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Multifunctional nanoparticle-mediated combining therapy for
human diseases
Xiaotong Li1, Xiuju Peng1, Makhloufi Zoulikha1, George Frimpong Boafo2, Kosheli Thapa Magar1, Yanmin Ju1✉ and Wei He 3✉

Combining existing drug therapy is essential in developing new therapeutic agents in disease prevention and treatment. In
preclinical investigations, combined effect of certain known drugs has been well established in treating extensive human diseases.
Attributed to synergistic effects by targeting various disease pathways and advantages, such as reduced administration dose,
decreased toxicity, and alleviated drug resistance, combinatorial treatment is now being pursued by delivering therapeutic agents
to combat major clinical illnesses, such as cancer, atherosclerosis, pulmonary hypertension, myocarditis, rheumatoid arthritis,
inflammatory bowel disease, metabolic disorders and neurodegenerative diseases. Combinatorial therapy involves combining or
co-delivering two or more drugs for treating a specific disease. Nanoparticle (NP)-mediated drug delivery systems, i.e., liposomal
NPs, polymeric NPs and nanocrystals, are of great interest in combinatorial therapy for a wide range of disorders due to targeted
drug delivery, extended drug release, and higher drug stability to avoid rapid clearance at infected areas. This review summarizes
various targets of diseases, preclinical or clinically approved drug combinations and the development of multifunctional NPs for
combining therapy and emphasizes combinatorial therapeutic strategies based on drug delivery for treating severe clinical
diseases. Ultimately, we discuss the challenging of developing NP-codelivery and translation and provide potential approaches
to address the limitations. This review offers a comprehensive overview for recent cutting-edge and challenging in developing
NP-mediated combination therapy for human diseases.
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INTRODUCTION
Combined therapy, a management model that involves two or more
active compounds, is playing an increasing role in combating
human diseases.1 Clinical mainstream diseases, including cancer,
cardiovascular disorder, inflammatory bowel disease (IBD), lung
diseases, rheumatoid arthritis (RA), and metabolic disorders, have
complex microenvironments and interconnected pathological path-
ways, so many conventional monotherapies always have moderate
efficacy. Given the advantages, such as targeting multiple signaling
pathways, elevated treatment efficacy, reduced administration dose
and side effects, and decreased drug resistance,2,3 combinatorial
treatments are promising strategies to combat major diseases
(Fig. 1). Moreover, the combined therapy represents a new approach
for “drug repurposing” regarding using approved drugs for new
therapeutic purposes, allowing reduced business risk and develop-
ment costs.4 Nonetheless, the cocktail-drug combinations could also
potentially cause the treatment outcomes, e.g., antagonism and
increased drug toxicity, due to the restrictions, including drugs’
pharmacokinetic difference, asynchronous tissue biodistribution,
poor barrier penetration, and intracellular delivery.5 For instance,
the combined use of small molecular drugs and active proteins
demonstrates effective efficacy to regular cells’ performance in vitro.
However, dosing their cocktail combination frequently shows
suboptimal therapeutic efficacy because of the protein degradation
by the livers and poor internalization by cells.

Multifunctional NP-based drug delivery systems (DDSs) are
emerging as a robust approach to improve the combined therapy
as they can load the active agents into one carrier, improve drug
solubility, protect the drug from decomposition, alter the
biodistribution, elevate tissue penetration, avoid rapid clearance,
prolong half-life, and reduce off-target effects. More importantly,
these DDSs enable the simultaneous or spatial delivery of two or
more drugs, allowing the consistent pharmacokinetic performance
of different drugs and maximizing synergistic effects.6–11 E.g.,
responsive-release DDSs, such as enzyme- and pH-triggered NPs,
can release their payloads in sequence and allow precise delivery
to different lesion sites or organelles.12–15 Additionally, the
asynchronous release of the two drugs from DDSs after
endocytosis could magnify the synergy since they have a
spatiotemporal inconsistency in the intracellular target. E.g.,
biological drugs constantly need increased time to demonstrate
their activity post uptake compared with active compounds. A co-
delivery system assembled from drug crystals and microRNAs
enabled sustained release of the drug over time and, whereas,
rapid release of the biologics, improving the synergy to kill cancer
cells or alleviate inflammation.16,17 Also, these NP preparations can
be given via several routes, including oral, injection, transdermal,
and inhalation, thereby increasing the potentiality of clinical use.18

Up to now, a liposomal formulation (Vyxeos®) co-loading with
daunorubicin (DNR) and cytarabine (ara-C) was approved in 2017
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for treating acute myeloid leukemia (t-AML) and myelodysplasia-
related AML,19 demonstrating the breakthrough of multifunctional
NP-mediated combining therapy. This review introduces the
complex pathological mechanisms for some clinically critical
diseases and therapeutic targets and discusses combinatorial
therapy strategies used in the clinic. Primarily, we highlight NP-
codelivery therapy and its directions and challenges (Fig. 2).

MULTIFUNCTIONAL NPS
Multifunctional NPs used in drug delivery has grown by leaps and
bounds in recent decades (Fig. 3) due to their advantages, such as
improving drug solubility and penetration and reducing drug
dosage and side effects. In the early 1970s, scientists realized that
intravenous injection of drug suspensions with a particle size of
tens of microns was hazardous for embolism.20 In 1976, Peter, the
pioneer of the concept of NPs, first reported NPs. This concept
inspired the researchers, allowing drug therapy a qualitative leap
from micro- to nano-scale.21 In particular, this progress is not only

a change in particle size. Compared with micron-sized particles,
NPs have a larger specific surface area, and the characteristics of
materials used to construct particles can be adjusted according to
the nanoscale size and shape of NPs.22 Traditionally, NPs are
defined as ultra-dispersed solid supramolecular structures with
particle sizes usually smaller than 500 nm; and if it is too large, it is
quickly cleared by the reticuloendothelial system (RES). However,
it is worth noting that too small particles (usually below 10 nm) are
rapidly excreted by the kidneys.23

At the early stage, the approved NPs were mainly used to treat
liver diseases or infectious diseases because they predominantly
accumulated in the liver or were uptaken by the RES. The
groundbreaking precedent of nano-formulation is the NP-based
nanocrystalline oral tablet, Gris-PEG®, marketed in 1982 for
treating ringworm infections. The maximal plasma concentration
of griseofulvin increased by twice due to the release enhance-
ment. In 1990, the first liposomes (Ambisome®) were permitted to
treat fungal infections.24 Two other liposomes, Epaxal® and
Abelcet®, were launched to treat hepatitis A and invasive severe
fungal infections, respectively, following five years.25,26 In 1995, a
new liposomal formulation, PEGylated doxorubicin liposomes
(Doxil®), was launched. PEGylated modification allows reduced
serum attachment and RES uptake and prolonged blood
circulation time and strengthens passive targeting and EPR effect
to treat cancer.27,28 Likewise, Oncaspar®, L-asparaginase pegylated
enzyme NPs, was approved to combat acute lymphocytic
leukemia.29 After then, researchers began to design various
multifunctional NPs, such as conjugating ligands for active
targeting and incorporating/surface-wrapping temperature-sensi-
tive, pH-sensitive or photosensitive polymers in NPs for responsive
release.30,31 Numerous NPs were reported in the past twenty-five
years, yet few have been translated. Nonetheless, the NP
application had a breakthrough recently, demonstrated by the
approval of the co-loaded liposome Vyxeos® in 2017, LNP
(OnpattroTM) in 201819 and the LNP COVID-19 vaccine (mRNA-
1273 and Comirnaty®) in 2021. Launching OnpattroTM is a critical
milestone for nucleic acid delivery using NPs.32 So far, more than
90 nanomedicine have been approved for clinical use, indicating
the bright application potential of NPs.33 Given the breakthrough
in drug delivery, NPs are demonstrating increasing attention in
combination therapy and are considered a potent tool to improve
the combined treatment.

THE MODELS FOR EVALUATING COMBINATION EFFECTS
Combining multiple drugs may cause additive, synergistic, or
antagonistic effects, representing similar, greater, or lesser
responses compared to the individual drugs.34 Two or more

Fig. 1 Timeline mapping the historical development and advancement of combinatorial therapies. Parts of the figure were drawn using
Servier Medical Art licensed under a Creative Commons Attribution 3.0 Unported License (https://creativecommons.org/licenses/by/3.0/)

Fig. 2 Combinatorial therapy and NP-codelivery therapy strategies
for human diseases. Parts of the figure were drawn using Servier
Medical Art licensed under a Creative Commons Attribution 3.0
Unported License (https://creativecommons.org/licenses/by/3.0/)
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drugs work together on a complex biological network rather than
one target to achieve synergistic treatment.35 Predominantly, the
synergistic effect obtains through pharmacodynamic (PD) or
pharmacokinetic (PK) interactions.36 PD synergy refers to the
therapeutic outcome of drug combination by targeting different
pathways, such as enzymes, substrates, metabolites, ion channels,
signaling cascades, etc.37 Asbjørn et al. reported a general
pharmacodynamic interaction model (GPDI) to assess docetaxel-
SCO-101 combination synergy.38 They concluded that GPDI could
quantify the interaction through maximal effects and potency.
GPDI demonstrated that the combination enabled 60% potency
increase against drug-resistant MDAMB-231 TNBC cells compared
to docetaxel. Gabriel et al. also found that cytarabine synergied
with the WEE1 inhibitor (adavoxetine) through PD interaction. The
two drugs acted on leukemia cell-related metabolite pathways,
such as gluconeogenesis, amino acids, nucleotides, glutathione
and electron transport.39 PK synergy refers to affecting the
absorption, bioavailability, distribution or metabolism of drugs
through interaction. For instance, oral administration of taxane
isolated from Taxus chinensis (a mixture of various pharmaceutical
ingredients containing 17.2% paclitaxel (PTX)) could significantly
increase the concentration and systemic exposure of PTX in rat
blood and extend the drug’s retention.40 The underlying synergy
mechanisms may result from the “herbal compatibility” that could
compromise the activity of P-gp and CYP3A4. Always, NPs allow
synergistic effects by several factors, such as improving solubility,
PK consistency and diseased-site accumulation of two drugs.41

E.g., cytarabine and daunorubicin in liposomal combination
Vyxeos® demonstrated modest differences in PK performance
while exhibiting significant differences in free combination.42

Usually, the combinatory effect is evaluated by measuring the
combination index (CI) that indicates a synergistic (CI < 1), antag-
onistic (CI > 1), or additive (CI= 1) combination.43 Patients may
experience significant toxicity if a multi-component combination is
not carefully and accurately examined. There are sets of reference
models based on different mathematical principles that have been
developed to corroborate the benefits of drug combinations over
their monotherapies.44 Those approaches can be divided into effect-
based and concentration-based models (Fig. 4).
Effect-based methods, such as the Highest Single Agent (HSA),

Response Additivity and Bliss Independence models, directly
compare the response EAB resulting from the combination of two
drugs, respectively named A and B, administered at doses of a and
b to their individual effects EA and EB.45 The HSA model calculates
CI by the formula: CI = max (EA, EB)/EAB, and the significance of a
positive combination is given by the P value of the statistical test
compared to the HSA. The Response Additivity model assumes
that a drug combination is positive when EAB is greater than the
sum of the individual effects EA and EB. CI can be calculated as CI
= (EA+ EB)/EAB. However, this strategy assumes that drugs have

linear-dose–effect curves which is not the general case. The most
popular effect-based model is the Bliss independence model.46

Bliss model evaluates the drug combinations based on the
assumption that drugs act independently on distinct action sites
but lead to a typical result. The CI is calculated as CI = (EA+ EB –
EAEB)/EAB. However, it presumes that the drugs have exponential
dose–effect curves, which may result in misleading interpreta-
tions.43 Also, it does not take into consideration drug interactions.
In contrast, concentration-based methods predict the effects of

drug combinations based on their non-linear dose-response curves
and assume that the effects of the combined drugs are additive but
not necessarily independent. The Loewe additivity model is the most
widely used dose-based strategy (Fig. 4). The CI is calculated as CI=
a/A + b/B. This flexible model provides isobol representation in
addition to the algebraic analysis. Nevertheless, dose-based models
require large amounts of data which might be expensive or difficult
to get45. The zero interaction potency model was recently proposed
as a hybrid approach between the Bliss and the Loewe Additivity
models to evaluate drug combinations.45

Overall, each model has advantages and limitations, and the
choice of model depends on the characteristics of the drug and
the target illness. The investigation of drug combinations requires
different approaches since no reference model appropriate for all
biomedical applications is available so far. Numerous software
based on different models has been developed, such as
CompuSyn, CalcuSyn, Synergyfinder, COMBIA, and Combenefit.46

CANCER
Cancer is a heterogeneous disorder stamped by the undistin-
guishable growth and the proliferation of abnormal cells, causing
a patient’s death. Solid tumors comprise stromal cells (including
fibroblasts and inflammatory cells), cancer cells, and infiltrating
immune cells impacted in an extracellular matrix and nourished
with a vascular network.47–49 The first-line treatment approach for
most cancers is chemotherapy.50 Although conventional che-
motherapies can elevate patient survival rates, they also possess
various restrictions, e.g., drug-resistance development, dispropor-
tionate toxicity, little targeting, and unwanted side effects. Since
the first four-drug combination therapy was approved in 1964,
many studies confirmed that drug combination could improve the
treatment outcomes, such as suppressing tumors and prolonging
patient survival. Additionally, amid some new treatment strate-
gies, nanotechnology is playing an increasing role in encompass-
ing treatment&diagnosis, identifying biomarkers, and
understanding cancer progression.51–54

Targets for cancer therapy
In as much as monotherapy treatment is often used to treat cancers,
combinatorial treatments targeting specific cell-sustaining and

Fig. 3 Timeline mapping the historical development and advancement of multifunction NPs. Parts of the figure were drawn using Servier
Medical Art licensed under a Creative Commons Attribution 3.0 Unported License (https://creativecommons.org/licenses/by/3.0/)
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cancer-inducing pathways are the mainstays and most efficient.55,56

