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Multifunctional mesoporous silica nanoparticles for
biomedical applications
Bolong Xu 1, Shanshan Li1, Rui Shi2✉ and Huiyu Liu 1✉

Mesoporous silica nanoparticles (MSNs) are recognized as a prime example of nanotechnology applied in the biomedical field, due
to their easily tunable structure and composition, diverse surface functionalization properties, and excellent biocompatibility. Over
the past two decades, researchers have developed a wide variety of MSNs-based nanoplatforms through careful design and
controlled preparation techniques, demonstrating their adaptability to various biomedical application scenarios. With the
continuous breakthroughs of MSNs in the fields of biosensing, disease diagnosis and treatment, tissue engineering, etc., MSNs are
gradually moving from basic research to clinical trials. In this review, we provide a detailed summary of MSNs in the biomedical
field, beginning with a comprehensive overview of their development history. We then discuss the types of MSNs-based
nanostructured architectures, as well as the classification of MSNs-based nanocomposites according to the elements existed in
various inorganic functional components. Subsequently, we summarize the primary purposes of surface-functionalized
modifications of MSNs. In the following, we discuss the biomedical applications of MSNs, and highlight the MSNs-based targeted
therapeutic modalities currently developed. Given the importance of clinical translation, we also summarize the progress of MSNs in
clinical trials. Finally, we take a perspective on the future direction and remaining challenges of MSNs in the biomedical field.
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INTRODUCTION
With the rapid development of nanotechnology, nanomaterials
have shown great promise in the biomedical field due to their
excellent physicochemical properties. A variety of nanoformula-
tions have been widely explored and developed for cargo
delivery,1–5 disease diagnosis,6–9 and therapeutic purposes.10–13

Compared to macroscale counterparts, nanoformulations always
enjoy the unique merits, including higher bioavailability, reduced
toxic effects and improved selectivity, in the living organism.14

Typically, nanoformulations include two major categories: organic
and inorganic nanoformulations.14,15 Organic ones such as
liposomes and polymers have been demonstrated to be a very
effective and safe class of drug carriers, as evidenced by the fact
that Doxill® is the first American Food and Drug Administration
(FDA)-approved nanoliposomal drug formulation,16 and the
recently reported development of two lipid nanoparticles (NPs)-
based COVID-19 mRNA vaccines (BNT162b2 and mRNA-1273).17

For inorganic NPs-based formulations, although they are slightly
inferior to organic NPs-based formulations in terms of biocompat-
ibility and safety, they are superior to organic NPs-based
formulations in terms of stability and drug delivery efficiency.
Importantly, some unique properties possessed by inorganic NPs
such as optical, ultrasonic, magnetic and catalytic properties have
given rise to some novel NPs-based therapies, i.e., photothermal
therapy (PTT),18,19 photodynamic therapy (PDT),20,21 sonodynamic
therapy (SDT),22,23 chemodynamic therapy (CDT)24,25 and
nanozyme-based catalytic therapy.26,27 Encouragingly, inorganic

NPs are also gradually moving to the clinical stage, with about 25
inorganic nanomedicines approved for clinical use.28

Among the different types of inorganic NPs-based formulations,
mesoporous silica nanoparticles (MSNs) are of great interest to
researchers worldwide due to their extreme flexibility in the
manipulation of structure and properties. In recent years, the
number of research papers on the applications of MSNs in the
biomedical field has exceeded 300 per year (Fig. 1a). MSNs are
characterized by a large range of tunable specific surface area and
pore size, adjustable particle size and morphology, and easy
surface functionalization. On the one hand, these features enable
them to effectively load therapeutic drugs including small
molecules, genes, peptides and proteins through electrostatic
adsorption or chemical bonding, thus ultimately achieving
targeted delivery and therapy.29–31 On the other hand, MSNs
can act as substrate materials to load nanomaterials such as
carbon dots,32,33 gold NPs34,35 and iron oxide NPs,36,37 resulting in
inorganic nanocomposites with diverse properties to meet the
requirements of various biomedical applications. In general, we
can control the synthesis conditions to precisely modulate the
topology with excellent internal and surface architecture of MSNs,
and to obtain the desired performance.
An additional advantage of MSNs over other inorganic NPs is

