimeric cytokine
receptor,”’*2  CHOMP,>> GEMS®® LOCKR*’°® and POST®°
(Table 1). By using small chemical molecules that can cross
the plasma membrane, several intracellular synthetic receptors
(e.g, POST, CHOMP and LOCKR) have been developed.?®
Meanwhile, they can also act as extracellular ligands when
the ligand-binding domain of a receptor locates outside the
plasma membrane, scilicet cell-surface receptors (e.g., Tango,
ChaCha, MESA and GEMS).?° For peptide/protein ligands, in
most cases, they cannot enter the cell, and therefore act on cell-
surface receptors to subsequently trigger downstream intracel-
lular signaling cascades.

Surface-bound ligands fixed on the plasma membrane of
sender cells can trans-activate cell-surface receptors on adjacent
receiver cells.”®%° CAR and synNotch are typical surface ligand-
sensing receptors which theoretically cannot be activated by
soluble ligands.'®2° The different properties of these two types of
synthetic receptors possess distinct mechanisms of action. Soluble
ligand-binding receptors are usually activated by ligand-induced
dimerization to trigger downstream signaling, whereas surface
ligand-binding receptors require a mechanical force generated by
ligand-receptor interaction to activate downstream signaling.
Therefore, activation of soluble ligand-binding receptors (e.g.,
chimeric cytokine receptor and GEMS) can be induced by ligands
after a long-distance transport, whereas surface ligand-binding
receptors (CAR and synNotch) can only function in a juxtacrine
manner.?

Partially modular receptors and fully modular receptors

Over the past decade, an increasing number of synthetic receptor
systems have been engineered and refined. Based on whether
they are made up entirely of reconfigurable components, we
divide synthetic receptors into partially modular receptors and
fully modular receptors.

Partially modular receptors can be constructed by engineering
the artificial sensor domain while retaining the original actuator
domain, or vice versa. The former synthetic receptors can rewire
endogenous signaling pathways to new ligands (e.g., CAR,
chimeric cytokine receptor and GEMS), while the latter ones can
activate an alternative pathway by natural ligands (e.g., Tango,
ChaCha and dCas-synR)'®?° (Table 1). Therefore, the former
synthetic receptors can be categorized as natural signaling-based

Signal Transduction and Targeted Therapy (2024)9:7



receptors and the latter ones as orthogonal signaling-based
receptors (as discussed above).

Fully modular synthetic receptors, with both the sensor domain
and actuator domain engineered, including synNotch,>'4%4!
SNIPRs,*> MESA*"*® and LOCKR,*”*® can execute novel functions
without disrupting the endogenous pathways in an orthogonal
way (Table 1). It is worth noting that the ‘building brick’ for
modular assembly of fully modular synthetic receptors can be
either derived from either pre-exiting natural components (e.g.,
synNotch, SNIPRs and MESA) or de novo designed ones (eg.,
LOCKR).*®

ENGINEERING OF SYNTHETIC RECEPTORS

In recent years, the construction of evolved synthetic receptors has
been facilitated by the rapid development of novel technologies
and high-throughput methodologies like directed evolution,
rational design and in silico design.®” Meanwhile, they are making
the implementation of the most classical design-build-test-learn
(DBTL) framework in the development process easier than ever. A
better combination of the cutting-edge technologies and the DBTL
cycle will surely advance a rapid prototyping and optimization of
novel synthetic systems for various biomedical applications. Here,
we highlight the development and evolution of four of the most
advanced single-pass transmembrane synthetic receptors, CARs
(Fig. 3a and Table 1), synNotch (Fig. 4a and Table 1), MESA (Fig. 5a
and Table 1) and GEMS (Fig. 5b and Table 1).

Chimeric antigen receptors (CARs)

CARs are a best-known class of synthetic receptor systems, which
have already been approved for CAR T cell therapies by the U.S.
Food and Drug Administration (FDA)*%® (Supplementary Note 1).
They represent a success of advances in synthetic biology to
pioneer a new generation of therapeutics, motivating the
continuous optimization of CAR-design and the development of
new synthetic receptor systems throughout the field.

Currently, CARs have been widely armed in immune cells like
T cells, NK cells and macrophages (reviewed in refs. >6979),
Besides, innate T cells including invariant natural killer T (iNKT)
cells, mucosal associated invariant T (MAIT) cells and gamma delta
T (y6T) cells have been developed as promising immune effector
cells, because they display intrinsic antitumor microenvironment
(TME) capacities and minimal risks of graft versus host disease
(GVHD) (reviewed in refs. 7'7%). CAR mainly consists of the
extracellular domain (ECD), the transmembrane domain (TMD)
and the intracellular domain (ICD) (Fig. 3a). The modular
characteristics of its structure confer it advantages to be highly
amenable to modification and redesign.

The ECD can be segmented into the signal peptide (SP) and the
ligand-binding domain (LBD). The SP prompts the transmembrane
receptor protein to be translocated to the plasma membrane,
which usually is cleaved from mature CAR protein co-
translationally’*”> (Supplementary Note 2). The LBD, also called
antigen-recognition domain, is typically a single-chain fragment
variant (scFv).”®”” The scFv is a compact artificial construct that
comprises the immunoglobulin light and heavy chain variable
regions connected by a flexible linker’® (Supplementary Note 2).
The scFv is widely adopted in CAR construction due to its compact
size, high affinity and specificity for antigen recognition.”” By
changing the scFv, CARs can specifically recognize different
antigens on various cancer cells (e.g., cluster of differentiation 19
(CD19), mesothelin, CEA, B-cell maturation antigen (BCMA), CD38)
by one-to-one authentication,* and subsequently activate cancer-
killing of CAR T cells. Besides simply replacing the scFv, CARs can
be equipped with bispecific antibodies consisting of two different
linked antigen-recognition domains (also referred to as ‘tandem
CARs’)”® (Fig. 3c and Table 1). As a result, tandem CAR T cells can
recognize different antigens expressed in a single cancer cell (e.g.,

Signal Transduction and Targeted Therapy (2024)9:7

Programmable synthetic receptors: the next-generation of cell and gene...
Teng et al.

human epidermal growth factor receptor 2 (Her2) and interleukin
13 receptor alpha 2 (IL13Ra2),2° CD19 and €D20%"), and therefore
reduce the possibility of tumor escape 3%

Recently, Wong and colleagues invented an intriguing general-
ized CAR platform, the split, universal, and programmable (SUPRA)
CAR system for T cell therapy®® (Fig. 3c and Table 1). In this system,
the conventional CAR architecture is split into two elements: (1) a
soluble zipFv by fusing a scFv to a leucine zipper and (2) a
universal zipCAR containing the remnant transmembrane and
intracellular domains attached to an extracellular cognate leucine
zipper.8* By adding different zipFv proteins, a unique zipCAR-
expressing T cell can retarget different tumor antigens.®* More-
over, SUPRA CARs can fine-tune T cell activation and program the
Boolean logic operation, which enhances the safety and efficacy of
T cell therapy.®*®® Alternatively, various switchable CAR systems
with bispecific adapters are under way (refs. 3% and also
reviewed in refs. ®°7) (Fig. 3c and Table 1). More information
about UniCAR is shown in Supplementary Note 3.