Traditional chemo-based monotherapy treatments usually damage
cancerous and healthy cells since chemotherapy targets all
proliferating cells. Also, conventional monotherapeutic techniques
can be highly toxic and significantly compromise patients’ immune
systems, increasing their disease susceptibility.57,58 Nevertheless,
combining therapy can actively target tumors and their microenvir-
onment by disrupting different signaling proteins contributing to
cancer’s initiation and sustaining (Table 1). These pathways are
essential in cancer, intertwined with refractory characteristics that
lead to excessive tumor growth, decreased tumor cell apoptosis,
drug resistance, metastasis and tumorigenesis (Fig. 5).5,59,60

Hyperproliferation pathways. Autocrine growth factors are effec-
tor substances commonly found in cancers. These growth factors
enhance malignant characteristics through pro-proliferation activ-
ities via the assistance of autocrine growth loops.61 Amongst the
numerous growth factors, the most prevalent and major ones in
cancers include epidermal growth factor, insulin-like growth
factor-2, tumor-growth factors, 5-hydroxytryptamine, and
vascular-endothelial-growth factor (VEGF), etc.61–64 Cancer may
arise due to extreme proliferation if these factors cannot answer
the deleterious controlling indicators.
Stimulated by growth factors, tumor cells initiate kinase-

mediated signaling events to increase nutrient uptake, including
glucose, amino acid, and lipid. Due to the large influx of glucose
into proliferating cells, only a small fraction of glucose is fully
oxidized in the normal tricarboxylic acid cycle. The remaining
glucose is converted to lactate through glycolysis and secreted,
resulting in an acidic and hypoxic tumor microenvironment
(TME).65,66 This characteristic provides a basis for the design of pH-
sensitive and reactive oxygen species (ROS)-sensitive DDSs. Cells
have adapted a systemic pathway to deal with high oxidative

intrinsic and extrinsic stress via an antioxidant response termed
the Nrf2-Kelchlike ECH-related protein-1 (Keap1) signaling.67

Keap1 is an oxidant sensor and electrophile, which gradually
promotes Nrf2 degradation under dormant conditions. Nrf2 is
vigorously located in the nucleus to induce an anti-oxidative reply
in intense oxidative pressure because of reactive oxygen species
or the build-up of carcinogens.68 Tumorigenicity is regulated by
two means of the Nrf2 antioxidant reply, either via Keap1-
dependent and Keap1-independent mechanisms or via stimulat-
ing the development and cancer-cell survival, which are already
inducted since Nrf2 and the anti-oxidative reply aids tumors in
dealing with oxidative stress.69 Hence, the Nrf2 and its anti-
oxidative response could be a suitable target for combinatorial
therapy. At the same time, mitochondria are the central organ of
cell metabolism. ROS or metabolic enzymes, i.e., α-ketoglutarate-
dehydrogenase, pyruvate dehydrogenase and glycerol-3-
phosphate dehydrogenase, can be the targets for regulation.70,71

Anti-apoptotic pathways. Apoptosis is defined as programmed
cell death in the human body. Two key apoptosis pathways occur
in humans, the intrinsic and the extrinsic.72 B-cell lymphoma 2
(Bcl-2) protein, a member of the Bcl family, enables cell
proliferation by constraining adaptors that are needed for
apoptosis motivation and caspase cleavage, inducing the nuclear
and cell fragmentation that is apoptosis characteristics.73 A study
indicated that Bcl-2, utilized as a prognosis indicator in non-small-
cell lung cancer, correlated with unfavorable histology in
neuroblastoma and overexpression in prostate cancer.74,75 So,
the researchers claimed that treatment strategies targeting these
anti-apoptotic or pro-survival proteins could escalate anticancer
efficacy. The extrinsic way contains various signaling proteins,
such as death receptors and ligands, APO-1/Fas (CD95), tumor
necrosis factor-alpha (TNF-α)/TNFR1, Apo3L/DR3, Apo2L/DR4, and

Fig. 4 Schematic diagram of the models for evaluating combination effects. Effect-based models: a Highest Single Agent model : CI = max
(EA, EB)/EAB, the significance of a positive combination is given by the P value of the statistical test compared to the HSA. b Response
Additivity model : CI = (EA+ EB)/EA, the drug combination is positive when EAB is greater than the sum of the individual effects EA and EB.
c Bliss Independence model: CI = (EA+ EB – EAEB)/EAB, the drug combinations based on the assumption that drugs act independently on
distinct action sites. d Concentration-based model: d Loewe Additivity model : CI= a/A + b/B, this flexible model provides isobol
representation in addition to the algebraic analysis
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Apo2L/DR5 that are parts of the TNF gene superfamily. These
death receptors activate intracellular signaling, split and stimulate
caspase-3 and -8, causing apoptosis.76,77

Drug efflux pathways. Cells can also efflux drugs after ingesting
them. The efflux is mainly refereed by the ATP-binding cassette
(ABC) transporter family. Eliminating the use of ATP-driven energy
by cytotoxic agents and targeted anticancer drugs could combat
the excretion of drugs from cancer cells. Over ten human ABC
superfamily transporters have been identified, of which nearly 50
members have been divided.78,79 P-glycoprotein (P-GP/ABCB1),
the first member of this family to be identified in the mid-1970s, is
the glycoprotein responsible for regulating drug permeability. In
addition, the structures and functions of a series of efflux proteins
represented by multidrug resistance-related protein 2 (MRP2/
ABCC2) and breast cancer resistance protein (BCRP/ABCG2) have
become increasingly clear.80 According to the structures of
different ABC superfamily transporters, finding their natural
inhibitors or designing new chemical structures for competitive
inhibition is the first choice to reduce drug efflux. The deeper cycle
pathways of cells can jointly regulate it, but it must be ensured
that these regulators can precisely fight tumor cells and reduce
the threat to the healthy ones.

Immune checkpoints and cytokines. Contrary to conventional
immune system function, the immune system shows a catalytic
character in cell carcinogenesis’s initiation and transformation
stages. For the dysfunction of the immune system, the first-
generation target that has achieved clinical application is the
immune checkpoints.81 T cells play the most crucial role among
the various immune cells infiltrating tumor sites. Naive T cells
examine the microenvironment and are activated when recogniz-
ing tumor antigens. After proliferating and differentiation, they
can attack and destroy cells expressing the relevant antigens.82

However, this processing pathway is highly complex and involves

many reverse inhibitory molecules, including immune check-
points.83,84 Two immune checkpoints achieved clinical application
are CTLA-4 and PD-1, interfering with co-stimulation and T-cell
antigen receptor-mediated signaling, respectively.85 Immune
checkpoint inhibitors, alone or in combination, can improve the
suppressive effect of the tumor environment on T cell production,
restoring immunosuppression and achieving effective treatment.
Unlike immune checkpoints, cytokines directly control tumor-

cell growth through antiproliferative or pro-apoptotic effects and
act on tumor cells indirectly by stimulating immune cells.
Cytokines include four subclasses of chemokines, interferon
(IFN), interleukin (IL), and TNF. IL-2, IFN-α, and TNF are typical
examples already used clinically.86 However, maintaining their
stability is difficult to guarantee because they are small molecular
proteins with a molecular weight between 8 to 12 kD.87 Moreover,
functional carriers are needed to strengthen their delivery to
achieve targeting and avoid erroneous activation of normal cells.

Strategies for combinatorial cancer therapy
Tumors are divided into benign and malignant tumors according
to their ability to invade and metastasize. Surgical resection to
completely resect the tumor is the main strategy for benign
tumors. In contrast, the treatment selection of malignant tumor
relies on the disease-developing stage. Surgical treatment that can
radically resect local lesions is often utilized for the early stage.88

Drug chemotherapy or radiotherapy serves as an adjuvant
therapy, depending on pathological staging, immunohistochem-
istry results and lymphatic metastasis.89,90 In addition, precision
therapies, such as biological immunotherapy, gene therapy and
targeted therapy, can be combined to control cancer develop-
ment without causing damage to normal tissues.91

Inhibiting proliferation and promoting apoptosis. Liposome-
mediated DDS is the most commonly used multifunctional carrier
to alleviate tumor cell hyperproliferation and anti-apoptosis.

Fig. 5 Schematic illustration of pathological features of tumor and therapeutic approaches against cancer. a Hyperproliferation. Compared
with normal cells, the proliferation rate of tumor cells is greatly increased. b Anti-apoptosis. The cell cycle of normal cells includes an apoptotic
phase, whereas the anti-apoptotic ability of tumor cells promotes their unlimited proliferation. c Multidrug resistance. Tumor cells achieve
multidrug resistance by increasing drug efflux, mutating drug targets, and disordering intracellular genes. d Tumor-specific microenvironment
includes enhanced permeability and retention effect, acidic environment, immunosuppressive microenvironment, high blood flow and thick
extracellular matrix. e Metastasis. Tumor cells can migrate to distant tissues through systemic circulation, leading to cancer metastasis. Parts of
the figure were drawn using Servier Medical Art licensed under a Creative Commons Attribution 3.0 Unported License (https://
creativecommons.org/licenses/by/3.0/)
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Liposomes possess the particle-size advantage shared by nano-
carriers and can passively target tumor sites through the
enhanced permeability and retention (EPR) effect across the
hyperproliferative tumor vascular epithelium.92 Liposomes have
higher biocompatibility and efficiency and lower immunogenicity
than inorganic NPs.93 Moreover, liposome-based smart DDSs, such
as pH- and temperature-sensitive liposomes, have been shown to
promote the controlled and sustained release of drugs to targeted
sites and enhance the pharmacodynamic and pharmacokinetic
profiles of therapeutic payload with little toxicity.94,95 Various
liposomal products, such as Myocet, Doxil, Lipo-dox, DaunoXome
and Marqibo, were initially marketed for treating cancer. These
liposomal preparations encapsulate DNR, doxorubicin (DOX) and
vincristine sulfate individually.19,96,97 Notably, a co-delivery lipo-
somal formulation containing DNR and ara-C (Vyxeos®) with a 1:5
molar ratio was approved for clinical use (Table 1). The formulation
demonstrates a substantial anti-leukemia outcome with tolerable
toxicity in patients of a wide range of ages suffering from acute
myeloma leukemia, indicating the rationality of the combination
therapy.98–100 Specifically, Vyxeos® demonstrated over a 6-week
therapeutic effect, twofold longer than the ordinary cocktail
combination.101 The enhanced treatment effects were predomi-
nantly ascribed to prolonged half-life and specific uptake. The
uptake of the drugs by leukemia cells is increased by 2–9 fold
compared to the normal bone marrow cells.
The co-delivery NPs often improve the drugs’ cytotoxicity to

tumor cells compared with the cocktail combination. Whereas
“Guard” drugs in combination with another cytotoxic drug can
modulate the dose to achieve different treatment effects using the
small distinctions between normal and cancerous cells102,103. For
instance, DOX, a p53 inducer, has significant cytotoxicity at a high
dose, while a low dose of DOX triggers G1-G2 detention in normal
cells.102 After DOX “blocks” healthy cells, another cytotoxic drug
could precisely kill cancer cells, and this G1/G2 blockade reduces
the side effects of the combination therapy on healthy cells.
Besides the co-delivery of multiple chemotherapeutic drugs,

liposomes can also co-deliver gene and small molecular drugs. Li
et al. designed liposomes to co-delivering VEGF siRNA and
etoposide (ETO).104 This system inhibits tumor cell proliferation
by silencing VEGF gene expression and synergistically kills tumor
cells through the pro-apoptotic effect of ETO. In particular, the co-
delivery system wrapped a polymer coating of PEGylated
histidine-grafted chitosan-lipoic acid on the surface of cationic
liposomes, allowing negatively charged and improving the
stability in blood circulation. Whereas this coating was triggered
by the acidic environment of the tumor site, enabling the
liposomes to have a positive charge and improve penetration
and lysosomal escape. The combined delivery system allowed
drug protection tumor-cell targeting and significantly inhibited
tumor growth and angiogenesis compared with other controls.
This modification might provide a direction for traditional gene-
associated co-delivery systems that commonly suffer side effects
due to electropositivity.
ROS in TME, a class of highly bioactive molecules that act as

second messengers in cell signaling and regulate growth factors,
is crucial for various tumor biosynthetic processes.105 Accumulat-
ing evidence indicates that ROS possesses dual roles in cells as
oncogenic and antiproliferative factors in the cancer-progress
stage.106 At the early stage, oxidative stress (OS) initiates the
pathological transformation of the physiological signaling network
to induce cell oncogenic mutations; at the later stage, they drive
cell proliferation by promoting the mitotic signaling cascade;
when the tumor progresses to the advanced stage, ROS exceeds
the critical value, promoting DNA double-strand breaks and the
8-oxodG formation and leading to apoptosis.107,108 Despite the
paradox, the ROS pathway still provides a strategy for developing
safe and effective anticancer therapies.109 As a result, targeting
ROS in tumor cells using responsive drug delivery systems is a

commonly reported approach. The ROS level in tumor cells is
approximately 10-fold higher than the normal cells.110 Tang et al.
reported reduction-sensitive cleavable PEG and octa-arginine (R8)-
modified liposomes (CL-R8-LP) to co-deliver DOX and the P-gp
inhibitor verapamil (VER). The PEG coating helped maintain the NP
stability and prolong blood circulation. After entering the tumor
cells, the ROS broke the disulfide bond, exposing the positive
charge of R8 and facilitating aggregation, lysosome escape and
intracellular drug release; finally, the intracellular VER inhibited
nuclear P-gp-mediated drug efflux transport and improved
nucleus delivery of DOX, killing cells by inducing apoptosis and
necrosis. CL-R8-LP showed higher DOX cellular uptake efficiency
and synergistic antitumor effect with reduced toxicity in MCF-7/
ADR and MCF-7/ADR tumor cells.111,112 Recently, Wang et al.
found that co-loading a ROS-stimulated paclitaxel (PTX) prodrug
and a low-molecule weight PD-1/PD-L1 suppresser (BMS-202) into
the liposomal cores enabled superior tumor-targeting a ROS-
triggered PTX release and prolonged release of BMS-202 after cell
entering.113 The liposomal formulation demonstrated promising
chemo-immunotherapy due to the time-differentiated treatment
of the two drugs.113 ROS-mediated pro-oxidative therapy is
another potential strategy against cancer, elevating intracellular
ROS to a toxic threshold and activating ROS-induced cell death
pathways.114 For instance, Yuan et al. reported a ROS-responsive
cinnamaldehyde (CA)-based poly(thioacetal). The polymer con-
tained ROS-responsive thioacetal (TA) and ROS-producing CA and
could self-amplify chain-shattering polymer degradation. The
endogenous ROS as a triggering agent accelerated TA chain
cleavage and CA release, generating additional ROS by disrupting
mitochondrial function and inducing rapid polymer degradation.
Modifying the polymer using DOX could enhance chemo-
immunotherapy by collaboratively amplifying tumor cells’ oxida-
tive stress and immunogenic cell death (ICD).115