their relatively superior safety profile. A typical example is that the
FDA has approved colloidal silica for use as a glidant in the
production of tablets.38 Also, the widely used food additive E511
consists of amorphous silica NPs with a diameter of 100 nm.38
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Importantly, there are numbers of clinical trials and clinical studies
confirming the safety and efficacy of silica NPs when used in
applications such as oral drug delivery, bioimaging and PTT. For
example, in a clinical study involving 12 volunteers, ordered MSNs
were able to significantly increase the bioavailability of fenofibrate
by 54%, far better than the commercially available product
Lipanthyl®.39 In another clinical trial involving 16 patients with
prostate cancer, gold-silica nanoshells (GSNs) enabled tumor
ablation by photothermal action, ultimately achieving effective
tumor eradication in 94% (15/16) of patients.40 The physiological
toxicity of MSNs is closely related to particle size, morphology, and
structural composition. Currently, lots of silica-based nanoformu-
lations have been developed, and their systematic safety
evaluation is a matter of ongoing concern. However, there is no
doubt that mesoporous silica-based NPs will always be more
promising in the biomedical field than other inorganic NPs.
Although lots of reviews have already reported on the progress

of MSNs in the biomedical field (Fig. 1b), the scope of this review
provides a more comprehensive summary over the past decades
from different aspects. Throughout this review, we provide an
overview of the development history of MSNs in the biomedical
field, introduce some key research advances, and summarize the
various types of MSNs. We then summarize the nanocomposites
composed of different functional inorganic components (i.e.,
metal compound NPs, noble metal NPs, upconversion NPs, and
metal-free NPs) with MSNs. Our review focuses on the objectives
of surface functionalization of MSNs, which include improving
biocompatibility, enhancing targeting, and enabling precise drug
delivery processes. We also highlight recent advances in MSNs-
based biomedical applications, with particular emphasis on
various types of targeted therapeutic strategies. Finally, we discuss
the clinical translational status of MSNs and the current challenges
they face in the biomedical field.

OVERVIEW OF MSNS
Development history of MSNs
Silica possesses tetrahedral framework structure, which consists of
a silicon atom and four oxygen atoms formed by covalent
bonding. Mesoporous silica is a class of porous materials with the
pore size distribution of 2–50 nm. In the preparation process of
mesoporous silica, soluble silica precursors can be assembled into
liquid-crystalline mesophases by adding the block copolymers or

amphiphilic surfactants as the structure-directing agents.29,41 The
silanes condensation followed by the structure-directing agents
removal using solvent extraction or calcination methods results in
the synthesis of amorphous mesoporous silica with different
mesoporous phases (e.g., hexagonal, cubic, lamellar, and dis-
ordered structures).42 Research on mesoporous silica dates back to
the 1960s, when some United States patents mentioned the
preparation of mesoporous silica,43,44 but it was not until the
1990s that the study of mesoporous silica received increasing
attention from researchers. In 1992, scientists from the Mobil
Research and Development Corporation first synthesized a novel
mesoporous material, Mobil Composition of Matter No. 41 (MCM-
41), which is one member of the family of silicate-based
mesoporous molecular sieves (M41S).45 MCM-41 exhibits an
ordered hexagonal arrangement of uniform mesopores, and the
channels of MCM-41 can be tailored in the range of 1.5–10 nm in
size.46 In general, MCM-41 is prepared by using cetyltrimethy-
lammonium bromide (CTAB) as the surfactant and Tetraethyl
orthosilicate (TEOS) as the silica source (Fig. 2). Under strong
alkaline condition, the surfactant initially forms micellar rods, and
then stacks and arranges in hexagonal arrays. After adding the
TEOS, the silicate in solution covers the hexagonal arrays to
produce inorganic structure, in which the electrostatic interaction
between negatively charged Si−O− and positively charged
−N+(CH3)3 results in the hydrolysis and condensation of silanes.
Later, the calcination treatment leads to the removal of surfactant
template to give the final product.46 At present, MCM-41 has
become the most common nanomaterial used to build biomedical
nanoplatforms.
Due to the important role of MSNs in the biomedical field, the