As mentioned previously, conventional CARs can only target
surface-bound ligands while being unable to sense soluble
ligands. To redirect the response of CAR T cells to soluble cues,
Chang et al. engineered a CAR that enabled T cells to respond
robustly to diverse soluble ligands via dimerization-induced
mechanotransduction mechanisms®® (Table 1).

The TMD is usually a hydrophobic a-helix that spans the plasma
membrane and functions to anchor CAR proteins to the
membrane.?3%° Besides controlling membrane integration, the
TMD also regulates key interactions between CARs, such as
assembly, activation and high-order clustering.?®°*'°%° Compared
to ECD and ICD, TMD has received relatively less attention and
research. Almost all the TMDs used in CARs are derived from
natural T cell proteins, such as CD8, CD28, CD4 and CD3¢°%'"
Nonetheless, studies have indicated that the TMDs certainly
impact the stability and function of CAR.'°*'% More recently,
Elazar et al, demonstrated that the specific oligomeric state
programmed by de novo designed TMDs can tune CAR function
and CAR T cell activity, as well as decrease cytokine releasing
relative to the commonly used CD28 TMD.'®°

By linking the extracellular antigen-binding and transmembrane
domains, the hinge region functions as a linker, providing the
flexibility to access sterically hindered epitopes®®'®" (Supplemen-
tary Note 2). Studies have revealed much more crucial roles of the
hinge region per se or it being coupled with the TMD than initially
expected. These results demonstrate that the length and
composition of the hinge can affect CAR functionalities, including
fine-tuning CAR signaling activity, improving antitumor efficacy,
and lowering cytokine release or neurotoxicity.'®>"'"° Therefore, in
CART cell engineering, it is essential for systematic evaluation and
optimization of the hinge and the TMD to ensure optimal
performance and reliability.5877-9111-113

The ICD transmits activation signals upon the antigen’s binding
to the ECD. The ICDs of most well-studied CARs contain a CD3(-
derived signaling moiety, which has three immunoreceptor
tyrosine-based activation motifs (ITAMs)””"'* (Supplementary
Note 4). From the first-generation (1 G) of CAR derived in the
1990s'"° to now, the structure of CAR per se has been constantly
evolving up to the fifth-generation (5G) (Fig. 3b and Table 1),
aiming to increase specificity and minimize off-target
toxicity.'*11°

The first-generation (1 G) CARs only contain ITAMs to provide
activating signaling with none co-stimulatory domain''> (Fig. 3b
and Table 1). Though 1 G CARs were proved to be able to activate
T cells and control tumor in mice,"”""? they failed to achieve
antitumor responses in subsequent clinical studies.’?® The reason
could be the CD3( alone is insufficient to activate resting T
lymphocytes or trigger the production of optimal amounts of
cytokines.'?"'?2 To solve these problems, second-generation (2 G)
CARs were created by incorporating a costimulatory domain

SPRINGER NATURE

11



Programmable synthetic receptors: the next-generation of cell and gene...
Teng et al.

12

b 1G CAR 2G CAR 3G CAR 4G CAR

W W% 8

Actuator
domain

Tandem CAR Dual CAR Switch CAR

WA Wi W o\

Dimerizing (75

PEE domain ¢
Switchable CAR i I

% S§§CAR Inhibitory CAR
) e LA

Fig.3 Design and engineering of the chimeric antigen receptor (CAR). a The architecture of CARs comprises an extracellular sensor domain, a
hinge, a transmembrane domain (TMD) and an intracellular signaling domain (actuator domain).>*° The extracellular sensor domain, also
known as antigen-binding domain, is usually a single-chain variable fragment (scFv) derived from a monoclonal antibody by fusing its light
(V) and heavy (Vy)-chain variable domain with a flexible linker peptide. Other proteins like nanobodies, designed ankyrin repeat proteins
(DARPins), natural ligands and small peptides can also function as the antigen-targeting moiety.”>'°" The hinge derived from T cell proteins or
immunoglobins can function as a flexible linker, providing sufficient conformational freedom to overcome steric hinderance to facilitate the
access to the target antigen. T cell protein-derived or de novo designed TMD not only anchors the CAR in the cell membrane but also affects
the stability and function of CAR. The intracellular signaling domain generally contains a CD3{ signaling domain and CD28/4-1BB
costimulatory domains (CDs), which facilitates T cell persistence and activity. Several other costimulatory domains including ICOS, OX-40,
CD27, MyD88/CD40 and NKG2D are already underway.”®'°' CAR architectures can be further engineered to express an ‘armor, which aims to
enhance the in vivo persistence and efficacy of CAR T cells. sbL, surface-bound ligand; ITAM, immunoreceptor tyrosine-based activation motif.
b First-generation (1 G) CARs only contain a CD3{ signaling domain in the intracellular domain (ICD), which outperforms the less popular
FceR1y signaling domain. Second-generation (2 G) CARs harbor one CD, and third-generation (3 G) CARs contain more than one CDs in their
intracellular signaling domain. Fourth-generation (4 G) CARs are based on 2 G CARs with additional expression of transgenic products (armor),
such as cytokines, antibodies, enzymes, ligands or receptors.”® Fifth-generation (5 G) CARs are also based on 2 G CARs with the addition of a
cytoplasmic domain derived from cytokine receptors (e.g., IL-2Rp chain fragment)'>* or synapse formation proteins (e.g., PDZbm scaffolding
anchor domain).2®" NFAT nuclear factor of activated T cells, IL-12 interleukin 12, IL-2Rp interleukin 2 receptor beta-chain, JAK Janus kinase,
STAT signal transducer and activator of transcription. ¢ Numerous approaches to improve the safety and efficacy of CAR T cell therapy. Tandem
CARs using bispecific single-chain variable fragments (scFvs) can operate an OR gate and overcome obstacles caused by tumor heterogeneity
and antigen loss.”® Dual CAR engaging split CARs can perform AND gate to provide and enhance the specificity through targeting multiple
antigens.'®® Switch CARs with ON/OFF switches utilizing small molecule-triggered dimerization or degradation mechanisms can timely
control CAR activity and overcome systemic cytokine toxicities of CAR T cells. Switchable CARs are specific to bispecific adaptors, such as
folate-FITC, biotinylated antibody, PNE-Fab and Co-LOCKR®*®”'°" and can direct a universal CAR T cell to target distinct antigens. Split,
universal and programmable (SUPRA) CARs consist of a set of leucine-zipper universal CARs (zipCARs) and leucine-zipper scFv (zipFv) domains,
which specifically bridge the zipCARs to various antigens. The SUPRA CAR system can fine-tune T cell activation and perform combinatorial
logic operations (AND, NOT, OR, AND-NOT).8485 Inhibitory CARs contain inhibitory domains derived from immune checkpoint proteins (PD-1
or CTLA-4), which are able to reduce off-tumor toxicities of CAR T cells by inhibiting T cell activation upon binding an antigen expressed on
non-malignant cells.>*' SynNotch CARs employ a co-expressed synNotch receptor to drive the expression of a CAR to achieve AND logic. The
synNotch and CAR can target different antigens, resulting in improved specificity and sensitivity of CAR T cell therapy.*®'*° deg degron, INH
inhibitory domain, TF transcription factor