Noticeably, anchoring a prodrug, such as hyaluronic acid (HA)-
PTX, HA-oridonin and cholesterol-mitoxantrone, onto drug-loaded
liposomes may represent a potential approach to improve the
tumor targeting for combination therapy.116–119 E.g., by anchoring
HA-PTX prodrug onto thermosensitive liposomes loading with a
water-soluble MMP inhibitor marimastat into the aqueous cores,
dual-targeted thermosensitive NPs were developed for targeting
tumor cells and the TME.117 The results indicated that surface
anchoring improved liposome drug-loading ability and elevated
liposome’s targeted ability to the tumor cells and MMP-2 by the
local thermal treatment. Similarly, HA-oridonin prodrug was
anchored onto the checkpoint blockade (anti-CTLA)-loaded
thermosensitive liposomes for combinatorial cancer therapy via
targeting cancer cells and regular T cells. The data showed that
the co-delivery boosted anti-tumor immunotherapy by lessening
immune suppression of cancer cells and lymphocyte activation.
Furthermore, the mechanism study revealed that the two drugs
acted synergistically by decreasing cancer-cell THBS1 secretion
and breaking THBS1-CD47 interaction.120 In addition, liposomes
combining photothermal or imaging compounds with drugs
were extensively reported for cancer diagnosis and treatment
(Fig. 6).121–124

Antibody-drug conjugates (ADCs) composed of antibodies,
linkers and payloads, are another promising approach for
combinatorial cancer therapy.125 ADCs act like a bullet, directing
cytotoxic drugs to malignant tumors while sparing normal
tissue.126 Since the first ADC drug was approved in 2000, 14 and
over 80 ADCs have been marketed and are under the clinical trial
phase, potentially affecting the direction of cancer treat-
ment.127–129 Commonly used payloads include microtubule
inhibitors, DNA damaging agents and DNA transcription inhibitors.
Microtubules target rapidly dividing cells and are more effective at
inhibiting cell proliferation. The DNA-related agents target the
nucleus DNA and induce apoptosis. RC48 is a human epidermal
growth factor 2-ADC (HER2-ADC) consisting of Hertuzumab,
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olestatin derivatives and a cleavable linker.130 The ADC targets
HER2 antigens on cancer cells with high specificity and enters cells
through clathrin and caverin internalization. The liner cleavage in
the cytoplasm or lysosomes allows olistatin release into the
cytoplasm, terminating the cell cycle and inducing apoptosis of
tumor cells. RC48 indicates more potent cytotoxicity at low
concentrations and higher efficacy and safety in treating gastric-
and breast cancers by adopting random and uniform cysteine
coupling, compared with other HER2-ADCs.131 Calicheamicin is a
highly cytotoxic DNA-damaging agent that causes the release of
toxic catabolites due to its acid instability.132 Wiedemeyer et al.
designed a calimycin linker drug LD19.10 conjugated to a SEZ6-
targeting antibody (ABBV-011) to treat non-small cell lung cancer.
They found that ABBV-011 was stable within 14 days in the PDX
mouse model and could interact with the minor groove of DNA
molecules and induce DNA fission, reducing off-target toxicity.133

Increasing ADCs enter clinical trials because of their extended
serum half-life and practical efficacy. However, given the side
effects caused by the off-target and premature drug release,
exploring reliable connection key technology and DDSs involve-
ment may overcome the drawbacks.

Reversing multidrug resistance (MDR). MDR is a critical hindrance
in cancer treatment and is induced by multiple factors, such as
increased efflux of drugs, mutation of drug target proteins, and
intracellular gene disorders. NP-codelivery therapy is promising to
alleviate MDR via targeted delivery, simultaneously affecting two
or more signal pathways.134–136 Polymer-based NPs are frequently
used to improve the co-delivery and combat MDR. Overexpressing
the drug efflux transporter P-GP significantly contributes to MDR.
A recent report indicated that CA XII cooperates with P-GP
secretion in drug-resistant cancer cells to exert drug resistance.137

The results displayed that the CA XII inhibitors, either small
molecules or antibodies, significantly inhibited cell resistance
when combined with chemotherapeutic agents targeting P-GP
substrate therapy. The cocktail administration often leads to
asynchrony therapeutic effects because of the differences in the
physicochemical features of drugs and the pharmacokinetic
alterations. Chen et al. designed cationic core-shell NPs to co-

deliver DOX and pDNA using amphiphilic chitosan derivatives.138

They found that the low-dose co-loaded DOX increased the pDNA
transfection efficacy by 74% in T293 cells, likely owing to DOX’s
activation of nuclear factor-κB (NF-κB). However, the dosing with
high DOX doses allowed significant cytotoxicity rather than the
synergistic effect on promoting transfection. As a result, the drug
proportion in the co-delivery system is essential to the synergy.
The order and timing of drug delivery also affect efficacy

against MDR cancer due to the complexity of signaling pathways.
For example, in advance, ligating the apoptotic signaling network
by erlotinib, an EGFR kinase inhibitor, significantly enhanced the
ability of a DNA damage-inducing agent (DOX) to kill cancer
cells.139 For the RNA/drug co-delivery, the P-gp inhibition by RNA
needs to work in advance.140 Lee et al. reported a light-responsive
mesoporous silica nanoparticle (PMSN) for sequential release P-gp
short-hairpin RNA (shRNA) and photocaged prodrug of DOX
stimulated by external light, which shRNA anchored onto PMSN
and DOX was loaded into the inner pores.141 They found that the
intracellular release of shRNA and DOX could be controlled by 405
and 365 nm light irradiations that allowed specific cleavage of
coumarin and o-nitrobenzyl ester. The results indicated that the
co-delivery could extend drug retention and improve chemother-
apeutic effects against MDR liver cancer.

Inhibiting tumor metastasis. Metastasis, an essential hallmark of
cancer death, leads to the development of secondary tumors
because of the failure of tumor cells to be killed entirely at the
original primary tumor site142. Immunotherapy can detect and
monitor disseminated- and circulating tumor cells more accurately
than chemotherapy for primary tumors, showing its great
potential in treating metastatic tumors. Immunomodulatory
therapies, such as tumor vaccines, cytokines and immune
checkpoint blockers, have been approved for treating over 50
cancer types.143–145 Always combined formulation is required for
cancer immunotherapy. NP-based co-delivering immuno-
stimulatory components and antigens represent a promising
immunotherapy regime, owing to its ability to stimulate an
immune reply of antigen-targeting. Sun et al. developed a
cyclodextrin-based nanoformulation co-loaded with ginsenoside

Fig. 6 Liposome-based co-delivery. a Typical liposome co-delivery loading drugs in cores or lipid membranes. b Liposome co-delivery based
on core-encapsulation and membrane anchoring. One drug is loaded in the aqueous cores, while other active compounds, e.g., prodrug and
photothermal agents, could be anchored on the liposomes through various interaction forces, such as H-bonding, hydrophobic force and π-π
stacking. Parts of the figure were drawn using Servier Medical Art licensed under a Creative Commons Attribution 3.0 Unported License
(https://creativecommons.org/licenses/by/3.0/)
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Rg3 and quercetin.146 This nanoformulation synergistically
induced ICD and changed “cold” tumors into “hot” ones.147 In
vivo results showed that its combination with anti-PD-L1
prolonged the median survival time of mice over twice and
effectively inhibited liver metastasis compared to monotherapy.
Moreover, NPs can simultaneously load with several drugs,
potentially stimulating multiple immune pathways. Recently, a
mesoporous silica NP vaccine, encapsulating tyrosinase-related
protein 2 (TRP2) peptide and two different toll-like receptors
agonists (CpG oligonucleotide and monophosphoryl lipid A), was
reported to treat B16 melanom.148 The mesoporous silica NPs
protected the peptide TRP2 from decomposition and delivered
the three ingredients to dendritic cells, provoking effective TRP2-
specific CD8+ T cell responses. The study in vivo indicated that the
vaccine could attenuate lung metastasis and prolong the animals’
median survival rate via comprehensively regulating host immune
responses linking CD4+ and CD8+ T cells and macrophages.

“Drug-repositioning” strategy. “Drug repositioning” is a popular
therapeutic approach in cancer therapy.149 Exploring the potential of
non-cancer-treated drugs for cancer treatment may help improve the
cancer therapy regime because the drug candidates have acceptable
safety and identified pharmacokinetic profiles.150 The rapid high-
throughput development enables the omics data to grow exponen-
tially and significantly promote drug repositioning on cancer.150–152

For instance, aspirin is commonly used for anti-inflammation and
antiplatelet action; however, several studies have identified its
potency in preventing and treating various cancers.153 Wang et al.
designed chitosan NPs co-loading with 5-fluoropyrimidine (5-Fu) and
aspirin.154 They found that non-toxic aspirin concentrations increased
the sensitivity of hepatocellular carcinoma cells to 5-Fu by enhancing
the 5-Fu-mediated accumulation of cells in the G1 phase. Meanwhile,
aspirin acted collaboratively by suppressing the cyclooxygenase 2
(COX-2)/NF-κB signaling pathway.

ATHEROSCLEROSIS (AS)
AS is a cardiovascular disease (CVD) caused by lipid accumulation
and other blood components in the arterial intima. The smooth
muscle cell (SMC) proliferation and the collagen-fiber growth lead
to atheromatous lipid-enriched necrosis injuries, vascular wall
sclerosis, and inflammation is demonstrated when the plaque
forms.155 Various CVDs can be caused by AS, such as peripheral
vascular disease, coronary artery disease, ischemia, and
stroke138,156. Several factors, such as hypercholesterolemia,
hyperhomocysteinemia, hypertension, diabetes mellitus, genetic
abnormalities, chlamydia, pneumonia infection, as well as various
lifestyles like smoking cigarettes, not exercising regularly, and
stress, have been determined to be the major risk factors linked to
the AS development.157,158

Targets for AS therapy
Functional and structural alterations in the cell lines, including
SMCs, endothelial cells, T-lymphocytes, monocytes/macrophages,
foam cells and platelets, lead to the initial development of AS
plaques.159–162 Sustained high levels of low-density lipoprotein
(LDL) infiltration in blood vessels lead to aggregation, the
introduction of ROS and immune cells, and the production of
pro-atherogenic lesions by LDL particles. Leukocytes adhere to
endothelial cells, followed by monocyte extravasation into the
intimal space and differentiation into macrophages by platelet
factor 4 (CXCL4). Differentiated macrophages take up lipid
proteins and disrupt cellular homeostasis to derive lipid-rich foam
cells.163 Platelet activation and aggregation promote the expres-
sion of trending factors CCL5 and soluble CD40L and the release
of IL-1β and have the ability to express adhesion factors to form
aggregates and secrete inflammatory factors.164 In the late stage
of AS, inflammatory stimulation promotes the apoptosis of

macrophages and produces MMPs, leading to the degradation
of the fibrous cap. The increased instability of vulnerable
atheromatous plaques, which eventually rupture and form a
thrombus, is also a significant cause of ischemic events.165 Even
though AS occurs in different bodies, the mechanisms before
these events are similar. Studies have shown that the core of AS
pathogenesis is based on excessive LDL and the resulting other
mechanisms, such as oxidative stress, vascular inflammation, and
cell proliferation.166–168 Statin drugs, cholesterol-lowering com-
pounds, have been widely accepted as an imperative therapy for
treating AS.169,170 However, their undesirable effects, such as liver
damage and muscle pain, make it necessary to develop
combining therapies.171 Various combining strategies against AS
are summarized in Table 2.