timeline of some key achievements involving MSNs is presented in
Fig. 3. Similar to MCM-41, Santa Barbara Amorphous-15
(SBA-15) is also demonstrated to be another very promising
nanomaterial in the biomedical field, which is a highly stable
mesoporous silica sieve reported by scientists from the University
of California at Santa Barbara in 1998.47 Several years later, the first
example of biomedical applications involving mesoporous silica
for drug delivery is reported.48 MCM-41 is demonstrated to have
the ability to load and deliver the anti-inflammatory drug,
ibuprofen, with a weight percent ratio of 30%.48 In the same
year, researchers from two different research groups both
reported that the particle size of MCM-41 could be tuned to the
nanoscale,49,50 and its morphology could also be precisely
designed.50 These findings have greatly encouraged researchers
to explore the potential biomedical applications of MSNs. In 2003,
Lai et al. explored the feasibility of MCM-41-type MSNs in
controlled-release delivery systems, in which they used cadmium
sulfide (CdS) NPs as chemically removable caps to encapsulate
drug molecules into the pore channels of MSNs.51 Subsequently,
the disulfide bond-reducing molecules served as triggers to
control the stimuli-responsive release of drug molecules including
vancomycin and adenosine triphosphate.51 Meanwhile, the same
research group also utilized polyamidoamines to modify the
surface of MCM-41-type MSNs, and constructed a novel gene
transfection system in 2004, which is the first study of the uptake
behavior about MSNs into the eukaryotic cells.52 Afterwards, Lin
et al. developed fluorescein-labelled hexagonal crystal-like MSNs
with a size of 110 nm as cell marker.53 To fully exploit the
physicochemical properties of MSNs and their potential for
biomedical applications, in 2008, Liong et al. loaded super-
paramagnetic iron oxide into the internal pores of MSNs and
subjected MSNs to phosphonate coating, targeting ligand
modification and anti-cancer drug encapsulation, resulting in a
multifunctional silica-based nanoplatform that can be used for
imaging, targeting and drug delivery.54 Since the degradability of
MSNs is critical to the development of nanoformulations with high
safety, researchers continue to explore the degradation behavior
and mechanisms of MSNs. In 2010, a three-state degradation

Fig. 1 Summary of published literature on MSNs for biomedical
applications, analyzed by Web of Science. a Research articles.
b Review articles. Key words: “mesoporous silica” and “biomedical
application”. Data collection for this statistic is up to March 2023
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process of MSNs was proposed, which presented a new under-
standing of the degradation kinetic mechanism of MSNs that
differs significantly from that of traditional non-porous silica-based
materials.55 Besides, Lin et al. systematically revealed the impact of
MSNs with various particle size, pore structure and surface
modification on hemolytic activity in 2010.56 This pioneering
work provides guidance for understanding the toxic effects of
MSNs in vivo. In 2011, Cornell dots, which are silica-based hybrid
NPs with a size of 6–10 nm, become the first FDA-approved
nanoformulation for a first-in-human clinical trial.57 The first-in-
human clinical trial of 124I-labelled Cornell dots showed that they
can be applied to diagnose and stage tumors including melanoma
and malignant brain cancer.58 In addition, to obtain MSNs with
rapid biodegradability, Zhao’s group developed a biphase
stratification method for preparing monodispersed three-
dimensional dendritic MSNs (3D-dendritic MSNs). The as-
prepared 3D-dendritic MSNs can degrade completely in the
simulated biological medium within 24 h.59 In recent years, with
the outbreak and spread of coronavirus SARS-CoV-2, nanotech-
nology based on MSNs against coronavirus infection has also
developed. In 2020, Balagna et al. performed preliminary antiviral
test toward SARS-CoV-2 by using the silver nanocluster/silica
nanocomposite deposited onto facial masks.60 In another work, a
FDA-approved antiviral drug, niclosamide (NIC), was encapsulated
into MSNs, followed by the coating with Tween 60. The MSNs-
based nanocomposite was demonstrated to be a potential oral
formulation for SARS-CoV-2.61

From these pioneering and outstanding works, we can witness
that the research on MSNs covers all aspects of the biomedical
field. With the further development of highly safe and efficient
MSNs-based nanocomposites, as well as the systematic explora-
tion of their in vivo biological action mechanisms, MSNs are
gradually moving from basic research to clinical translation,
contributing to the development of nanomedicine.