SPRINGER NATURE Signal Transduction and Targeted Therapy (2024)9:7



b
Sensor{%%
domain

\
\
|
|
|
1
Cleavage site i} Hinge \
|
1
|
|
|

Actuator{ ‘
domain

Programmable synthetic receptors: the next-generation of cell and gene...

Teng et al.

Sender

U sender
ceII cell

W

synNotch esNotch SNIPR
Anchor Secretor Sender
cell _ / cell cell
@
CID domain

Diffusible synNotch

OCAR

Coiled-coil £

OCAR-synNotch

Fig. 4 Design and engineering of the synthetic Notch (synNotch) receptor. a The architecture of synNotch receptors consists of an
extracellular sensor domain, a transmembrane Notch core region and an intracellular actuator domain (transcription factors, TFs). In synNotch
receptors, the extracellular and intracellular domains (ICDs) can be completely swapped with diverse recognition domains (scFv, nanobody, or
peptide tags) and TFs (transcriptional activators or repressors). The core Notch regulatory region comprises the transmembrane domain (TMD)
and multiple proteolytic cleavage sites of wild-type Notch. Ligand binding to synNotch leads to the intracellular proteolytic cleavage and
release of the membrane-tethered TF to translocate into the nucleus and regulate gene expression.?' sbL surface-bound ligand, scFv single-
chain fragment variant, JMD juxtamembrane domain. b Evolution of the development of synNotch receptors. (Right, Upper) The modular
configuration of prototype synNotch. (Middle, Upper) Enhanced synNotch (esNotch) incorporates an intracellular hydrophobic sequence
(QHGQLWF, name as RAM?7) derived from native Notch which significantly decreases ligand-independent activation.'®? (Left, Upper) Synthetic
intramembrane proteolysis receptors (SNIPRs) are fully humanized transcriptional receptors through systematic modular engineering of the
original synNotch.*? (Right, Lower) The diffusible synNotch 5ystem can detect diffusible ligands anchored by engineered anchor cells, which
enables creating a synthetic morphogen signaling system.>” sL soluble ligand. (Middle, Lower) Orthogonal chemically activated cell-surface
receptors (OCARs) are engineered by replacing the extracellular sensor domaln of synNotch into a chemically induced dimerization (CID)
domain, which can achieve small molecule-triggered activation in a cis fashion.'®® (Left, Lower) In OCAR-synNotch system, one part of cis-
acting OCAR is sequestered by synNotch through the incorporation of coiled-coil dimer-forming peptides into them, which prevents small
molecule-induced activation of OCAR when synNotch is in an inactive state. Once synNotch is activated by surface-bound ligands, the
sequestered OCAR part is liberated and OCARs can be activated by the addition of inducers, which subsequently enhance synNotch

signaling’

(Supplementary Note 4) on the basis of 1G CARs (Fig. 3b and
Table 1), which enables the activation of a second signal when
stimulated by a tumor antigen.'”*”'?® This improvement has
achieved the enhancement of cytokine production, CAR T cell
persistence and antitumor efficacy.'®

And the third-generation (3 G) CARs are designed to combine
multiple costimulatory domains to further enhance CAR T cell
potency'?* 32 (Fig. 3b). Although potential benefits including
prolonged persistence and increased antitumor efficacy have
been demonstrated both in vitro and in vivo,'**"*” some clinical
results did not prove a significant superiority of 3G CAR T cells to
the 2 G CAR T cells."*3"%° As the available data was obtained from
relatively small and heterogenic samples, it is still too early to draw
a conclusion, and further large-scale studies are required to fully
evaluate their feasibility.

The fourth-generation (4 G) CARs have been engineered from
the 2G CARs to constitutively or inducibly secrete cytokines
(e.g., IL-12, IL-7, IL-15, IL-18, and IL-23), enhancing the immune
modulating capacities''"'*° (Fig. 3b and Table 1). Upon CAR-
mediated T cell activation, cytokines can be ideally released
within targeted tumor locally, alleviating systemic side effects
and solving the problem of insufficient production. Since the
4 G CARs can not only improve CAR T cell activation but also

Signal Transduction and Targeted Therapy (2024)9:7

hijack host immune cells to enhance tumor killing,"*"'>? the 4 G
CART cells are also referred to as T cells redirected for universal
cytokine killing (TRUCKs).""*116131:152 Compared with conven-
tional CAR T cells, TRUCKs show enhanced expansion and
antitumor activity in preclinical studies, especially in animal
models of solid tumors. However, in practice, systemic side
effects of released cytokines may occur upon entry into
circulation. For example, in a clinical study, Rosenberg and
colleagues modified tumor-infiltrating lymphocytes (TILs) to
express IL-12 under a NFAT-inducible promoter to treat
metastatic melanoma. They observed severe toxicity induced
in most patients, which is likely attributed to the secreted IL-
12.7>3 Here, more data derived from clinical trials are necessary
to assess their safety and efficacy.