Strategies for combinatorial AS therapy
Combining therapy strategies. The primary therapy pathways for
AS are shown in Fig. 7. Reducing lipid uptake and promoting
cholesterol efflux are the most direct procedures to delay AS
progress and development.168 Statins could effectively inhibit
cholesterol absorption, lower LDL levels, prevent AS progression,
and reduce cardiovascular event risk.172–174 Many recent investi-
gations focused on statin-combination therapy. The ezetimibe-
statin combination strategy is the most commonly used (Table 2).
Ezetimibe is a Niemann-Pick C1-like 1 inhibitor that inhibits
cholesterol absorption in the intestine. Its co-administration with
statins reduced systemic LDL levels by more than 20%.175–177

Adding ezetimibe to statin treatment significantly decreases the
risk of cardiovascular events and further reduces residual risk in
patients already receiving maximally or maximally tolerated statin
remedy and in patients with diabetes.178–180 Similarly, involving an
inhibitor of protein convertase subtilisin/kexin type 9 (PCSK9) to
statin treatment, which can lower plasma LDL levels, demon-
strated good therapeutic effects.181 Compared to statin treatment
alone, the combination strategy reduced LDL levels by over
50%.182 However, it should be noted that this therapy might bring
the risk of residual inflammation to the patients.183

Antiplatelet-anticoagulation therapy is another AS-treatment
strategy. Coagulation appears to be involved in AS primarily by
activating protease-activated receptors. Dual antiplatelet therapy,
including the traditional anticoagulant aspirin in combination with
an ADP inhibitor or the platelet P2Y12 ADP blocker (prasugrel and
ticagrelor), has been used for coronary artery disease
patients.184–186 However, hemorrhage is the most severe adverse
reaction of the modified strategy. To avoid counteracting the
efficacy of combination therapy due to hemorrhage adverse
events, several researchers combined the use of antiplatelet and
anticoagulant, reducing thrombotic events, stabilizing plaque,
inhibiting inflammations, and minimizing bleeding risk.186 With
the in-depth understanding of AS pathogenesis, many new drugs
have emerged in an endless stream. Several new combination
strategies, i.e., the combinations of ezetimibe-lomitapide or
-PCSK9 inhibitors, demonstrated promising potential against AS
in patients not statin tolerant.187,188

Although lipid-lowering therapy and antithrombotic treatment
are the primary treatment strategies for AS patients, the potential
risk of cardiovascular inflammation affects the prognosis.189 The
CANTOS trial found that adding anti-inflammatory therapy to the
AS treatment displayed hopeful treatment outcomes.190 More-
over, a clinical phase III study indicated that interventions
targeting NLRP3 inflammasome-IL-1β using canakinumab and
colchicine could reduce the recurrence rate of cardiovascular
events in patients with previous myocardial infarction, confirming
the necessity of adding anti-inflammatory therapy to the AS
treatment strategy.191

NP-mediated co-delivery. The most widely utilized co-delivery
systems for AS treatment are high-density lipoprotein (HDL) /HDL
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mimicking NPs and liposomal NPs. They could be an efficient
carrier for drug delivery and combat AS by reversing cholesterol
transport and alleviating inflammatory and oxidation effects.192,193

(Fig. 7) The most extensively studied drug carriers are rHDL NPs,
reconstituted from apolipoprotein A-I (apoA-I) and phospholi-
pids.194 Furthermore, various functionally modified rHDL, such as
HA-coated HDL-NPs and integrin-targeted NPs, was developed to
treat AS.195–197 Recently, He et al. designed a β-cyclodextrins
(β-CD)-anchored rHDL, in which β-CD was utilized to efflux
intracellular cholesterol.198–200 First, the interaction between β-CD
and drug-loaded discoidal-rHDL (d-rHDL) was investigated using
the shuttle/sink model.198 They uncovered that β-CD could
enhance macrophage-cholesterol outflow and move it to
d-rHDL. Their combined use promoted intracellular drug delivery
and inhibited intracellular-lipid deposition and inflammatory-
cytokine release. Consequently, they anchored β-CD to
simvastatin-loaded d-rHDL (ST-d-rHDL) for combined therapy.
The results showed that either the combination of ST and d-rHDL
or β-CD and ST-d-rHDL synergistically affected cholesterol removal
and inflammation inhibition. The mechanism study indicated that
β-CD-ST-d-rHDL inhibited the secretion of the inflammatory factor
TNF-α through the mevalonate pathway and alleviating the
inflammatory response.200 The findings show that d-rHDL can be
used as a drug carrier and active agent acting collaboratively with
other anti-AS drugs. Furthermore, they cross-linked the aforemen-
tioned β-CD-anchored rHDL, NP3ST, with HA-ferrocene (HA-Fc)
conjugates through multivalent host-guest interactions and
prepared the nanoassemblies HA-Fc/NP3ST.

199 HA-Fc/NP3ST
responded to high levels of ROS at the lesion site and
disassembled and penetrated deeper into the plaque. In vivo
anti-AS study showed that HA-Fc/NP3ST significantly inhibited
plaque growth (the plaque size was half that of the saline group),
reduced lipid deposition by 63%, and lowered systemic inflam-
mation levels. Additionally, HDL could deliver small RNAs to
endothelial cells.201,202 Wiese et al. utilized HDL to deliver locked-
nucleic acid (LNA) miRNA inhibitors of miR-92a-3p and miR-489-3p
to aortic endothelium in vivo.203 The results suggested that
treatment with HDL alone affected 50% of AS-related genes and
reduced the area of necrosis of lesions, whereas the dual LNA
altered an entirely new set of genes, reducing AS lesion areas.
HDL enables cholesterol efflux through a cholesterol receptor or

activating the macrophage liver X receptors (LXRs) to achieve

targeted enhanced reverse cholesterol transport (RCT). However,
systemic LXRs activation leads to excess lipogenesis accumulation
in the liver and side effects, such as hepatic lipogenesis and
hypertriglyceridemia.204,205 Guo et al. developed synthetic HDL
(sHDL) derived from phospholipid-reconstituted apoA-I peptide
(22a) to deliver LXRs agonists and promote cholesterol efflux by
activating macrophage LXRs.206 The 12-nm sHDL allowed AS-
plaque targeting and reduction of hepatic lipogenesis. After long-
term treatment, the hepatic LXR expression was not increased in
the sHDL group; however, the BCA1 mRNA expression was
significantly increased in leukocytes—however, the mechanism of
sHDL targeting AS the lesions was not explored.
Targeting the inflammatory cascade and polarization of

macrophages in a pro-inflammatory direction can be a promising
strategy against AS.207 Sheng et al. developed zeolitic imidazolate
framework-8 (ZIF-8) NPs loaded with losartan potassium LP
(LP@ZIF-8) for plaque-targeting using the EPR-like effect.208 ZIF-8
is a material that could facilitate autophagic activity in foam cells,
stimulate RCT, and regulate lipid activity. ZIF-8 could disassemble
due to the weak acid microenvironment (pH 5.5) in diseased aortic
tissue releasing the encapsulated LP and downregulating ROS and
the inflammatory factors (IL-1β, IL-6, TNFα). In AS-model mice,
LP@ZIF-8 was synergistic in lipid clearance and anti-inflammation,
significantly reducing the total plaque area and inflammatory
damage. Recently, redox-responsive NPs for co-delivering simvas-
tatin and ticagrelor were developed.209 The redox-responsive
nanoprodrug of simvastatin (TPTS) was synthesized by conjugat-
ing α-tocopherol polyethylene glycol derivatives and statin
pharmacophore hydroxylactone ring with thioketal. The second
drug, ticagrelor, was encapsulated using the self-assembly
property of TPTS. In the induced RAW264.7 inflammatory cell
model, the codelivery system exerted a synergistic effect to inhibit
polarization and reduce oxidative stress levels. In vivo studies
indicated that modifying CREKA peptide allowed the NPs to target
the plaque, ROS-stimulated releasing simvastatin, α-tocopherol
and ticagrelor in atherosclerotic plaques, effectively inhibiting
inflammation.209 Interestingly, He et al. reported a co-delivery
system against inflammation at AS lesions by loading anti-miR155
onto baicalein nanorods and then layering with sialic acid (SA) for
macrophage targeting.17 The 150-nm targeted nanorods effi-
ciently delivered anti-miR155 to the cytosol, polarizing M1 to M2
and reducing the production of inflammatory factors. In vivo

Fig. 7 a The therapy strategies for AS include reducing lipid deposition, dissolving platelet thrombus and reducing inflammation. b The
structure of rHDL. rHDL mainly comprises phospholipids and apoAI; the structure includes a hydrophobic core and a hydrophilic shell. c RCT
process of HDL. Pre-HDL turns into HDL by combining cholesterol, promotes the transformation of foam cells into normal cells, and transports
cholesterol to the liver for elimination. Parts of the figure were drawn using Servier Medical Art licensed under a Creative Commons
Attribution 3.0 Unported License (https://creativecommons.org/licenses/by/3.0/)
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studies have shown that nanorods can target plaque and reduce
blood pressure by more than 40% by increasing the diameter of
the arterial lumen, inhibit the release of inflammatory factors
(typically, TNF-α was reduced by nearly ten times after combined
treatment), reduce lipids and promote M2 polarization, ultimately
relieve AS. The system realized the co-delivery of biopharmaceu-
tical and chemical drugs. The drug-loading capacity was as high as
80%, and the targeting of SA coating significantly improved the
transfection efficiency. Furthermore, the co-delivery system
entered the cell via caveolar endocytosis, reducing the endo-
lysosome’s gene degradation. These advantages bode well for the
future development of the co-delivery system.
Damage and inflammation of the plaque microenvironment

donate plaque advancement.210 Li and He et al. developed pH-
sensitive liposome loading with the anti-inflammatory oridonin
and plaque-collagen protector (marimastat) for AS treatment.211

The results demonstrated that the liposome administration
enabled effective anti-AS efficacy in high-fat diet-Apoe−/− mice
by reducing the pro-inflammatory cytokine secretion, shrinking
the lesion region, and decreasing the plaque-collagen
degradation.

PULMONARY ARTERIAL HYPERTENSION (PAH)
PAH is a rather advanced disorder, portrayed by average
pulmonary arterial pressure growth of >25-mm Hg under static
conditions or >30-mm Hg in exercise.212 The PAH development
leads to right ventricular hypertrophy, which, if not careful, results
in heart failure and death. PAH occurs in patients with
scleroderma, congenital heart disease, down syndrome, liver and
lung disorders, HIV and COVID-19, and portal hypertension.213–215

There is no known cure for PAH, managed only by monotherapy
centered on oxygen therapy, calcium channel blockers, prosta-
glandins, diuretics and vasodilators, and lifestyle modifications.216

Combinatorial PAH therapies have been recommended for
patients with inadequate clinical responses to monotherapy.

Pathways for PAH development
Traditional PAH-associated therapies target three vasodilation-
related signaling pathways: endothelin, nitric oxide (NO), and
prostacyclin.217 Endothelin is a potent vasoconstrictor that
stimulates vasoconstriction, proliferation, and fibrosis of smooth
muscle cells. The endothelin receptor antagonists include
ambrisentan and bosentan.218 Endothelin-1 (ET-1) works by two
receptors, Endothelin-A and -B. Patients with PAH disorder have
increased ET-1 levels typically found in the lungs and circulation,
thus allowing ET-1 to be a promising treatment target.219–221 The
NO pathway is targeted through phosphodiesterase-5 (PDE5)
inhibitors, including tadalafil, sildenafil, riociguat and soluble
guanylate cyclase (sGC) stimulator.222 Restoring cGMP levels is
central to therapy in the NO-sGC-cyclic guanosine monopho-
sphate (cGMP) axis. In health, NO triggers the vasodilator cyclic
guanosine cGMP production and promotes vasodilation. In PAH
disease conditions, however, patients typically have reduced
circulating endogenous NO, facilitating the disease process.223

Since cGMP is rapidly degraded when PDE5 is expressed, blocking
the action of PDE5 could potentially restore it to normal levels,
dilating blood vessels and improving patient symptoms.224

Furthermore, because topical sGC activators are not limited by
reducing endogenous NO levels, the NO pathway can be directly
targeted with sGC stimulators to enhance cGMP activity.225

Prostacyclin analogs target the prostacyclin pathway using
epoprostenol, iloprost, treprostinil and beraprost.226,227 PAH
patients also have decreased prostacyclin synthase, with low
prostacyclin produced in the pulmonary artery endothelial cells,
decreasing cyclic adenosine monophosphate levels and leading to
overproliferation and vasoconstriction of smooth muscle
cells.228,229 Prostacyclin circulations by prostacyclin analogs induce

vasodilation of pulmonary arterioles and constrain platelet
aggregation and the proliferation of smooth muscle cells.230,231

Exogenous prostacyclin analogs supplemented with endogenous
prostacyclin analogs are an effective treatment for PAH.232–234

(Fig. 8).

Strategies for combinatorial PAH therapy
Combining therapy strategies. Compared to monotherapy, com-
bining therapy is a more valued preference for managing patients
with PAH as it can simultaneously target the instability of several
critical biological routes in the pulmonary arteries and alleviate
indications associated with PAH disorder.235–237 (Fig. 8) However,
combining therapy only for traditional vasodilation often margin-
ally increases the therapeutic effect in clinical trials and meta-
analyses, and it is challenging to reduce mortality.238–240 The
commonly used combined regimens are summarized in Table 3.
COMPASS-2 is a PAH clinical test with a principal morbidity/
mortality (M/M) termination, which combined sildenafil and
bosentan for eight years.241–243 As crucial as this trial was, it
could not reach its endpoint.244 The AMBITION trial tested the
efficacy and safety of preliminary combinatorial treatment with
ambrisentan and tadalafil. The treatment failure was reduced by
50% using the combination treatment.245

NP-mediated co-delivery. Fasudil is a Rho kinase inhibitor used to
inhibit the effects of PAH involving Rho-kinase. In addition to
effectively dilating pulmonary blood vessels, it can inhibit
peripheral pulmonary artery-wall damage and restore the
proliferation-apoptosis balance of pulmonary artery endothelial
cells, smooth muscle cells, and fibroblasts.246 An investigation
from Gupta’s group displayed that intratracheal administration of
liposomal fasudil attenuated the mean pulmonary arterial
pressure (mPAP) in a monocrotaline (MCT)-induced model,
indicating its efficacy on PAH.247 Furthermore, Ahsan et al. probed
the co-delivery efficacy of fasudil and DETA NONOate (a long-
acting nitric oxide donor).248 Combination therapy significantly
reduced mPAP and extended vasodilatory duration compared to
monotherapy in acute and chronic PAH animal models. Also,
improving right heart function could predict treatment outcomes
with this therapy. Research indicated that surface CAR-
modification of fasudil-DETA NONOate liposomes could signifi-
cantly increase the accumulation of liposomes at the lesion site
and drug release time. The studies in MCT- and SUGEN hypoxia-
induced models indicated that the liposomal formulation was
more profound in reducing several indicators, such as mPAP,
medial arterial wall thickness, collagen deposition and muscular-
ization degree over the free combination. CAR-modified liposomes
were more selective in reducing mPAP than unmodified
liposomes. Also, CAR-modified liposomes of a superoxide scaven-
ger (superoxide dismutase (SOD) and fasudil, reduced a >50%
mPAP and decelerated right ventricular hypertrophy compared
with a single drug or a simple combination.249 Additionally, Huang
et al. developed a fasudil-DCA prodrug that simultaneously
allowed pulmonary vasodilation and inhibition of pyruvate
dehydrogenase kinase to impede pulmonary artery remodeling
and combat right heart dysfunction.250 This series of fasudil-
related nanoparticle codelivery is attracting increasing attention,
and combination therapy of vasodilators and right-heart function-
improving drugs, such as co-delivery of fasudil and DETA
NONOate, may represent a promising approach against PAH.
Moreover, nanoparticle-mediated codelivery could elevate the
treatment effect in several aspects due to the advantages, such as
improved target ability and the multi-administration routes that
can meet the particular needs of clinical patients.
Inflammation therapy against PAH has recently attracted

increasing attention.251 A variety of potential pro-inflammatory
cells, such as monocyte, macrophages and lymphocytes, is
involved in pulmonary circulation. Pulmonary artery SMCs

Multifunctional nanoparticle-mediated combining therapy for human diseases
Li et al.