Types of MSNs
In general, MSNs are often manufactured via surfactant-
templating sol-gel method. Their structure and morphology are
influenced by different factors, i.e., surfactants, silica sources,
reaction catalysts, and other external reaction conditions such as
pH and temperature.62–64 Of these, the surfactants as the
structure-directing agents play a crucial role in determining the

mesoporous architectures of MSNs, since they can induce the
micellization of foam during the reaction process.65 Three main
categories of structure-directing agents are frequently used in the
synthesis of MSNs, including cationic surfactants (e.g., CTAB and
cetyltrimethylammonium chloride (CTAC)), anionic surfactants
(e.g., phosphoric acid, sodium dodecyl sulfate, and alkyl carboxylic
acid), and non-ionic surfactants (Pluronic F123, F127, polyethylene
oxide (PEO) and polypropylene oxide (PPO)).66 Due to the diversity
of surfactants, various MSNs with unique configurations have been
created and received phenomenal attention from researchers. At
present, MSNs can be divided into M41S-series, SBA-series, Fudan
University (FDU)-series, and Korea Institute of Technology (KIT)-
series, etc, according to the mesoporous materials family. Table 1
summarizes some of the more well-studied types of MSNs. These
different families of mesoporous silicas are detailed as follows.

M41S-series. As mentioned above, M41S-series mesoporous mate-
rials were firstly prepared by the Mobil Research and Development
Corporation.45,46 The M41S series materials are typically character-
ized by a large amount of silanol groups (Si–OH) on both the
internal pores and surface, the presence of which makes them easier
to surface-functionalize for specific bioapplications. In addition, their
mesophase arrangement, pore size, particle morphology and
dimensions can be easily adjusted by changing the synthesis
conditions. The most typical materials of the M41S series are MCM-
41, MCM-48 and MCM-50,67,68 and those mesoporous materials can
be synthesized by controlling the ratio of surfactants to silica
source.69 As the well-investigated member of the nanostructured
mesoporous materials, MCM-41 possesses two-dimensional (2D)
hexagonal arrangements of unidirectional mesoporous pores, with
P6mm space group symmetry.45 Different from MCM-41, MCM-48
shows the cubic arrangement containing Ia3d space-group
symmetry, and it possesses a higher specific pore volume (up to
1.2 cm3 g−1), specific surface area (up to 1600 m2 g–1), and thermal
stability.70 Accordingly, the three-dimensional (3D) pore structure
and high porosity of MCM-48 makes it also advantageous in the
field of drug delivery.71–73 The lamellar phase-MCM-50, which is
separated by the surfactant layer to form a sandwich-like structure,
has a p2 space-group symmetry in the uncalcined form.74,75 When
the surfactant is removed at high temperature, the lamellar structure
of MCM-50 is unstable, which easily leads to the dense phases with
little structural arrangement and porosity.76

Fig. 2 Schematic representation of MCM-41 synthesis. MCM-41 is prepared via surfactant-templating sol-gel method. CTAB surfactant is
served as structure-directing agent, and TEOS is served as silica source. The mesoporous architectures of MCM-41 is determined by many
factors including surfactant concentration, pH, and reaction temperature. The image elements were created using Autodesk 3ds Max
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SBA-series. SBA-series mesoporous materials were first reported
by researchers from the University of California at Santa Barbara,47

which consists of a silica-based framework with highly ordered
mesoporous structure, tunable pore size, high specific surface
area, and thermal stability. There are many silica-based mesopor-
ous materials in the SBA family, including SBA-1, SBA-2, SBA-3,
SBA-6, SBA-7, SBA-8, SBA-11, SBA-12, SBA-14, SBA-15 and SBA-
16.47,63,77,78 However, of these materials, only SBA-15 and SBA-16
are widely used in biomedical applications, while other types of
MSNs such as SBA-1,79–81 SBA-2,82,83 SBA-3,84,85 SBA-11,86,87 SBA-
1288 are mainly applied in the field of adsorption and catalysis. By
using a triblock copolymer, Pluronic 123, as the structure-directing
agent under acidic condition, SBA-15 with 2D hexagonal structure
containing P6mm space-group symmetry can be synthesized.47,89