Distinct from TRUCKs, the immunomodulatory factor expression
module of the 5G CARs is replaced with a novel costimulatory
domain which can activate a specific signaling pathway inside
equipped CAR T cells'"*'"® (Fig. 3b and Table 1). Based on this
excellent principle, several approaches are emerging, of which the
addition of IL-2 receptor B-chain (IL-2RP) into CARs is a notable
example.”®® Upon activation by the antigen, the extra IL-2RB
domain allows the activation of the JAK kinase and the STAT3/
5 signaling pathways, which can empower CAR T cells to achieve
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Fig. 5 Design and engineering of modular extracellular sensor architecture (MESA) and generalized extracellular molecule sensor (GEMS).
a, b The architecture of MESA (a) and GEMS (b) comprises the extracellular sensor domain, the transmembrane domain (TMD) and the
intracellular actuator domain. The extracellular sensor domain potentially includes single-chain variable fragments (scFvs), nanobodies (Nbs),
chemically induced dimerization (CID) proteins, or ligand-binding domains from native receptors. scFv-/Nb-based extracellular sensor
domains must bind to non-overlapping epitopes on a single-ligand molecule. a The MESA receptor contains two different transmembrane
chains, target chain (TC) and protease chain (PC). The TC intracellular domain (ICD) contains an engineered transcription factor (TF) and a
protease cleavage sequence between the TMD and the TF. The PC ICD consists of a cognate protease (e.g., tobacco etch virus protease (TEVp)
shown here). Ligand binding induces the heterodimerization of the MESA receptor, causing the TEVp to cleave its cognate cleavage sequence
on the TC and releasing the TF to translocate into the nucleus and modulate gene expression. Depending on the types of TFs, synthetic
promoter-driven transgene can be induced (e.g., tTA) or endogenous gene expression can be regulated (e.g., dCas9-VP64 activator).*’*® sL
soluble ligand. b The GEMS receptor also contains two transmembrane chains, of which the ICDs are derived from various receptor tyrosine
kinases (RTKs) and cytokine receptors. Ligand binding induces the dimerization of the GEMS receptor, activating intracellular signaling
cascade. By rewiring natural signaling cascades, transgene expression can also be induced.>® At the intracellular juxtamembrane region
alanine residues are inserted to modulate the conformation of ICD,*®" thus reducing ligand-independent signaling.>® EpoR erythropoietin
receptor, D1 EpoR D1 domain, D2 EpoR D2 domain, F93A substitution of phenylalanine at position 93 with alanine, Ala alanine. ¢ Evolution of
the development of MESA receptors. (Right, Upper) The modular configuration of prototype MESA.*”*8 (Left, Upper) Systematic evaluation of
TMD reveals that the choice of TMD significantly affects MESA performance. The TMD-modified MESA utilizing two different TMDs in the TC
and PC can achieve reduced background signals and/or increased ligand-induced signals.’®* (Right, Lower) In split-TEVp MESA system,
computationally optimized split TEVp can be reconstituted via ligand-induced dimerization and therefore restore TEVp function. The split-
TEVp enables MESA to achieve low background and high fold induction.'®® (Left, Lower) dCas9-synRTK (dCas9- and RTK-based chimeric
receptor) as an example of dCas9-synRs (synthetic dCas9-based receptors), employs split-dCas9-VP64 and split-TEVp as the intracellular
actuator domain, by fusing them to different RTKs. The difference between dCas9-synRTK and split-TEVp MESA is that dCas9-synRTK can only
sense native ligands since the extracellular domain and TMD of a dCas9-synRTK are derived from an intact RTK.'*® nTEVp N-terminal TEVp,
cTEVp C-terminal TEVp, dCas9n N-terminal deactivated Cas9, dCas9c C-terminal deactivated Cas9, RTK receptor tyrosine kinase. d Engineering
of chimeric cytokine receptors to mimic cytokine receptor signaling using scFv and EpoR scaffold. ScFv/c-Mpl (S-Mpl) chimera contains a scFv-
based extracellular sensor domain, the extracellular EpoR D2 domain and transmembrane/cytoplasmic domains of cytokine receptors (e.g., c-
Mpl).2'%=2'2 Chimeric cytokine receptor constructs with different combination of the domains containing the extracellular scFv, EpoR scaffold
and intracellular domain of cytokine receptors (e.g., gp130). Compared to Sg, SD1D2g-1A additionally contains the extracellular D1D2 domain
and one alanine residue at the intracellular juxtamembrane region. But the extracellular D1/D2 domain is dispensable for signaling.?%®
e Evolution of the development of GEMS receptors. GEMS should be considered as an evolutionary version of prototype SD1D2g-1A. Through
modular engineering, the GEMS platform is able to specifically target a range of soluble ligands and robust transgene expression with high
signal-to-noise ratios.”> Based on GEMS, generalized engineered activation regulators (GEARs) capitalize on MS2 bacteriophage coat protein
(MCP)-nuclear factor fusion proteins and the dCas9/sgRNA-MS2 system to rewire induced receptor signaling to endogenous gene
expression.®? Advanced modular bispecific extracellular receptors (AMBERs) combine the GEMS system and designed ankyrin repeat proteins
(DARPins). The high-throughput binder-screening technology, DARPin, can generate various new binders and endow AMBER with desired
sensitivity and specificity towards new inputs.?'® In addition to customizing target gene expression, GMES and its derivatives inevitably
perturb the endogenous gene regulatory network. dCas9, deactivated Cas9; sgRNA, single guide RNA; MS2, MS2 hairpin

superior antitumor effects with minimal toxicity in mouse models CAR T cell therapy has evolved and gradually matured during
due to a better persistence and expansion in vivo. However, it the past decades, showing great therapeutic potential in blood
could potentially increase the risk of CRS, thus requiring to be and bone marrow cancers. However, challenges remain in CAR-
cautiously addressed in translational studies.'>* based solid tumor immunotherapy due to tumor heterogeneity,
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inefficient trafficking and tumor infiltration, and an immunosup-
pressive TME.®*1>>71%% To facilitate CAR T cell therapy for solid
tumors, several strategies have been developed. For instance, dual
CAR, tandem CAR and UniCAR systems can recognize more than
one antigen, helping mitigate tumor antigen escape. CAR T cells
armed with matched chemokine receptor expression can permit
trafficking and infiltration, achieving enhanced killing of solid
tumors.'®®1%3 Also, engineering CAR T cells to express heparanase
degrading extracellular matrix (ECM) can promote tumor T cell
infiltration and antitumor activity.'®* In addition, the aforemen-
tioned TRUCKs were developed to overcome the drawbacks of the
TME on CAR T cell therapy to treat solid tumors by immunomo-
dulatory factors.'#>'4

However, it remains challenging to minimize CAR-immune cells’
off-target and off-tumor toxicity. In this context, the development
of next-generation CARs has already been underway®®®*'%" (Fig.
3c and Table 1). For example, the combinatorial logic control by
dual CAR'>'%® or synNotch CAR*'%7'%® can enhance tumor
targeting specificity via the presence of two or more antigens. On
the other hand, a safety control by ON- and OFF-switch CAR can
finetune CAR activity'®™'72 and kill-switch CAR can manage the
lifespan of CAR T cells.'”>'7* These are promising strategies to
improve the safety of CAR T cell immunotherapy in the future.