12

Signal Transduction and Targeted Therapy             (2024) 9:1 



Fig. 8 Targets and combining strategies for PAH, MCD, RA, IBD, hyperthyroidism, diabetes and NDs therapy. PAH, MCD, RA, and IBD are
inflammation-associated diseases. For treating PAH and RA, fasudil- and MTX-based NP codelivery is the most frequently reported,
respectively. For the MCD treatment, the combination of glucocorticoids and immunotherapy is often used. For IBD therapy, NP-codelivery is
developed to target the inflammatory sites and increase drug availability and therapeutic efficacy, aiming to reduce the administration
frequency and adverse side effects. For diabetes treatment, the typical case is the co-delivery of GLP-1 and DPP4 inhibitors. A combination of
tripterygium glycosides and chemical compounds is promising to combat hyperthyroidism. For ND therapy, NP codelivery primarily aims to
overcome the BBB barrier, i.e., mesoporous silica NPs for co-delivering leptin and pioglitazone. Parts of the figure were drawn using Servier
Medical Art licensed under a Creative Commons Attribution 3.0 Unported License (https://creativecommons.org/licenses/by/3.0/)
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(PASMCs) can also directly secrete various pro-inflammatory
factors (IL-1β, IL-6, P-selectin, etc.) to exacerbate pulmonary
vascular remodeling and accelerate the process of PAH.252–254

He et al. developed a rod-like targeted co-delivery system of the
apoptosis-executing gene p53 and the anti-inflammatory baica-
lein, assembling the nuclear localization signal peptide-p53
conjugate onto the rod-like baicalein nanocrystals and following
by glucuronic acid-modification for PASMC-targeting.255 This rod-
shaped nanoparticle is different from ordinary round particles and
enters cells through caveolin, avoiding degradation by lysosomes.
The results in vitro and in vivo showed that the co-delivery system
could target the lung-PAs-PASMC axis and combat MCT-induced
PAH by reducing mPAP, downregulating TNF-α, and impeding
remodeling of the pulmonary artery and right ventricular.
Furthermore, this study found that effective anti-inflammatory
therapy was promising to combat pulmonary hypertension,
activating the apoptotic executor signaling axis (p53-Bax-Bcl-2-
caspase 3) and potentiated PASMC apoptosis. The downregulated
fork-head box O1 (FoxO1) and caspase 3 intensify the proliferation
of PASMCs and the PA remodeling.256 PTX is an often utilized
chemotherapeutical drug; nevertheless, a study revealed that PTX
could upregulate FoxO1 and inhibit PASMC proliferation.256 A
recent report by the same group indicated that co-delivery of
FoxO1 stimulus PTX and pro-apoptosis protein caspase 3 to
PASMCs could attenuate MCT-induced PAH model, using the
similar co-delivery technique that the active protein was loaded
onto PTX nanocrystals.256

MYOCARDITIS (MCD)
MCD is an inflammatory disorder of the myocardium, usually
caused by a viral infection, direct toxicity, or immune-mediated
response to drugs, including immune checkpoint inhibitors and
some systemic autoimmune diseases, followed by inflammatory
permeation of the myocardium with degenerative and/or necrotic
changes in adjacent cardiomyocytes.257 The MCD incidence in the
population is unknown yet. According to the latest statistics, the
incidence of adults is greater than 5%. Especially due to the
impact of COVID-19, the data has suddenly increased.258 Accurate
diagnosis of MCD is difficult because of its heterogeneity, and the
clinical manifestations vary greatly.259 MCD is a significant cause of
accidental death in young patients suffering from heart disease,
especially in athletes. Chronic inflammatory dilated cardiomyo-
pathy may develop in up to 20% of patients with MCD.260,261

Targets for MCD therapy
Inflammation, a hallmark of MCD, is caused by various immune
system cells during the disease process. It is known from the
inflammatory responses in different MCD models that natural killer
cells and CD4 and CD8 T cells are critical immune cells infiltrating
the lesions in the early stage of MCD.262–265 Subsequent
infiltration of neutrophils and macrophages accompanied by
T cells significantly contributes to the MCD progress.266–268

Recently, the pathogenic role of Th17 cells in MCD has been
gradually emphasized.269,270 All in all, targeting the immune
system and anti-inflammatory is the most fundamental and
effective MCD treatment (Fig. 8). Also, combined treatment with
anti-inflammatory or immunotherapy according to the MCD
pathogenesis can improve the treatment outcomes (Table 3).

Strategies for combinatorial MCD therapy
Combining therapy strategies. Current MCD therapy mainly
concentrates on combining glucocorticoids with immunotherapy
(Fig. 8). Combining prednisone with immunosuppressants, such as
cyclosporine (CA) or azathioprine (AZA), can effectively improve
cardiac function.271,272 For instance, AZA treatment facilitated the
increase of the left ventricular ejection fraction and the reduction
of the New York Heart Association functional class.273,274 For

patients who cannot tolerate AZA due to liver disturbance,
methotrexate (MTX) is considered a replacement. E.g., the
combination of MTX and prednisone was demonstrated to treat
autoimmune virus-negative MCD effectively.275 These results
confirmed the reliability of adding immunosuppressants to steroid
drug therapy. For patients with glucocorticoid-resistant MCD, a
combination of rituximab (RTX) and mepolizumab (MPZ) can be
utilized.271 RTX fights against vasculitis by depleting B cells, and
MPZ binds to IL-5 and prevents it from interacting with receptors
on the surface of eosinophils. Combining RTX as induction therapy
and MPZ as maintenance therapy could decrease steroid dose,
prolong remission, and reduce relapse frequency.271,276

Intravenous immunoglobulin (IVIG) inhibits viral replication and
activates the cellular and humoral immune responses, exhibiting
dual immunosuppressive effects and potential in treating MCD. Of
note, IVIG needs to be administered at high doses.277 The
combination of glucocorticoids and IVIG accelerates the response
process and reduces the incidence of organ failure.278 In addition,
IVIG also could be combined with other drugs to treat MCD.
Cyclosporine is a T-cell suppressor that restricts the transcription
and release of crucial pathogenic pro-inflammatory cytokines
through the calcineurin-NFAT pathway. In theory, cyclosporine
prevents the inflammation progression in the arterial wall and
stops the MCD development induced by Kawasaki disease. A
phase III randomized controlled trial showed that patients
tolerated IVIG in combination with cyclosporine, and this
treatment strategy was more effective than conventional therapy
using gamma globulin (IVIG) and high-dose aspirin.279 In a 2021
report, a combination of IVIG and phosphocreatine (CP) was
administered to 121 young patients with MCD.280 CP is a fast-
moving high-energy phosphate reserve and a cardioprotective
agent. Clinical results disclosed that the modified combination
therapy boosted the immune system of viral MCD patients.

NP-mediated co-delivery. Few NPs were reported to combinato-
rially combat MCD. Curcumin (Cur) is a polyphenolic flavonoid that
can potentially prevent and treat various infectious, cardiovas-
cular, and immune diseases. Increasingly evidence has shown that
Cur could combat cardiovascular and inflammatory diseases.281,282

Remarkably, Cur rapidly reduced pathogen burden and mortality
in mice following acute infection by reducing the expression of
parasite-targeted low-density lipoprotein receptors during cell
invasion.283–285 Recently, the scientist developed Cur-loaded
PLGA-NPs in order to improve oral bioavailability. However, the
authors did not offer the bioavailability data.286 The treatment
study indicated that oral administration of Cur-loaded NPs in
combination with a standard trypanosome drug benznidazole
relieved chronic Chagas-induced MCD.286 The combined treat-
ment decreased the pathogen burden at the source and
modulated the course of infection in the body. The two drugs
worked synergistically, improving treatment efficacy and tolerance
in diseased mice via targeting cardiac hypertrophy, alleviating
parasite burden and fibrosis and lowering the levels of cardiac
biomarkers and inflammation-related substances.

RHEUMATOID ARTHRITIS (RA)
RA, an autoimmune disorder, is stamped by inflammation and
matrix destruction of the bone and cartilage.287 The exact
mechanism causing RA remains unclear; however, imbalances in
the body’s immune system are generally considered an essential
factor in RA occurrence.

Targets for RA therapy
The inflamed joints in RA contain numerous misactivated immune
cells, such as T cells, B cells, neutrophils, macrophages, and
dendritic cells, and they could release pro-inflammatory factors,
including IL-1β, TNF-α, and IL-6.288,289 These cytokines overflow
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into the bloodstream, causing systemic inflammation, while they
induce local joint injury by boosting MMP production and
activating osteoclasts.290 Meanwhile, various signaling pathways,
such as Janus kinase–signal transducer and activator of transcrip-
tion, Th17, IL-17/IL-17R, NF-κB, mitogen and activated protein
kinases, are triggered via the excessive production of
cytokines.291,292

Conventional drugs, such as glucocorticoids, non-steroidal anti-
inflammatory drugs, disease-modifying anti-rheumatic com-
pounds and biopharmaceuticals (TNF-α blockers), benefit RA
treatment. Nevertheless, these medicines always have severe side
effects, such as gastrointestinal bleeding, renal dysfunction and
CVD risk.293,294 Moreover, frequent administration with high doses
is required because of traditional drug therapy’s short biological
half-life and poor bioavailability.295 Therefore, various new
therapeutic regimens were established to overcome the limita-
tions of conventional treatment.296 (Fig. 8).

Strategies for combinatorial RA therapy
Combining therapy strategies. MTX is a commonly used anti-
rheumatic immunosuppressant for RA treatment.297 Numerous
MTX-based combination strategies were reported, such as
combining MTX with hydroxychloroquine, sulfasalazine or ster-
oids. MTX was also integrated with biological therapies against
RA.297,298 Other drug combinations used in the clinical for RA
therapy are summarized in Table 3.

NP-mediated co-delivery. Despite the high efficiency in the
clinical use of biological therapies for RA, nearly 30% of patients
still show low responsiveness due to heterogeneity. Furthermore,
these therapies are costly and have a high risk of serious bacterial
infections.299–303 Therefore, the recently combined therapeutics
focus on improving the efficacy of available therapy by targeting
inflamed joints.304 (Fig. 8) Nanocarriers could deliver the
therapeutic agents to the particular inflammation site through
loose vasculature in infected areas of RA, elevating the anti-
inflammatory activity of medications while avoiding the admin-
istration at high doses and non-target effects.293,305 Nanocarriers,
including NPs, hydrogel, micelles, and liposomes, are often utilized
for the combinatorial delivery of two therapeutic agents, targeting
the same cellular pathway, elevating the delivery efficiency, and
decreasing side effects (Fig. 8).304 For instance, MTX and
minocycline (MNC)-loaded PLGA NPs (MMNPs, 125 nm) were
developed against RA.306 MMNPs had a 100–200 nm diameter and
can accumulate in the RA lesions after intravenous injection.
MMNPs demonstrated superior cytotoxicity to inflammatory RAW
264.7 cells at specific concentrations, a higher antibacterial effect
than free MTX or MNC, and a 3-fold inhibition zone compared to
free drugs. In another study, researchers developed the multi-
functional hexagonal palladium-Cys@MTX@ arginine-glycine
aspartic acid (RGD) peptides nanosheets for targeting inflamma-
tory cells and controlling MTX release. The nanosheets could
control MTX release using irradiation of 808 nm and significantly
reduce MTX toxicity. In vivo data indicated that the combined
strategy effectively inhibited RA symptoms by reducing the
expression of pro-inflammatory cytokines.307 Also, targeted co-
delivery of MTX and nimesulide using RGD-modified polymeric
micelles to angiogenesis at low doses allowed enhanced anti-RA
efficacy in the rat model.308 In addition, the long-lasting release of
MTX and Dex using intra-articular injectable combined depot
formulation of MTX-HA/Dex-microencapsulates demonstrated a
synergistic effect on repairing RA joints and inhibiting inflamma-
tion by allowing the two drugs to work in the articular joint.309