Compared with MCM-41, the thick pore walls (up to 9 nm) make
SBA-15 more stable thermally and mechanically. Especially, the
high specific surface area (~1000 m2g–1) and larger pore size
(4–30 nm) of SBA-15 make it an excellent cargo carrier to load

large molecule drugs in the biomedical field.90 Similarly, a cubic
(Im3̄m) cage-structured SBA-16 can be obtained by using Pluronic
F127 as the structure-directing agent, and the surface area and
stability of SBA-16 are comparable to that of SBA-15.78

FDU-series. FDU-series mesoporous silica is mainly represented by
FDU-1, FDU-2, FDU-5, and FDU-12, firstly reported by Zhao’s group
from Fudan University.91 All of these possess 3D mesoporous
architectures, well-ordered pore arrangements, amorphous pore
wall structures and excellent thermal and mechanical stability.62 The
first FDU-series MSN to be synthesized was FDU-1 in 2000, which
has an Im3̄m space-group symmetry and exhibits a similar
mesoporous structure to SBA-16.91 Unlike the SBA- and MCM-
series MSNs, the FDU series have few bioapplications, and there are
only a few reports of FDU-12 in the field of drug delivery.92,93 FDU-
12 presents 3D cubic mesostructure with Fm3̄m space-group
symmetry, and possesses a large cavity (10–12.3 nm), whose
entrance sizes can be regulated in the range of ≈ 4–9 nm.94

Fig. 3 Timeline of the development history related to MSNs. Some key achievements are highlighted. Synthesis of MCM-41, image reprinted
with permission.46 Copyright 1992, American Chemical Society. Synthesis of SBA-15, image reprinted with permission.47 Copyright 1998, The
American Association for the Advancement of Science. MCM-41 as drug carrier for loading ibuprofen, image reprinted with permission.48

Copyright 2001, American Chemical Society. MCM-41 as stimuli-responsive controlled release system, image reprinted with permission.51

Copyright 2003, American Chemical Society. MCM-41 as gene transfection reagent, image reprinted with permission.52 Copyright 2004,
American Chemical Society. MSNs as cell markers, image reprinted with permission.53 Copyright 2005, American Chemical Society.
Multifunctional MSNs-nanoplatform for imaging, targeting, and drug delivery, image reprinted with permission.54 Copyright 2008, American
Chemical Society. Investigation of three-stage degradation behavior of MSNs, image reprinted with permission.55 Copyright 2010, Elsevier.
Systematic toxicity study about MSNs on hemolytic activity, image reprinted with permission.56 Copyright 2010, American Chemical Society.
FDA-approved First-in-human clinical trial of silica-based hybrid NPs for cancer imaging started in 2011 (NCT01266096), image reprinted with
permission.58 Copyright 2014, The American Association for the Advancement of Science. Synthesis of dendritic MSNs with rapid
biodegradability, image reprinted with permission.59 Copyright 2014, American Chemical Society. Virucidal effect of silver nanocluster/silica
composite toward coronavirus SARS-CoV-2, image reprinted with permission.60 Copyright 2020, Elsevier
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KIT-series. The KIT-series was first reported by Ryoo’s group at
Korea Advanced Institute of Science and Technology (KAIST),95

and the typical materials include KIT-1, KIT-5 and KIT-6. KIT-1 has
disordered mesopores and amorphous pore walls, but its pore size
is uniform and tunable, and it is more thermally stable than MCM-
41.95 Meanwhile, KIT-5 and KIT-6 present well-ordered mesos-
tructure with the space-group symmetry of Fm3̄m and Ia3̄d,
respectively.96,97 Both the materials also have high specific surface
areas, uniform pore size distribution and good stability, making
them an excellent catalytic support. In addition, KIT-6 can be used
to construct drug delivery systems for antimicrobial therapy, anti-
tumor therapy and anti-blastocystosis therapy.98–100