Furthermore, most CAR T cells under investigation currently are
engineered by inserting the CAR construct into autologous T cells
without disrupting the endogenous T-cell receptor protein (TCR)
gene. Under this condition, the risk of GvHD, which is triggered by
human leukocyte antigen (HLA)-TCR mismatching,'’> can be
avoided. To facilitate allogeneic “off-the-shelf” CAR T cell
transplantation, T cell receptor a chain (TRAC) deletion using
endonucleases, thereby disrupting cell surface expression of the
af3 T cell receptor (TCRap), can successfully prevent graft-versus-
host responses.'’> 8% Recently, CRISPR/Cas-mediated knockin
technology enables the precise integration of CAR-encoding gene
into TRAC locus in human peripheral blood T cells,'®' which not
only facilitates the production of allogeneic CAR T cells,'®'""8% but
also enhances T cell potency as the edited T cells outperformed
conventionally engineered CAR T cells.'®"'® However, more
recent studies revealed that the endogenous TCR plays a critical
role in promoting long-term in vivo persistence of CAR T cells in
not only animal models but also patients.'®>'% These results
collectively indicate that it is crucial to balance the intricate effects
of removing endogenous TCR from CAR T cells in tumor
immunotherapy.

Synthetic Notch (synNotch) receptors

In-depth studies of Notch receptors provide critical insights into
molecular mechanisms of Notch receptors.'®” And the intrinsic
features including modularity and mechanical forces-triggered
signaling independent of native ligands make Notch receptors
ideally suitable for modular chimeric receptor engineering.'®®
Taking advantage of it, Lim and colleagues created the innovative
synNotch receptor system by utilizing the transmembrane core
domain of native Notch receptors (Fig. 4a and Table 1), alongside

the extracellular sensor domain and intracellular actuator
domain 34041
Three intriguing works reported the modular synNotch

receptors functioning with customized sensing and responsive
behaviors in mammalian cells, including T cells.>"***' Morsut et al.
demonstrated that synNotch can function orthogonally to control
cell differentiation, spatial patterning and Boolean decisions.?'
Meanwhile, Roybal et al. reported that synNotch can sense tumor
antigen and then drive the expression of CARs (synNotch CARs as
mentioned above) (Fig. 3c and Table 1), which allows the
engineering of AND-gate T cells activated only by dual antigen
recognition.”® Roybal et al. also reported that synNotch enables
CAR T cells to yield customized therapeutic responses like
secreting cytokines and antibodies in a very precise and localized
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manner.*' Compared to conventional CARs whose activation
drives T cells to produce a native cytokine profile, synNotch can
control the expression of extra user-defined cytokines.*' A more
powerful combination of synNotch receptors with CARs for precise
and effective cancer-killing is on the rise, which endows synNotch
the great potential of becoming another synthetic receptor
system applied in cancer immunotherapy.

Due to its superior performance, the synNotch platform has
been widely adopted for designer cell-engineering,®>**3* parti-
cularly for the engineering of CAR T cells*®*""81%0 and the
programming of self-organizing multicellular structures.3'3%33
Although there are still challenges and limitations when it comes
to practical biomedical applications, researchers are trying hard to
figure out possible solutions. First, native Notch receptors have an
inherent feature that both trans- and cis-interaction modes co-
exist ' so activation cannot be achieved due to cis-inhibition
when the cognate ligand presents on the same surface as the
receptor does (cis).>""°" To avoid cis-inhibition, the ‘flippase-out’
strategy is employed to achieve the mutually exclusive expression
of the synNotch and its ligand in flippase recombinase transgenic
Drosophila.'®" Second, synNotch activation requires mechanical
forces triggered by surface-bound ligands, making synNotch
receptors unable to sense soluble ligands.3' To address this, Toda
et al. engineered anchor cells which can tether the soluble ligands
(e.g., diffusible GFP), thus enabling synNotch receptors to respond
to diffusible synthetic morphogens® (Fig. 4b and Table 1). Third,
synNotch receptors display a high level of ligand-independent
activation,'®? which is also quite common for other synthetic
receptor systems.”® Excitingly, a recent work reported an
improved version of synNotch, named enhanced synthetic Notch
(esNotch) receptor. By adding a native Notch-derived intracellular
hydrophobic sequence, an incredible reduction (14.6-fold) in the
background activity level was achieved'®? (Fig. 4b and Table 1).
Impressively, Roybal and colleagues have achieved systematic and
modular improvements of the synNotch architecture, including
modifications of the extracellular sensor domain, TMD, intracel-
lular juxtamembrane domain (JMD) and actuator domain.*> The
evolved synNotch system is referred as synthetic intramembrane
proteolysis receptors (SNIPRs) (Fig. 4b and Table 1), which realized
background reductions and enhanced ligand-induced signals.*?
Meanwhile, SNIPRs can be fully humanized with humanized
modules, minimizing the risk of immune rejection.** The use of
humanized syn-TFs, including synZiFTRs, not only retains the
orthogonality of SNIPRs, but also Iargelg/ reduces the immuno-
genic potential for cell-based therapies.*

In addition, Fussenegger and colleagues derived an orthogonal
chemically activated cell-surface receptor (OCAR) system on the
basis of synNotch by substituting conventional protein-specific
LBDs with chemically induced dimerization (CID) domains (Fig. 4b).
Induced by small molecules, the engineered OCARs on one cell can
form heterodimers and trigger signal activation by releasing
synTFs.'”> When the OCAR system is co-expressed with the
conventional synNotch on the same cell, one part of OCAR will be
sequestered by the synNotch receptor through coiled-coil interac-
tions, making OCAR unable to be activated by the inducer. When
synNotch receptor is activated by the presence of sender cells, the
OCAR can restore its responsiveness to the inducer and thus
further enhance synNotch signaling by adding inducers. Due to
their mechanism of action, OCAR systems exhibit an intrinsic off-
switch, which might be used as a safety switch in the case of
toxicity or malfunction'® (Fig. 4b and Table 1).