Other combinatorial strategies, such as microwave hyperthermia
plus thermosensitive liposome-loaded sinomenine hydrochloride
(SIN)310 and sialic acid-modified dexamethasone palmitate-
liposome-anchored neutrophils,279 were also reported for anti-
RA treatment. MTX-based nanoparticle codelivery is the most

commonly reported combination therapy, demonstrating the
effectiveness of MTX. However, the molecular mechanism of
these synergistic effects is still unclear. Further mechanism study
may benefit their translation.
Gene therapy combing with anti-inflammatory effects has

shown high potency in RA treatment.299,303 Park et al. demon-
strated that the co-delivery of COX-2 siRNA and anti-inflammatory
dexamethasone (Dex) showed promising therapeutic efficacy
against RA.311 The co-delivery markedly downregulated the
apoptosis-related and inflammatory factors, for example, caspase
3 and TNF-α in C28/I2 cells, compared to mono-treatment with
Dex. PEGylated hybrid-NPs system encompassed calcium phos-
phate/liposomes co-loaded with NF-κB specific siRNA and MTX
were developed to target macrophages, aiming to inhibit p65 and
its translocation.312 In-vivo results demonstrated that the liposo-
mal formulation could retard the RA progression by preventing
the release of pro-inflammatory cytokines from macrophages
without affecting the lymphocyte count, which could prevent the
adverse effect of MTX. Another co-delivery system of siRNA and
Dex using hybrid polymer micelles consisting of polycaprolactone-
polyethyleneimine and polycaprolactone-polyethyleneglycol has
also shown potential for inhibiting NF-κB signaling pathway in
macrophages and polarizing macrophages from M1 to M2 in the
arthritic synovium.313 Furthermore, folate acid-modified MTX-
conjugated polymer hybrid micelles complexed with miR-124 via
electrostatic interaction that targeted the activated macrophages
in RA joints achieved the synergistic anti-RA effect in a rat
adjuvant-induced arthritis model.314

The in-situ DDSs has promising application potential in treating
RA due to its convenient administration, low frequency and high
patient compliance. Kang et al. found that the transdermal
delivery of nanostructured lipid carriers encapsulating celastrol
and indomethacin (Cel-Indo-NLCs)-gel was effective in inhibiting
pro-inflammatory cytokines compared to mono nano gel Cel-
NLCs-gel or indo-NLCs-gel in RA rats.6 However, the efficacy and
safety of Cel-Indo-NLCs to alleviate RA have not been thoroughly
investigated. An in-situ hydrogel loaded with PEI-SS-IND-MTX-
MMP-9 siRNA NPs (D/siRNA-NGel) was used to simultaneously
deliver three drugs (indomethacin (IND), MTX, and MMP-9 siRNA)
for treating RA by targeting multiple signaling pathways.315 The
MMP-9 siRNA inhibited MMP-9 expression and the cartilage
degeneration mediated by RA synovial fibroblasts; at the same
time, the anti-inflammatory drug IND relieved patients’ pain,
coupled with the fundamental anti-rheumatic effect of MTX.

INFLAMMATORY BOWEL DISEASE (IBD)
IBD, defined as the chronic inflammation of the digestive tract, is
clinically classified into Crohn’s disease (CD) and ulcerative colitis
(UC).316,317 UC conditions cause long-lasting inflammations and
ulcers in the innermost lining of the large intestine (colon) and
rectum. In contrast, the CD is stamped by the lining inflammation
of the entire gastrointestinal tract, resulting in granuloma
formulation due to the plasma cell- and macrophage-clustering.

Targets for IBD therapy
Although the two types of lesions differ, IBD is generally a recurrent
inflammatory disease due to dysregulation of the mucosal immune
system and symbiotic ecosystem.318 Due to its life-threatening,
extensive research has been conducted to determine this disease’s
environmental and genetic origins.319–321 The hyper-permeability
of extravascular compartments and beds is the most crucial feature
in IBD development. Intraluminal antigens or microbiota stimulates
can deeply infiltrate the epithelium of immune cells and
extensively migrate across the vascular endothelium. Antigen-
presenting cells ingest these pathogenic factors and are activated,
producing pro-inflammatory cytokines and chemokines.322–324 The
inflammatory cycle at the lesion site persists due to the interaction
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between the inflammatory cells and pro-inflammatory factors.
When macrophages, neutrophils, and dendritic cells accumulate
within inflamed portions of the intestine, there is an increase in
intestinal permeability to macromolecules, molecules, and cells.325

These focal microenvironments, favorable for drug penetration and
aggregation, lay the foundation for drug design against IBD (Fig. 8).

Strategies for combinatorial IBD therapy
Combining therapy strategies. Many IBD therapies target macro-
phages and cytokine by inducing polarization of alternatively
activated macrophages or inhibiting inflammatory signaling
pathways.326 (Table 3) The typical therapy regimen is the use of
anti-inflammatory agents such as corticosteroids (Dex, hydrocorti-
sone, prednisone), immunosuppressive agents (azathioprine, 6-
mercaptopurine), and vascular adhesion molecules.16 In addition,
three biologic drugs are approved for clinical use, including TNF-α
antagonists, interleukin 12/23 antagonists, and integrins.327

IBD treatment is no longer restricted to temporary symptom
alleviation but instead focuses on long-term strategies for deep
remission.328,329 Therefore, the combination therapy of those
mentioned above clinically effective therapeutic drugs has been
intensively studied to enhance the effect of the drug and/or
improve the pharmacokinetics, avoiding high-dose intravenous
injection of drugs that may cause diarrhea, osteoporosis and other
adverse reactions (Table 3).330–332 One of the most studied tactics
is combining anti-TNF therapeutics with immunomodulators. This
strategy can reduce immunogenicity and attain synergistic effects
by regulating different inflammatory pathways and affecting
pharmacokinetic parameters.333–335 Due to their anti-
inflammatory effects, regulatory macrophages are essential to
wound healing and gut homeostasis. Vos et al. reported that
infliximab/azathioprine combination therapy accelerated the
mucosal healing process up to twofold compared with infliximab
treatment. In addition, the drug combination increased the
number of regulatory macrophages and modulated the macro-
phage phenotype to enhance immunosuppression, providing
theoretical support for clinical use.336 In another study, Colombel
et al. found that the combination of azathioprine/infliximab
elevated the anti-CD efficacy, likely due to the increased plasma
concentrations of infliximab rather than a therapeutic synergistic
effect of the two drugs. They argued that, if this theory is
established, the treatment may need to maintain sufficient
concentrations of the biologics, not requiring combination
therapy and avoiding possible adverse reactions caused by
azathioprine. Nevertheless, the biological drug consistently
demonstrates poor stability and a short half-life, requiring
frequent administration or pump implantation in patients and
probably bringing potential limitations, such as poor compliance
and infection. Until effective DDSs are developed for biopharma-
ceutical delivery, drug combinations may remain the most
important treatment option.337

NP-mediated co-delivery. The combination of IBD therapy strate-
gies always fails to deliver drugs to specific sites of inflammation,
leading to frequent dosing and adverse side effects that may
affect patient response to subsequent treatments.18 Hence,
effective co-delivery systems are desired to target specific
inflammatory sites for the pathological features of IBD and
improve drug availability and therapeutic efficacy. The co-
delivery preparations are usually administered orally for colon-
targeted release. Alternatively, by intravenous injection, the NPs
can passively or actively target the endothelium at IBD lesions
with discontinuity and high permeability.338 E.g., Xiao et al. loaded
TNFα siRNA (siTNF) into galactosylated polymer and prepared 260-
nm GalsiTNF-NPs. Then, they co-loaded GalsiTNF-NPs and IL-22 in
a chitosan/alginate hydrogel, protecting the drug in the digestive
tract and releasing it in the colonic lumen.339 After oral
administration, GalsiTNF-NPs targeted macrophages and

repressed the TNFα expression, while IL-22 downregulated the
pro-inflammatory factors and promoted mucosal healing in a UC
model. Aib et al. co-encapsulated anti-inflammatory and antiox-
idant drugs, mesalazine and Cur, in liposomes and coated them
with Eudragit-S100, conferring the liposomes colon-targeting
release.340 The coated liposomes remained almost intact at pH
1.2 and rapidly released at pH 7.4, enabling drug delivery to the
colonic site. In the UC Colitis model, the coated liposomes can
effectively reduce various inflammatory markers for synergy
therapy, dropping the level of oxidative stress and protecting
the intestinal mucosa. Similarly, using the Eudragit-S100 coating
for colon-specific delivery, Desai et al. developed colon-directed
bioadhesive beads encapsulating Cur and cyclosporine.341 After
reaching the colon site, the coating dissolved and allowed 100%
colon adhesion of the pellets inside, reducing the administration
dose and decreasing side effects.
Active targeting is a significant development direction for

intravenous DDSs to treat IBD.342 Xu et al. reported a TKPR
polypeptide-functionalized reversible cross-linking polymer (TKPR-
RCP).343 They designed an asymmetric triblock copolymer to self-
assemble and form a polymersome with a hydrophilic core inside,
a macrophage-targeting polypeptide TKPR attached to the
outside, and a redox-sensitive disulfide bond structure. Dexa-
methasone sodium phosphate and siTNF-α were co-encapsulated
in the hydrophilic core of TKPR-RCP. The surface charge of the
system is neutral, permitting blood safety and systemic circulation
stability. Upon accumulating in the inflamed colons of the UC
model, TKPR-RCP targeted macrophages and suffered redox-
responsive membrane de-crosslinking, accelerating the intracel-
lular drug release. The efficacy study indicated that TKPR-RCP/
siTNF-α/DSP could knock down 80% TNF-α, almost a 2-fold
reduction compared to control groups. Meanwhile, the prepara-
tion can inhibit the cascade reaction activated by inflammatory
factors (IL-1β and IL-6) and prevent the infiltration of leukocytes,
alleviating inflammation induced by several pathways. Also, Yan
et al. designed a P-selectin-binding peptide (PBP) surface-
modified 164-nm PLGA-NPs for co-delivering resveratrol (Res)
and dietary triterpenoid betulinic acid (BA), synergistically achiev-
ing anti-inflammatory and antioxidant effects.146 PBP-PLGA-NPs
could efficiently target Colon-26 and RAW 264.7 in vitro and
accumulate in the inflamed colon. Moreover, intravenous injection
of the NPs could relieve UC symptoms while maintaining intestinal
microbiota homeostasis and not inducing organ injuries.

HYPERTHYROIDISM
The metabolic disorder known as hyperthyroidism is linked to
excessive thyroid hormone production. The thyroid gland is a
bilobed organ in front of the trachea, between the suprasternal
notch and the cricoid cartilage. Secretion of thyroxine (T4) occurs
in the thyroid gland as a reaction to thyroid-stimulating hormone
(TSH) produced by the pituitary gland. Deiodinase enzymes
transform the released T4 into the more powerful triiodothyronine
(T3). Despite the thyroid gland’s inherent ability to produce T3,
most of the conversion of T4 to T3 occurs outside of it. The thyroid
gland’s follicular cells are spherical and polarized, and they
surround a gel-like colloid rich in thyroglobulin. The organic
precursor to thyroid hormones, thyroglobulin, needs iodide to
become thyroid hormone.344 After being converted to iodide by
the thyroid peroxidase enzyme, dietary iodine is carried into
thyroid follicular cells through the sodium-iodide symporter. High
dietary iodide levels temporarily suppress the organification
process, whereas low dietary iodide facilitates upregulation of
the sodium-iodide symporter. This process is termed the Wolff-
Chaik off effect.345

The excessive secretion and production of these thyroid
hormones then lead to hyperthyroidism. Moreover, there is a
widespread misperception about the terms thyrotoxicosis and
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hyperthyroidism, which are used interchangeably. Excessive
thyroid hormone exposure to tissues is called thyrotoxicosis,
whereas hyperthyroidism is a disorder related to excessive thyroid
hormone production. Even though the terms hyperthyroidism and
thyrotoxicosis are sometimes used interchangeably, it’s crucial to
understand the differences.
There are several forms of hyperthyroidism based on their

causes or sources. Graves’ disease is the most prevalent cause of
hyperthyroidism. This hyperthyroidism typically affects younger
populations since Graves’ disease has an autoimmune etiology.346

Another cause of hyperthyroidism is toxic multinodular goiter.
Toxic multinodular goiter is the most typical cause of hyperthyr-
oidism in the older population. Even though toxic multinodular
goiter and Graves’ disease are the leading causes of hyperthyr-
oidism, there are other causes, such as iodine-induced hyperthyr-
oidism (Jod-Basedow phenomenon), factitious thyroiditis, de
Quervain thyroiditis (subacute thyroiditis), postpartum thyroiditis,
and thyroid adenomas. For instance, factitious thyroiditis is caused
by the excessive or improper use of pharmaceutical thyroid
hormones. Thyroxine has the potential to be abused due to a well-
liked side effect of reducing weight, so every history of a
hyperthyroid patient should include a prescription list and an
evaluation of potential abuse (whether intentional or uninten-
tional). Similarly, drugs containing iodine or amiodarone can
induce the Jod-Basedow phenomenon and iodine-associated
hyperthyroidism or thyrotoxicosis.347

Targets for hyperthyroidism therapy
Thyroid-stimulating hormone receptor (TSHR) signaling. Since
stimulation of the TSHR is the primary cause of hyperthyroidism,
various research teams have been working on methods to block
TSHR signaling, either by employing small chemicals or antibodies
which prevent receptor activation. Additionally, it is being explored
if TSHR peptides have potential long-lasting immunomodulatory
characteristics.348 One major benefit of this approach is that it is
more focused and targeted and, theoretically, would not
negatively affect the participant’s capacity to combat infection.