Others. In addition to the aforementioned types of MSNs, other
research groups have also reported the synthesis of MSNs with
various mesoporous structures by changing the synthesis condi-
tions, such as Institute of Bioengineering and Nanotechnology
(IBN)-series,101 (AMS)-series,102 hexagonal mesoporous silica
(HMS)-series,103 and Michigan State University (MSU)-series.104

These materials show similar structural characteristics to the SBA-
and MCM-series MSNs, and thus have widespread applications in
the fields of separation, adsorption, and catalysis.105–109 Since they
have few studies in the biomedical field, we will not describe them
much here.

MSNS-BASED NANOCOMPOSITES
MSNs are a kind of relatively inert inorganic nanomaterials and are
less frequently used as functional components for bioimaging or
therapeutic purposes. However, as mentioned above, the features
of MSNs including the high specific surface area, tunable pore size,
controlled morphology and high mechanical/thermal stability, as
well as good biosafety and biodegradability, make them excellent
substrate materials for the construction of a wide range of
nanocomposites.110–114 Through the host-guest assembly process,
different kinds of inorganic functional components can be
introduced to give the nanocomposites new physicochemical
properties, such as magnetic-, light- and ultrasonic-response
properties.115–119 Depending on the assembly strategy, specific
nanostructured composites can be obtained, and there are five
main types of MSNs-based nanocomposites (Fig. 4a): (1) Type I:
Core-shell architectures,120 where the MSNs act as the inner core

and the functional components as the outer shell. The functional
nanoshells with specific sizes can be easily obtained by
manipulating MSNs hard template. (2) Type II: Small-sized
functional components loaded directly into the pores of MSNs.
The common functional components such as carbon quantum
dots and black phosphorus quantum dots are often encapsulated
into MSNs in this form. In this architecture, MSNs enable slow and
controlled release of small-sized functional components. (3) Type
III: The functional component is loaded directly onto the surface of
MSNs or on the periphery of the pore channel through covalent
bonding or electrostatic adsorption. A distinct advantage of the
Type III architecture is that it does not mask the active sites of the
functional components, ensuring their catalytic stability. (4) Type
IV: Core-shell architectures,116,121,122 but in which the MSNs act as
the outer shell and the functional component acts as the inner
core. Type IV architecture can avoid the aggregation of bare
inorganic functional components, and afford the nanocomposites
enhanced stability and decreased physiological toxicity. A
common example is the upconversion NPs@MSNs nanocompo-
sites, in which the MSNs are also often loaded with photo-
sensitizers to synergize with the upconversion NPs for PDT.122 (5)
Type V: Janus-type architectures. Janus-type nanocomposites have
the biphasic geometries with distinct compositions or anisotropic
structures, and the physicochemical properties between the
individual components are largely unaffected,123 in contrast to
the aforementioned Type I–IV nanocomposites.
According to the elements that act as the main components in

inorganic functional nanomaterials, the currently existing types of
MSNs-based nanocomposites for biomedical applications are
summarized as follows.

Noble metal NPs/MSNs nanocomposites
As an important branch in the field of inorganic nanomedicines,
noble metal NPs have attracted widespread interest in the
biomedical field from the very beginning. Noble metal NPs have
made promising progress in areas including bioimaging,124,125

photothermal tumor ablation,126–128 PDT,20,129,130 radiotherapy
sensitization,131,132 and recently developed nanozyme-based
catalytic therapy,133–135 due to their tunable optical properties,
excellent catalytic activity and good biocompatibility. Among
those noble metal NPs, ruthenium (Ru),136 palladium (Pd),137,138

silver (Ag),139,140 platinum (Pt),141,142 and gold (Au)143,144 NPs have

Table 1. List of some representative types of MSNs

Types Name Syngony Space group Surfactant Silica source Synthesis condition Ref.