Modular extracellular sensor architecture (MESA)

Like synNotch receptors, the modular extracellular sensor
architecture (MESA) receptors also take advantage of the
proteolytic release of synTFs, which translocate to the nucleus
and initiate transcriptional activation to execute orthogonal
signals without interrupting endogenous signaling pathways*’®
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(Fig. 5a and Table 1). But different from synNotch receptors that
require mechanical forces induced by surface-tethered ligands,'
MESA receptors signal via soluble ligand-triggered receptor
heterodimerization to perform the subsequent proteolytic
cleavage.’*®

Each MESA receptor comprises two different single-pass
transmembrane proteins, as their intracellular domains are distinct
(Fig. 5a). MESA receptors also comprise three modular domains to
transduce extracellular ligand-binding inputs into intracellular
transcriptional outputs through synTF-releasing.*’*

By engineering the extracellular sensor domain, MESA receptors
can be redirected to new ligands.”’*® However, the prototype of
the MESA architecture also suffers from high level of ligand-
independent activation possibly due to transient receptor
dimerization during trafficking or on the cell surface.*® To address
this, Leonard and colleagues have been taking efforts on the
improvement of the MESA system, especially to reduce undesired
background signals. A systematical strategy was employed to
elucidate and refine the MESA architecture, demonstrating that
the TMD optimization can lower the background signaling and
elevate the target signaling'®* (Fig. 5¢ and Table 1). In another
study, authors exploited a computational design strategy to use
the split-TEVp system for MESA optimization (Fig. 5c and Table 1),
achieving both a low background and a high fold induction.’®® In
parallel, a similar dCas9-based synthetic receptor system termed
‘dCas9-synR’ was reported (Fig. 5¢ and Table 1), which is capable
of coupling native input signals with the direct activation of user-
defined output response programs.'®®

As discussed above, MESA and dCas9-synR are conceived as
cell-surface receptors based on previous studies,’*?%'%” put a
recent study challenged this conclusion.’® In this study, the
authors showed that both receptor systems did not work with
purified protein ligands, but were only activated when using co-
transfected ligands or the cell permeable molecule rapamycin
as inducers. Therefore, they suspected that these two receptor
systems function within the endoplasmic reticulum (ER), and
should not be classified into cell-surface receptors.'®® By
carefully checking previous publications, we find in three works
relevant to MESA, the authors have shown that MESA receptors
could be activated by purified vascular endothelial growth
factor (VEGF) protein,**®? and MESA proteins expressed on cell
surface were detected by flow cytometry.*®*'°* And yet the
inconsistent conclusion drawn by the recent study might
attribute to the different components of MESA constructs
(e.g., extracellular linker and TMD) used in research,'®® which
could change the expression level of MESA on cell surface as
indicated by previous works.*®*'?* Though the early study done
by Schwarz et al. showing that MESA could be activated by
purified VEGF supported MESA as a cell-surface receptor,*® a
more recent work from Krawczyk et al. failed to replicate the
original data.®? Using purified VEGF, few changes (in the range
of about 1.1 ~ 1.2 fold) were observed, which strongly indicated
that MESA did not achieve cell-surface receptor performance.®?
Thus, as the bias in the literature exists,*>6%196198 o give a
precise characterization of both MESA and dCas9-synR systems,
more replication attempts are definitely required.

Generalized extracellular molecule sensor (GEMS)

A clever insight into the EpoR architecture and signaling
mechanisms'®?72%2 spurs the development of chimeric cytokine
receptors based on EpoR scaffold®®>~%'? (Fig. 5d and Table 1).
These chimeric cytokine receptors (e.g., SD1D2g-1A) contain
extracellular scFv, extracellular EpoR D1D2 as well as TMD
domains, and the intracellular domains of cytokine receptors
(e.g., glycoprotein 130 (gp130) and EpoR)** (Fig. 5d and Table 1).
These chimeric cytokine receptors can employ robust ligand-
dependent ON/OFF regulation and mimic the function of the
native cytokine receptor system.?%>2%

SPRINGERNATURE

Based on this prototype, the GEMS system is rationally designed
and engineered. GEMS receptors comprise a standard transmem-
brane scaffold derived from erythropoietin receptor (EpoR) with
FO93A mutation (Fig. 5b and Table 1), abolishing native ligand
(erythropoietin) sensitivity.>® Extracellular LBDs can be modularly
replaced to sense and respond to a wide range of extracellular
soluble ligands. Significantly, the ICDs employ various signaling
domains to reroute inputs into distinct endogenous pathways
(e.g., JAK/STAT, PI3K/Akt, PLCG and MAPK/ERK).>® In recent
reports, the GEMS platform has evolved into the superior
generalized engineered activation regulators (GEARs)®* and
advanced modular bispecific extracellular receptors (AMBERs)?'>
(Table 1). The GEAR system combines endogenous signaling-
induced synTF nuclear translocation and dCas9-based gene
expression via the DNA-binding module (Fig. 5e). Various
pathways (e.g., NFAT, nuclear factor kappa B subunit (NFkB),
mitogen activated protein kinase (MAPK) or SMAD) activated by
diverse receptors including GEMS receptors can be incorporated
into engineered GEARs.®? The AMBER system is, in short, a type of
programmable DARPin- and GEMS-based receptors (Fig. 5e),
which inherits the characteristics and advantages of both systems.
Thus, AMBERs can be engineered and refined to bind to new
soluble ligands in a modular and predictable manner.?'® For proof
of concept, the GEMS and its derivates have been applied to
engineering designer cells in vitro and in vivo for disease
treatment (Fig. 2d) (refs. 352213214 and reviewed in refs. '3'9),
Though showing promise in preclinical studies, challenges remain
to be addressed before the translation of the GEMS system into
clinics. A major challenge is the safety concern relevant to the
immunogenicity of designer cells. Recently, Weber and colleagues
engineered a material-genetic interface as the safety switch for
mammalian therapeutic cells, in which they achieved the control
of cell survival by allowing the designer cells to sense whether
they were embedded in the hydrogels using a GEMS-based
receptor.'”

As discussed above, synthetic receptors hijacking natural
signaling pathways usually inevitably activate endogenous
transcription networks to some extent. Using synthetic promotors,
GEMS receptors can induce user-defined transgenic target
expression.>® The advantage is that GEMS receptors can generate
high signal-to-noise ratios.'® However, the accompanying dis-
advantage is the perturbation of the gene regulatory network
might affect the proliferation and survival of the cells being
engineered.