B-cell activation or activity disruption. Effective antigen presenta-
tion is primarily coordinated by CD40, a TNF family receptor
located on thyrocytes and antigen-presenting cells, including B
cells.349 When there is inflammation, its ligand CD154 (also known
as CD40 ligand; CD40L) is momentarily produced on activated
T cells and other nonimmune cells. A co-stimulatory pathway is
activated by the CD40-CD154 interaction, offering the second
signal for activating an adaptive humoral immune response.350

Given that the interaction between B and T lymphocytes depends
on the formation of the intrathyroidal germinal center and the
maturation of the B-cell repertoire for the production of thyroid-
stimulating antibodies, it is hypothesized that this interaction is
essential in the pathogenesis of hyperthyroidism.350,351

Several autoimmune diseases, such as hyperthyroidism, have
been linked to CD40 gene variants that can alter thyroid antibody
production and act as a relapse signal.352–354 Functional investiga-
tions have shown that the disease-associated CD40 mutation
modifies the consensus Kozak initiation sequence, increasing
translational efficiency and pointing to a causal relationship
between overexpression of CD40 and the propensity for Graves’
hyperthyroidism.355 Indeed, evidence from a variety of murine
models has disclosed that genetic or chemical manipulation of
CD40 signaling can alter the severity of autoimmune thyroiditis or
the generation of thyroid autoantibodies, designating CD40 as a
promising target in the management of this condition.351,352

The neonatal immunoglobulin Fc receptor (FcRn), which binds to
endocytosed Immunoglobin G (IgG) antibody in the lysosome’s
acidic environment and recycles it to the cell membrane for release
back into circulation, is responsible for IgG antibodies’ prolonged
half-lives, including those of TRAbs.356 Various animal models of

autoimmune disease have been augmented by blocking FcRn; and
FcRn-deficient mice have demonstrated resilience to autoimmune
disease.357,358 For IgG-mediated autoimmune disorders like Graves’
hyperthyroidism, accelerating antibody degradation and reducing
circulating pathogenic TRAb and FcRn inhibition may represent an
intriguing targeted therapy.359

B-cell activating factor (BAFF), a cytokine that belongs to the
TNF family, is crucial for the activation, differentiation, and survival
of B-lymphocytes. Patients with autoimmune diseases, such as
active Graves’ hyperthyroidism, have elevated circulating BAFF
levels, correlating with increased thyroid hormone and TRAb.360

Additionally, hyperthyroidism is linked to genetic variations of
BAFF.361,362 As a result, BAFF could be a therapeutic target for
autoimmune diseases driven by B cells.

Strategies for combinatorial hyperthyroidism therapy
Over the years, hyperthyroidism has been treated in two means,
depending on its underlying cause, including symptomatic and
definitive treatments.363 For example, a beta-adrenergic antago-
nist like atenolol can manage the symptoms of hyperthyroidism,
such as anxiety, palpitations and tremor. Also, patients who
cannot tolerate beta-blockers or who have contraindications to
beta-blocker therapy can be treated with calcium channel
blockers, such as verapamil.364 Three conventional or definitive
treatments are commonly used for the clinic: thionamide therapy,
radioactive iodine therapy, and partial thyroidectomy. However,
various limitations were reported with these therapies, such as
high recurrence rate following drug use discontinuation,
hypothyroidism, hepatitis, vasculitis, agranulocytosis and drug-
induced lupus.365–367 Combinatorial treatment is promising to
overcome the drawbacks (Fig. 8).
Graves’ disease patients have lower levels of serum selenium

(Se) and vitamin D (VitD).368–371 Se could help thyrocyte defense
against ROS that is upregulated in hyperthyroidism patients as
integrated into selenoproteins (such as glutathione peroxi-
dase).368,370 VitD influences the maturation and differentiation of
immune cells, such as macrophages, dendritic cells, natural killer
cells and T cell subsets, and switches them into tolerogenic and
anti-inflammatory phenotypes.372,373 Consequently, Gallo et al.
studied whether the combination use of Se and cholecalciferol
(VitD) with the antithyroid drug methimazole enabled a faster
control of hyperthyroidism in a clinical study (EudraCT 2017-
00505011).374 Individuals with newly-onset Graves’ disease who
had marginal or low Se and VitD levels were randomly treated
with either MMI monotherapy or MMI in combination with Se and
VitD. Se therapy was stopped after 180 days, while the others were
continued. The combination therapy significantly reduced the
serum-free thyroxine (FT4) levels compared to MMI monotherapy.
Also, the composite score exhibited significant recovery in the
intervention group compared to the MMI group, evidenced by the
investigation of the life quality using a questionnaire for “Thyroid-
related Patient-Reported Outcome.” Thus, the combinational
treatment could raise the Se and VitD levels and boost the
effectiveness of MMI treatments.
Another study by Xie et al. investigated the anti-

hyperthyroidism efficacy and safety of combining tripterygium
glycosides with thiamazole or prednisone.375 The data indicated
that involving tripterygium glycosides decreased the exophthal-
mos, serum-free triiodothyronine, FT4, plasma osteocalcin, and
alkaline phosphatase while increasing TSH, SOD, and glutathione
peroxidase. Their findings demonstrated that combining tripter-
ygium glycosides and chemical compounds is an efficient
treatment against hyperthyroidism.

DIABETES
Diabetes is a widespread metabolic disorder affecting a large
population worldwide.376 Insulin is a hormone that regulates
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blood glucose in the body.377,378 Diabetes is a severe condition
induced by either insufficient insulin secretion by the pancreas or
inefficient insulin utilization by the body.378 The blood glucose
level is highly increased in diabetes patients, occurring when
pancreatic beta cells in the islets of Langerhans cannot produce
adequate insulin. Treatment is selected according to the diabetes
classification listed as follows.379,380 (1) Type 1 diabetes mellitus
(T1DM): caused by autoimmune destruction of beta cells, typically
resulting in total insulin deficiency.381 (2) Type 2 diabetes mellitus
(T2DM) is caused by a progressive loss of insulin secretion from
beta cells, frequently appearing in conjunction with insulin
resistance.382 (3) Gestational diabetes mellitus is diabetes occur-
ring in pregnant women.383,384 (4) Particular types of diabetes are
caused by various factors, such as exocrine pancreatic diseases
(cystic fibrosis and pancreatitis), monogenic diabetes syndromes
(neonatal diabetes and maturity-onset diabetes of the young), and
drug-/chemical-induced diabetes (glucocorticoid use, the com-
pound treatment against HIV/AIDS, and organ
transplantation).385,386

Targets for diabetes therapy
Histone deacetylase pathway. The therapies can also target the
intermediate substrate and glucose metabolism processes.387

Diabetes is alleviated by restoring insulin release from pancreatic
β cells, with the rare exceptions of aberration in the insulin
signaling cascade. As a result, maintaining β cell mass may be a
promising strategy for treating diabetes.388 HDACs, such as
sirtuins, are able to regulate the development of the pancreatic
endocrine system, β-cell activities, insulin secretion, and metabolic
fates.387,389–391 The HDAC-associated pathways are considered
novel therapeutic targets in the management of diabetes.

The Nrf2/Keap1/ARE pathway. The main defense mechanism
against oxidative and electrophilic stressors involves the Kelch-like
ECH-associated protein 1/nuclear factor erythroid 2-related factor
2 pathway. Keap1, a component of an E3 ubiquitin ligase, precisely
controls the transcription factor Nrf2 under homeostatic condi-
tions by ubiquitination and proteasome-dependent destruc-
tion.392 This pathway has been extensively studied in cancer,
chronic obstructive pulmonary disease, neurological diseases and
autoimmune diseases, e.g., IBD and RA.393–395 However, the role of
the antioxidant Nrf2/Keap1/ARE pathway in diabetic dysfunction
was recently discovered, likely contributing to diabetes
amputation.396

Lessening Nrf2-mediated ROS damage could be an approach
against diabetes.397 Current pharmacological activators boost Nrf2
expression through three primary methods.396 The Nrf2 activators
include as follows: (a) activating upstream kinases, such as protein
kinase B and extracellular signal-regulated kinases, which phos-
phorylate specific sites facilitating Nrf2 release from Keap1; (b)
altering Keap1 cysteine residues, which disassembles the Nrf2-
Keap1 complex and promotes Nrf2 dissociation; and (c) prevent-
ing the ubiquitination of these pathways that enhances
Nrf2 stability, nuclear translocation and antioxidant cascade.396

Notably, the Nrf2 activator, dimethyl fumarate (BG-12, brand name
Tecfidera®), was approved in 2013 for treating multiple sclerosis.
This compound enhances Nrf2’s downstream pathways and
improves cytoprotective, anti-inflammatory and antioxidant
effects. As a result, the Nrf2 pathway may be a treatment target
for type 2 diabetes, whose conditions are closely related to
oxidative stress. Several natural antioxidants, e.g., vitamin E, C, and
coenzyme Q10, were explored to combat diseases.398 However,
the results from clinical trials indicated that adjunct medicines
showed modest efficacy in preventing or treating diabetes.399 A
high throughput cell-based screening assay is now used to screen
small-molecular activators for the Nrf2/Keap1/ARE pathway.400

New antioxidants would be found to alleviate oxidative stress and
inflammation in type 2 diabetes.

Endothelin and adipokine pathways. The endothelium can
modulate human homeostasis by controlling arterial blood
pressure, delivering nutrients and hormones and providing a
smooth surface that controls coagulation, fibrinolysis and
inflammation.401 Endothelial dysfunction is a factor in the onset
and progression of microvascular disease in diabetes, as well as
most of the microvascular consequences, i.e., diabetic retinopathy,
nephropathy and neuropathy.402 The key pathogenesis-related
variables inducing endothelial dysfunction include hyperglycemia,
insulin resistance, hyperinsulinemia and dyslipidemia.
Adipokines are a body’s biologics that regulate various

physiological functions, including insulin sensitization, appetite
regulation, inflammatory response, vascular homeostasis and
energy balance.403,404 Adipokines involve anti-/pro-inflammatory/
cytokines, adiponectin, fatty acid binding protein, etc. A clinical
study discovered that several antidiabetic drugs, including
glimepiride could elevate plasma adiponectin, peroxisome
proliferator-activated receptor-alpha agonists like thiazolidine-
diones, renin-angiotensin system-blocking compounds like losar-
tan, and triglyceride-lowering drug, such as simvastatin.404

Strategies for combinatorial diabetes therapy
Clinically, T1DM is mainly treated with insulin replacement
therapy.405,406 T2DM is the predominent cause of diabetes, with
an incidence rate as high as 90–95%.407 Primary drug therapy
includes insulin secretion inhibitors, biguanides, insulin sensitizers,
alpha-glucosidase inhibitors, incretin mimetics, glucagon-like
peptide-1 (GLP-1) and sodium-glucose co-transporter-2 (SGLT2)
inhibitors.382 For patients who fail to achieve treatment goals with
first-line oral antidiabetic drugs, combination therapy is often
recommended. For gestational diabetes mellitus, 80%-90% of
patients are recommended to use lifestyle therapy for blood
glucose management (diet, physical activity, etc.).383 The causes of
specific-type diabetes are always different. Targeted treatment is
always encouraged according to the etiology, aiming to normalize
the blood sugar level.

Combining therapy strategies. For most patients, modifying
lifestyle and diet is also the leading choice for T2DM.408 Metformin
is always selected as blood glucose levels cannot be controlled
through diet and exercise.409 The effectiveness and safety of
dorzagliatin as a supplement to metformin were assessed in T2DM
patients with inadequate glycemic control using metformin
alone.409 Metformin reduces plasma glucose levels and hepatic
glucose synthesis,410,411 while dorzagliatin is an orally accessible
glucokinase activator and reduces postprandial glucose by
targeting the pancreatic and liver glucokinase.412,413 The results
indicated that the combination allowed efficient glycemic control
with good tolerance and safety, not causing severe hypoglycemia
and other side effects (Fig. 8).
SGLT2 balances sodium-glucose transport proteins in the

nephron, preventing the kidneys from glucose reabsorption and
lowering blood sugar. SGLT2 inhibitors suppress the proximal
nephron’s SGLT2 protein,414 reducing the glucose reabsorption in
T2DM and increasing urinary glucose excretion.415 Dosing SGLT2
inhibitors could reduce weight, decline systolic blood pressure
and lower glycemic level.416 Tahara et al. evaluated the treatment
efficacy of the combination of SGLT2-selective inhibitor ipragli-
flozin (10 mg/kg) and pioglitazone (1 mg/kg) on nonalcoholic
steatohepatitis in T2DM KK/Ay mice fed a high-fat diet.417 The
results showed that the combination allowed significant reduc-
tions in hyperlipidemia, hepatic steatosis and fibrosis and
improved obesity, insulin resistance and hyperglycemia.417

NP-mediated co-delivery. Various NPs were reported for deliver-
ing therapeutic compounds, including insulin, dipeptidyl
peptidase-4 (DPP4) inhibitors, and plasmids containing the GLP-
1 gene.418 To relieve the enzymatic breakdown of certain
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antidiabetic drugs like insulin in the gastrointestinal (GI) tract, the
scientists designed several NPs, including mesoporous silica NPs
(MSNs), liposomes, gold NPs and polymer NPs. However, drug
codelivery systems may be exploited to simplify treatment
regimens and improve patient compliance. Besides, NPs could
be leveraged to co-deliver anti-diabetic gene therapeutics and
peptides. Despite the potential advantages, few preclinical studies
investigating NP-mediated antidiabetic combinations have been
reported.
An MSN-based H2O2-responsive system was developed for dual

stimuli-responsive (glucose and H2O2) insulin delivery.419 4-
(imidazoyl carbamate) phenylboronic acid pinacol ester and
cyclodextrin (CD) were added to MSNs, enabling drug release in
response to H2O2. The insulin and glucose oxidase were
encapsulated in MSNs after surface modification. The release
study indicated that 72.4% and 42.0% of insulin was released at
5 mM and 1 M H2O2, respectively, indicating that the drug release
was H2O2-concentration dependent. Moreover, the insulin release
increased in high-glucose conditions, demonstrating a glucose-
sensitive release. Transdermal administration of the preparation
maintained 3-h higher plasma insulin than the subcutaneous
injection.
GLP-1 is an incretin hormone used for T2DM therapy due to its

capacity to stimulate insulin secretion in a glucose-dependent
manner. However, oral GLP-1 delivery is rapidly degraded by the
enzyme DPP4.420 Therefore, the co-delivery of GLP-1 and DPP4
inhibitors seems rational. Shrestha et al. designed a nanocomposite
formed by chitosan-modified porous silicon NPs and coated by an
enteric polymer.421 The orally delivered NPs induced a 32%
decrease in glycemia and approximately 6-fold augmentation in
pancreatic insulin level compared to free combination. Another
example is the study of Ma et al., who developed chitosan NPs-
inlaid poly-l-lactide porous microparticles co-loaded with two
antidiabetic agents, including GLP-1 and small interfering RNA
(siRNA), to inhibit the expression of dipeptidyl peptidase-4
mRNA.422 Interestingly, the designed system (100–150 nm) was
prepared using the supercritical carbon dioxide technology and
was delivered through the pulmonary route. The codelivery system
efficiently reduced hyperglycemia due to the sustained liberation
of siRNA from NPs and the synergistic action of GLP-1.422