MCM-series MCM-41 2D hexagonal p6mm CTAB TEOS Basic condition 45,46

MCM-48 3D cubic Ia3̄d CTAB TEOS Basic condition 75

MCM-50 Lamellar p2 CTAB TEOS Basic condition 75

SBA-series SBA-1 3D cubic Pm3̄n C16TMA+(trimethylammonium) TEOS Acidic condition 506

SBA-2 3D hexagonal P63/mmc Gemini surfactant (Cn-s-1) TEOS Acidic condition 507

SBA-3 2D hexagonal p6m C16TMA+(trimethylammonium) TEOS Acidic condition 75

SBA-11 3D cubic Pm3̄m Pluronic 123 (C16EO10) TEOS Acidic condition 78

SBA-12 3D hexagonal P63/mmc Pluronic 123 (C18EO10) TEOS Acidic condition 78

SBA-15 2D hexagonal P6mm Pluronic 123 (EO20PO70EO20) TEOS Acidic condition 47

SBA-16 3D cubic cages Im3̄m F127 (EO106PO70EO106) TEOS Acidic condition 78

FDU-series FDU-1 3D cubic cages Im3̄m B50-6600 (EO39BO47EO39) TEOS Acidic condition 91

FDU-2 3D cubic Fd3̄m Cm-2-3-1 TEOS Basic condition 508

FDU-5 3D bicontinuous cubic Ia3̄d Pluronic 123 (EO20PO70EO20) TEOS Acidic condition 509

FDU-12 3D cubic Fm3̄m F127 (EO106PO70EO106) TEOS Acidic condition 94

KIT-series KIT-1 3D disordered mesostructure / CTAC TEOS Basic condition 95

KIT-5 3D cage-like Fm3̄m F127 (EO106PO70EO106) TEOS Acidic condition 96

KIT-6 3D bicontinuous cubic Ia3̄d Pluronic 123 (EO20PO70EO20) TEOS Acidic condition 97
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been reported to be loaded into MSNs to form various noble
metal NPs/MSNs nanocomposites for biomedical applications
(Fig. 4b). Of them, Au and Ag NPs are the most studied because
of their relatively well-established synthetic routes, relatively high
earthly reserves and good safety profiles.145

During the applications of noble metal NPs/MSNs nanocompo-
sites, the corresponding noble metal elements can be properly
selected and the aforementioned nanostructured architectures
(Types I–V) or some new architectures can be rationally designed,
according to the performance requirements and various ther-
apeutic scenarios. For example, Au NPs are a promising
photothermal agent due to their unique localized surface plasmon
resonance (LSPR), but the bare Au NPs are not sufficiently stable
during light irradiation, and suffer from poor colloidal stability
under physiological conditions. To address this issue, a silica-
protection strategy was developed, as reported by Duan et al.,

they coated mesoporous silica shell onto the surface of gold
nanorods, and meanwhile additional gold nanoclusters were also
incorporated on the surface of the mesoporous silica shell. The
resulting core-shelled Au NP/MSNs nanocomposites (Type I
architecture) achieved a photothermal conversion efficiency of
77.6%, significantly higher than that of bare gold nanorods.146 To
overcome the cancer multidrug resistance (MDR) and enhance the
penetration efficiency of nanomedicines, Kankala et al. designed a
zinc metal species modified MSNs nanocarrier (Zn-MSNs), which
could effectively disperse ultra-small Pt NPs, and the silica
framework structure substantially promoted the loading efficiency
of doxorubicin (DOX) (Type II architecture). During treatment, the
ultra-small Pt NPs were able to penetrate deep into the tumor
under the stimulation of acidic condition, and exhibited the
peroxidase-like activity, decomposing hydrogen peroxide (H2O2)
into toxic hydroxyl radicals (•OH) to kill tumor cells. Importantly,