SYNTHETIC RECEPTOR DESIGN

The prospect of programming sophisticated customized functions
in mammalian cells has fostered the investigations on the design,
engineering and iterative improvement of synthetic receptors,
which is led by increasing knowledge of the intrinsic structure and
molecular acting mechanisms of natural receptors. Currently,
primary strategies for synthetic receptor engineering include but
are not limited to chimeric/fusion protein, directed evolution,
rational design and de novo design (reviewed in ref. &),

Engineering chimeric/fusion proteins means genetically inte-
grating different functional peptides together referring to the
architecture of a natural archetype. It is widely used for synthetic
receptor engineering. The above-mentioned CARs, synNotch,
MESA, GEMS, and chimeric cytokine receptors as well as Tango
were originally constructed using this method®”).

Directed evolution is one of the most popular strategies for
protein engineering, which mimics the natural evolution and
harnesses the power of mutation and selection.?’®?'” Through
iterative cycles of random mutagenesis, followed by selection,
engineered DREADDs (designer receptors exclusively activated by
designer drugs)®'® and AMBERs*'* enable targeting new ligands
with high specificity and/or sensitivity (Table 1).
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Fig. 6 Metrics- and “design-build-test-learn” (DBTL) cycle-based framework for synthetic receptor engineering. a Performance metrics can be
used for quantitative assessment of the performance of synthetic receptor systems. Signaling output can be quantified by reporter
fluorescence measurement, luciferase assay or various other approaches. The performance of a synthetic receptor is determined not only by
its background signal and signal-to-noise ratio, but also by the therapeutic thresholds in practical applications. An optimal receptor should
exhibit a low background signal (Og) which is lower than the minimum therapeutic threshold (T ), and meanwhile exhibit a high induced
output signal (O;) (Right, Upper). A synthetic receptor exhibiting low Og and high O; may still fail in practical applications, which might be due
to Og > Tax (maximum therapeutic threshold) (Right, Lower) or O; < Tynin (Right, Lower). In another case when Og > Tin (Left, Lower), leaky
expression should be cautious of. b A modified DBTL-based framework can direct researchers to choose or engineer synthetic receptor
systems for their application in cell therapy or gene therapy. A “goal” step is to define design objectives for engineered cell or gene therapy
and the standards to quantify the performance of synthetic receptors using performance metrics. In the DBTL cycle, apart from conventional
approaches, more advanced and powerful approaches like computation-guided design, high-throughput automation techniques, machine
learning and computational modeling can further accelerate the engineering and improvement of synthetic receptors for better clinical

applications. The figure is adapted from refs, 2023°

Compared with directed evolution, rational design essentially
requires the in-depth understanding of protein structures.
Mechanistic insights into receptors have facilitated the rational
design and engineering of CARs, synNotch and GEMS receptors.
Advanced computation-assisted approaches have aided the
rational design of CARs?'®??° and MESA'®> as well as other
modular sensor-actuator systems®2' with improved specificity and
sensitivity. In silico approaches enable scientists to construct
numerous receptor variants and conduct thousands of simulated
experiments by computer, which dramatically reduces the amount
of candidates to be tested in laboratory experiments.?%%23

De novo design is an intriguing strategy for protein design with
predetermined structures and functions. Distinct from rational
design, de novo design aims to generate new proteins from
scratch.?>* With the deepening understanding of the principles of
protein biophysics and the development of computational devices
and algorithms, scientists have achieved the de novo protein
design of synthetic receptors. Currently, various functional
proteins, such as protein-binding proteins and TMDs, are de novo
designed.””* %' And they can be incorporated into synthetic
receptor engineering by the modular approach. For example, de
novo designed TMDs have been employed in CAR engineering
and achieve the outperformance relative to the native CD28 TMD
(as discussed above and also in ref. '°).

More prominently, Baker and colleagues designed a switchable
protein platform from scratch, termed ‘latching orthogonal cage-
key proteins’ (LOCKR)*” (Table 1). Though not being a cell-surface
receptor, LOCKR represents a breakthrough in the de novo design
of protein switch, indicating a branch of future direction in
synthetic receptor design. In this system, intermolecular cage-key
interactions can competitively inhibit intramolecular cage-latch
interactions, and thus free the latch peptide from the cage to
perform different functions (e.g., binding, degradation, and
nuclear export).>” Capitalizing on LOCKR technology as the core,
engineered modular and tunable protein switches achieve gene
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expression and even feedback control in cells.’”* The advent of
evolutionary technologies opens broad avenues to computation-
ally design, engineer and improve arbitrary synthetic receptor
systems.

Different strategies or approaches, including machine learn-
ing, could be combined to facilitate the engineering and
improvement of synthetic receptors. The latest advances in CAR
engineering could be a good example. As afore introduced,
intracellular signaling domains of a CAR play vital roles in T cell
activation and tumor killing, but only limited sets of signaling
domains were explored. To expand the repertoire of CAR
signaling domains, a range of studies have been focusing on
their systematic optimization. Among them, Goodman et al.>*
and Si et al.?® individually constructed a small library of CARs
containing natural or rational recombinant costimulatory
domains, and screened out novel costimulatory domains which
were proved to achieve enhanced cytotoxicity and T cell
persistence, thus improving antitumor efficacy. Meanwhile,
high-throughput screening has also been applied to identify
new combinations of signaling domains®** or new synthetic
signaling domains via shuffling or recombination.?*>%3¢ Of note,
Lim and colleagues incorporated machine learning in their
study, and took advantage of trained neural networks to predict
the cytotoxicity and stemness of CARs with synthetic signaling
domains.?*¢