NEURODEGENERATIVE DISEASES (NDS)
NDs represent the gradual deterioration of the function and
structure of the neuron populations in the central nervous system
(CNS).423 Immunocompetence reduction with age and chronic
neuroinflammation are underlying causes of NDs, including
Alzheimer’s disease (AD), Parkinson’s disease (PD), and amyo-
trophic lateral sclerosis (ALS).424 Insufficient clearance of the
misfolded proteins can also induce NDs.425 For instance, the
accumulation of β-amyloid, tau, and α-synuclein (α-syn) causes AD
and PD, respectively.426,427 Additionally, neuronal degeneration
and brain inflammation can be stimulated by the alterations of
protein conformations aggregating into neurofibrils or oligomers
and the resultant neuronal toxicity.427,428 ALS-neurodegeneration
could be caused by various factors, including glutamate excito-
toxicity, production of free radicals, cytoplasmic protein aggre-
gates, SOD-1 enzymes, mitochondrial dysfunction, and the
disruption of axonal transport processes through the accumula-
tion of neurofilament intracellular aggregates.429

Targets for ND therapy
Three categories are employed for the NDs therapy, e.g., treating
AD using amyloid antibodies, cholinesterase inhibitors (ChEIs) and
glutamate regulators, combating PD using dopamine supple-
ments, decarboxylase inhibitors and dopamine agonists, and
treating ALS using glutamate-receptor antagonist and free-radical
scavenger.430 Nonetheless, developing an effective treatment

approach against NDs remains challenging, owing to the unclear
cause of onset and etiology and the blood-brain barrier (BBB)
hindering brain drug delivery (Fig. 8).431

Amyloid proteins always induce neurotoxicity and likely could
be a therapy target.432 NDs have a late onset and are often
exacerbated by aging and neuronal loss.433 The aging and the
missing neuronal decline in cellular homeostasis may be induced
by DNA damage. Meanwhile, DNA injury is induced by the high
level of ROS and mitochondria dysfunctions.434 The mitochondrial
citric acid cycle is strengthened due to abnormal energy
metabolism and dysfunctional mitochondria, intensifying neuroin-
flammation. As a result, mitochondria could be a potential target
for treating AD.435 Second, the loss of neurons is affected by the
ubiquitin-proteasome and the autophagy-lysosome pathways.436

So, these two pathways also could be used as therapy targets. E.g.,
the stimulation of the sigma-1 receptor activates autophagy,
alleviates chronic CNS inflammation by reducing immune
response, and is a promising therapeutic target against.437

Additionally, the protein Rho GTPase controls the development
of the actin cytoskeleton in nerve cells and oxidative stress
through the nuclear erythroid 2-related factor, significantly
affecting cellular redox homeostasis.438,439

Strategies for combinatorial ND therapy
Combining therapy strategies. Multiple pathways are always
involved in NDs development; therefore, multi-drug therapy
targets many molecular pathways rather than a single target.440

In 2014, Namzaric®, a combination of the AChE inhibitor donepezil
and memantine, was approved to treat moderate to chronic
AD.441 A hybrid compound containing the Rho kinase inhibitor
fasudil and NRF2-triggers caffeic and ferulic acids was synthesized
to treat ALS.439 The compound enabled NRF2 activation and
promoted the expression of antioxidant response enzymes.439 The
combined use of memantine and ChEIs for AD treatment is the
most extensively researched and clinically proven effective.370,371

This combined treatment strategy slowed the functional and
cognitive decline rate for more than one year compared to
monotherapy. Additionally, compared to no treatment or ChEI
monotherapy, the combined therapy lessened the development
and severity of neurobehavioral symptoms, such as aggression
and agitation, and demonstrated enhanced efficacy against the
diseases at an early stage.442

Levodopa was launched in 1970 to treat PD motor symptoms,
and five years later, the first combined product of levodopa and
carbidopa was approved443. Afterward, various compounds were
investigated to manage PD. However, only two drugs, riluzole and
edaravone, were marketed to treat ALS. These two medicines
could improve an individual’s quality of life. Also, their combina-
tion displayed elevated efficacy against ALS patients compared to
monotherapy.444 Nevertheless, no effective disease-modifying
treatments are obtainable for ALS; and most of the available
combinations are used to alleviate symptoms rather than inhibit
the disease development.

NP-mediated co-delivery. NPs were employed to deliver the
therapeutics, i.e., chemical substances, genes, peptides and
antibodies, to treat AD.445–448 For instance, a patent
(CN110559454B) reported micelles modified using quadrupole
superparamagnetic ferrite for AD-protein targeting and cathode
ray tube for transferrin targeting for improving brain delivery.449

Yang et al. designed albumin NPs co-loading clioquinol (metal-ion
chelator) and donepezil (acetylcholinesterase inhibitor) as poten-
tial synergistic therapy against AD.450 The drug combination could
simultaneously restore the balance between amyloid-beta aggre-
gates and acetylcholine. The NPs were modified with transcrip-
tional activator protein and monosialotetrahexosylganglioside
lipid to enhance brain targeting. After 30 days of intranasal
administration, the NPs could rescue acetylcholine imbalance and
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reduce the aggregation of amyloid-beta, ameliorating spatial
learning and memory function in AD mice. Associating the
neuroprotective hormone, leptin, and the anti-inflammatory
agent, pioglitazone, has been widely recommended for NDs
treatment, including AD and ALS.451,452 Two active compounds,
curcumin decomposing amyloid protein and superparamagnetic
ferrite, were contained in the NPs. The results indicated that the
NPs could increase the drug concentration at the target site and
extend the accumulation time. Recently, two drugs, neuroprotec-
tive leptin and anti-inflammatory pioglitazone, were loaded in
mesoporous silica NPs to treat ALS. The treatment study indicated
that the co-loaded NPs could slow the disease progress and
significantly improve the motor function in the TDP43A315T

model.453 Díaz-García et al. used mesoporous silica NPs to co-
encapsulate leptin and pioglitazone. The study reported that the
co-loaded NPs could slow the disease progression and signifi-
cantly improve motor function in vivo.453

Multiple drug combinations have also been investigated for PD
treatment. Levodopa is the gold standard of PD treatment.454

Usually, it is associated with carbidopa or benserazide to prevent
its peripherical conversion into dopamine, which, unlike its
precursor, levodopa, cannot cross the BBB.454 Also, long-term
use of levodopa may induce dyskinesia.455 Yang et al. associated
levodopa methyl ester with benserazide in one nanoplatform to
sustainably release the two drugs.456 The NP-based combination
significantly decreased the apomorphine-induced rotations in
dyskinetic rats compared to the free combination. A recent patent
(CN202010142569.7) proposed an NP made up of a lipid bilayer
modified with cell-penetrating peptides and lactoferrin as the
external shell to enclose the mesoporous silica NPs. This platform
specifically co-delivers levodopa and curcumin to the brain to act
synergistically. Levodopa relieves dyskinesia and curcumin exerts
a neuroprotective effect.457 Recently, another group implemented
polymeric micelles composed of polyethylene oxide and poly ε-
caprolactone to co-deliver levodopa and curcumin as potential
therapy for PD.458 The system was modified with glutathione to
enhance brain delivery due to its specific binding in BBB.459

CONCLUSIONS AND PERSPECTIVES
Combination-drug therapy allows synergistic therapy by simulta-
neously stimulating multiple pathways or enhancing the pharma-
cokinetic performance of one or more drugs. There are many
mechanisms for synergistic therapy; however, not all therapeutic
agents effectively work when combined.460 Chemical interference
between therapeutic agents may reduce their combined action
compared to the estimated sum of effort. Antagonism may occur
if two compounds act competitively on the same target, reducing
their combined activity. Therefore, verifying the relationship
between their therapeutic index and synergy coefficient is
necessary to ensure synergistic therapy when designing a
combination therapy using two or more drugs. Computer-aided
design can quickly and efficiently screen suitable drug combina-
tions with synergistic effects. Moreover, the clinicians reported
some potential drug combinations through clinical practices, and
the combined treatment model has been utilized to treat various
diseases (Tables 1–3).
Administering multiple drugs directly (mostly intravenously)

always leads to compromised treatment efficacy because the
drugs must cross many biological barriers before and after
entering systemic circulation.461–463 Therefore, developing code-
livery systems is vital for therapy as designing combination
strategies.464,465 Over the years, NP-codelivery systems have been
exploited with other therapeutic agents to treat various diseases.
The NPs’ treatment efficacy could be enhanced by altering their
physicochemical properties, i.e., diameter, morphology, surface
charge and surface features, to improve their targetability to the
diseased conditions, such as pH reduction, increased shear forces

of blood flow, EPR effect, and highly expressed receptors on target
tissues or cells. E.g., rod-shaped NPs could target the highly
expressed caveolar protein on endothelial cells and improve
cytosol delivery by reducing the endosomal entrapment. Further-
more, NPs could integrate different regimens for combinatorial
treatment. For example, chemotherapy and photothermal therapy
can effectively be combined using DDSs for treating cancer or AS.
For specific diseases that are difficult to diagnose in real-time, co-
delivering the diagnostic agent and the therapeutic drug to the
lesion site enables real-time observation of the pathological
process of the lesion site during treatment, integrating diagnosis
and treatment.
Lipid NPs are often used carriers for co-delivery due to their

ability to encapsulate various drugs and enhance the solubility of
chemotherapeutic agents, efficiency, non-immunogenicity, and
bio-compatibility.466 Over 20 liposomes and liposome-like NPs
were approved for clinical use.467–471 Notably, a liposomal
formulation containing daunorubicin and ara-C was approved to
treat acute myeloid leukemia.472 The evidence demonstrates that
liposomes are a promising carrier for codelivery. Interestingly, a
carrier-free strategy termed the drug-delivering-drug (DDD) plat-
form pioneered by He’s group was developed to improve co-
delivery, using drug crystals of insoluble drugs as a carrier to
deliver the second drug such as biopharmaceuticals and small
molecular-weight compounds.16,17,255,473 The second drug RNAi
and active proteins were absorbed into the drug crystals stabilized
with cationic polymer or polyphenol through electrostatic or non-
covalent interactions such as multi-hydrogen bonds.474–476 In
contrast, a second small molecular-weight drug was incorporated
into the drug crystals via a cocrystal-like approach.11,477 DDD’s
most significant merit is the high drug-payload capacity of
70–100% (w/w), 20-fold more significant than the conventional
drug carriers. DDD might represent a promising tactic for
combinatorial therapy. Recently, drug-drug cocrystals, referred as
solids that are crystalline single-phase materials composed of two
or more different molecular and/or ionic compounds generally in
a stoichiometric ratio which are neither solvates nor simple salts,
are attracting increasing attention in the pharmaceutical field due
to the ability to improve the in vivo fate and physicochemical
properties of drugs, including solubility, permeability, hydration,
tableting, mechanical strength, etc.478,479 Over 8 drug-drug
cocrystals, e.g., Odomzo® (cocrystal of sonidegib and phosphoric
acid), Suglat® (cocrystal of ipragliflozin and L-proline), and
Entresto® (cocrystal of valsartan and sacubitril), were marketed
for the clinic. Cocrystals are developing as a potent combinatorial
therapy strategy. E.g., Entresto®, consisting of the angiotensin
receptor inhibitor valsartan and a neprilysin inhibitor prodrug
(sacubitril), elevates the bioavailability of valsartan and reduces its
dose. Incorporating nanotechnology into cocrystals may represent
a new approach to designing novel NP-codelivery preparations.
Whereas a considerable number of NP-codelivery systems were

reported, only one product (Vyxeos®) was approved, demonstrat-
ing a shallow translation rate. The poor translation efficacy may
associate with the modest drug-loading ability of conventional
polymer NPs. Liposomal formulations always demonstrate potent
encapsulation ability for various drugs and, as a result, are often
utilized for codelivery. Accordingly, pharmaceutical techniques
with high drug-loading capacity, i.e., drug-drug cocrystals and
liposome-like NPs, could be promising for NP-codelivery. However,
it should still be noted that the composition ratio of different
drugs in the co-loading system may not be equal to the drug ratio
released by the NPs in the actual treatment, while the actual
control system contributes to the synergistic effect. Therefore,
establishing an analysis method that can precisely study the drug
release is critical for the development of NP-codelivery.480,481

Moreover, the translation always involves enormous efforts, such
as the initial selection of combination drugs and dosage forms,
screening and characterization, the final large-scale batch
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production, and quality control. In addition, even though various NPs
have been proven to target the diseased lesions and improve
treatment efficacy, less than 1% of nanomedicines accumulate in the
target site due to sequestration or clearance of RES and renal system,
etc. This considerable non-targeted distribution of NPs may also
cause side effects.482–484 Clinical desires should be the first driving
force in developing combined DDSs or co-delivery preparations.
Therefore, early clinical collaborative efforts should be undertaken to
understand patient needs better and facilitate the development of
novel combination DDSs. Interdisciplinary cooperation should be
strengthened during the whole development and translation. The
computer simulation systems could assist in optimizing the NP
properties, including combinatorial drug ratio, drug-loading capacity,
targetability, drug release profiles, and in vivo fate. Establishing
effective in vitro and in vivo models is wanted to evaluate the
combination DDSs regarding pharmacokinetics, biodistribution, and
drug concentration at the target site. For industrialization and clinical
use, unauthorized materials and complex preparation are not
recommended.
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