Increasing approaches are boosting the development and
improvement of various synthetic receptors (Table 1). For practical
use, selecting and optimizing synthetic receptors for a specific
application could be greatly facilitated by the generalized and
systematic framework presented in Fig. 6 (also reviewed in detail
in ref. 2°. Defining the goal is the first and crucial step before
entering into the DBTL cycle. It includes narrowing down options
of synthetic receptors adapting to engineered cell or gene therapy
by specifying the required characteristics and setting performance
criteria for the expected synthetic receptors. Notably, performance
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Fig. 7 The expanding potential therapeutic applications of synthetic receptors. a A variety of immune cells, such as T cells, innate T cells, NK
cells, macrophages, dendritic cells and myeloid cells, can be directly isolated from patients and genetically engineered with CARs to enhance
their antitumor capacity.°®3? Alternatively, these immune cells can be differentiated from CAR-engineered pluripotent stem cells (PSCs) as
‘off-the-shelf’ products. After being infused back into patients, these engineered immune cells interact with antigens on the tumor cells,
leading to the activation of CAR immune cells to achieve cancer-killing.”%*** b, ¢ Synthetic receptors could be integrated into PSCs to enhance
original or program novel functionalities of the differentiated derivates for developing next-generation cellular therapeutics. b PSCs can
differentiate into various cell types, like hepatocytes, neurons, muscle cells, etc., which are suitable for transplantation. One could imagine
after being transplanted, cells engineered with synthetic receptors could sense and respond to host microenvironmental cues to promote the
survival, proliferation and enhance tissue repair or regeneration.>° ¢ Differentiated derivates from synthetic receptor-engineered PSCs might
also be encapsulated and implanted in patients to avoid immunogenicity. These implantable therapeutic cells can sense various serum
biomarkers (e.g., glucose, uric acid or thyroid hormone) and then trigger the activation of the corresponding therapeutic functions.'®

d Synthetic receptor systems can be further designed and engineered with compact size and lower immunogenicity easier for in vivo gene

therapy.*?®* These suitable synthetic receptor constructs can be delivered by non-viral vectors (e.g., lipid nanoparticle (LNP))

vectors (e.g., AAV)?’

metrics can be adopted to quantitively evaluate the performance
of synthetic receptors in different application scenarios° (Fig. 6a).

Driven by defined design objectives, researchers could follow
the DBTL pipeline to design and engineer synthetic prototypes,
test and optimize the performance in a befitting model (e.g., cell
lines), and further validate the performance in a practical context
(e.g., engineered cell therapy or gene therapy in animal models)
(Fig. 6b). Of note, in the “design” step, choosing different module
candidates is of vital importance, which could significantly impact
the properties of synthetic receptors. For example, to force the
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334335 or viral

expression of synthetic receptors on cell surface, both SP and TMD
are essential (discussed above), which also influence the cell-
surface expression levels of receptors. Moreover, data-driven
computation-guided design can be incorporated to achieve a
more efficient rational design of synthetic receptors. The “build”
and “test” steps are traditionally laborious, involving series of
construct engineering and assessment of performance metrics.
The high-throughput automation techniques developing rapidly
can not only increase productivity but also reduce human errors in
this process.”2”2*8 In the “learn” step, researchers can decipher the
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data generated and create blueprints of synthetic receptors based
on it. Usually trial-and-error approaches are employed to
determine the optimum design subsequently. Currently, advanced
computational modeling and machine learning are starting to play
a central role to process and learn from masses of biological data,
achieving a new paradigm of predictive design. By bridging the
gap between the “learn” and “design” stages, they can greatly
accelerate the DBTL cycle.?*

CONCLUSIONS AND PERSPECTIVE

The design and engineering of synthetic receptors have achieved
great advancements, and the constant evolution of synthetic
receptor systems accelerates their biomedical applications and
clinical translations. As the most successful case, CARs are at the
forefront, with six CAR T cell therapies already approved by the
FDA%%® and hundreds more undergoing clinical studies (Clinical-
Trials.gov). In addition, other CAR-engineered cells including CAR
NK and CAR macrophage cells are also being widely investigated
in translational researches.>*40-242

Looking forward, an important goal of the field is to uncover
the principles of design to guide the rational design of synthetic
receptors with desired properties and functions. A growing
number of reports have taken advantage of computational
designing strategies for engineering and improving synthetic
receptor systems like CARs,*'®?2° MESA'®> and de novo protein
switches.>”*® Among them, de novo protein design is further
ahead, as different kinds of non-natural functional proteins
have been created from scratch.??> 23" Knowledge-driven and
data-driven computational approaches have established inter-
pretable models for de novo protein design.>**72*° As discussed
above, de novo designed proteins have aIreadg been incorpo-
rated into synthetic receptor engineering.>’>®'%° We anticipate
that various valuable synthetic receptors can be designed by de
novo design strategies?**%°° or by generative language models
in future.®’

Importantly, selecting functional synthetic receptor systems
and integrating them with ‘chassis cells’ can potentially push
the boundaries of synthetic receptor applications and develop
novel cell therapeutics (Fig. 7). For example, the application of
CARs in engineered-T cells has enhanced the specific tumor
killing ability®® (Fig. 7a). More importantly, a combination of
different synthetic receptor systems can exhibit synergistic
effects and further enhance their performance, as studies have
shown that synNotch CAR T cells exhibit a significantly
enhanced safety and antitumor efficacy by combinatorial
antigen recognition?®167:168189.252 o yjtrasensitive antigen-
density sensing.’®® As engineered stem cell therapy emerges,
synthetic receptors can also be applied to engineer pluripotent
stem cell-derived cell products®*’®'7> (Fig. 7b, c), potentially
being used to enhance their survival and engraftment ability via
programmed communications with the host microenviron-
ment?>2°323* (Fig. 7b). However, since some precautionary
data and critical attitudes about stem cell therapy exist, future
trials are needed to further investigate the safety and efficacy of
stem cell therapy per se.>?*> Meanwhile, concerns over the
safety of both genetic materials (e.g., transgene immunogeni-
city) and genetic modifications introduced also require to be
carefully addressed in preclinical and clinical studies.?

Moreover, synthetic receptors can also program in vivo gene
therapy with an improved safety and efficacy (Fig. 7d). One
promising approach for in vivo gene therapy is to employ adeno-
associated virus (AAV) systems to deliver therapeutic genetic
materials into the human body.?*?*” Although AAVs have been
increasingly used in clinical trials as novel gene therapies,®*® their
limited packaging capacity (~4.7 kb) hinders the loading of most
synthetic receptors described above. To meet the clinical
demands, designing or refining synthetic receptors with a
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compact size is required, and already being investigated.*>%* In
addition, humanizing synthetic receptors with minimal immuno-
genicity is also of vital importance in advancing gene therapy as
well as engineered cell therapy.*>®*

In conclusion, modular synthetic receptors with desired
functions have been engineered and applied to therapeutic
applications. Meanwhile, advances keep facilitating and accelerat-
ing the development and evolution of synthetic receptor systems,
making the field to shift from the prior trial-and-error mode to
more knowledge- and data-driven modes. Briefly, we expect that
rapid progress in synthetic receptor biology will keep revealing
exceptional new openings to program gene therapies and
engineered-cell therapies that have been unreachable by
established approaches.
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