Fig. 4 MSNs-based nanocomposites developed in the biomedical field. a Various nanostructured MSNs-based nanocomposites. Depending
on the assembly process, the functional nanostructures can be introduced as the shell (Type I) or core (Type IV), can be loaded in the pore
channels (Type II) or surface (Type III), and can form Janus-type hierarchical structure (Type V). b Typical elements used for constructing
various types of MSNs-based nanocomposites. There are four main categories of nanocomposites based on the elemental type, including
noble metal NPs/MSNs, metal compound NPs/MSNs, upconversion NPs/MSNs, and metal-free NPs/MSNs nanocomposites. The image
elements were created using Autodesk 3ds Max
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these consequences of the synergistic ablation of MDR cells by
ultra-small Pt NPs were favorable only in the presence of the free
radical generator, DOX.147 In addition, to design nanocomposites
with high intelligence, e.g., in response to environmental stimuli or
with self-propelling characteristic, the nanocomposites, asym-
metric Janus-type nanostructures, have been created. Janus Ag/
MSNs with SPR effect for pH-responsive drug delivery and SERS
imaging,139 Janus Au/MSNs with the radiation absorption and SPR
properties for CT and PA imaging of tumor,148,149 and Janus Pt/
MSNs as an ultrafast self-propelled motion for smart drug
delivery,150 have been reported successively.

Metal compound NPs/MSNs nanocomposites
There is a wide variety of nanocomposites formed by metal
compound NPs with MSNs, and the available noble metal-free
elements include 13 elements, such as calcium (Ca),151,152 titanium
(Ti),153,154 vanadium (V),155,156 manganese (Mn),157,158 iron
(Fe),159,160 cobalt (Co),161 copper (Cu),162,163 zinc (Zn),164,165

Niobium (Nb),166,167 molybdenum (Mo),168,169 cadmium
(Cd),51,170 iridium (Ir),171 and bismuth (Bi)172,173 (Fig. 4b). These
metal elements can form metal oxide, sulfide, nitride, carbide and
selenide, which exhibit different physicochemical properties and
promising biomedical applications by combining with
MSNs.174–177 Next we will take some typical examples as
illustrations.
Among various metal oxide NPs/MSNs nanocomposites, the

Fe3O4 NPs with magnetic targeting, magnetic hyperthermia,
enzyme-like activity or Fenton reaction activity are the most
studied functional nanostructures. Importantly, MSNs can also play
a different role in the applications of these nanocomposites. For
instance, MSNs that confine two different enzymes or enzyme
mimics within the pore channel can be used as a nanoreactor for
biomimetic cascade catalysis.178,179 Gao et al. encapsulated
ultrasmall Au and Fe3O4 NPs into the pores of dendritic MSNs
for the construction of a tumor microenvironment-responsive
nanocatalytic reactor. In the spatially isolated Au-based and Fe3O4-
based reaction chamber, Au NPs exhibited unique glucose
oxidase-like activity, catalyzing the conversion of glucose to
gluconic acid and H2O2, while the generated H2O2 was able to be
utilized by the Fe3O4-based reaction chamber to boost the
production of reactive oxygen species (ROS) by exhibiting
peroxidase-like activity.179 In addition, MSNs are an ideal
nanotherapeutic platform that can achieve synergistic treatment
of Fe3O4-mediated catalytic therapy with other therapeutic
modalities including PTT, PDT, and chemotherapy, by loading
other therapeutic agents. As reported by Li et al., they utilized
organo-mesoporous silica to load the ultrasmall Fe3O4 NPs and
the photothermal agent Indocyanine Green (ICG). The photo-
thermal effect caused by ICG could promote the Fenton reaction
activity of Fe3O4 NPs, thus achieving amplified intracellular
oxidative stress.180 Besides, Sun et al. reported the construction
of core-shelled Fe3O4@MSNs that encapsulated DOX and 3-amino-
1,2,4-triazole (AT). The MSNs-based therapeutic nanoplatform can
realize enhanced anti-tumor efficacy by releasing chemothera-
peutic drugs for the enhanced catalytic generation of ROS.181

For metal sulfide NPs/MSNs nanocomposites, the small-sized
CdS NPs as a gatekeeper is the first example of MSNs-based
therapeutic system for controlled drug delivery, reported in
2003.51 Other metal sulfides such as copper sulfide (CuS),
molybdenum disulfide (MoS2) and bismuth sulfide (Bi2S3) exhibit
high NIR absorption coefficients in the NIR region due to their
plasmon resonance effect or electron-hole generation and
relaxation mechanism,182–186 and thus those metal sulfides NPs
can serve as potential photothermal agents. For instance, hollow
MSNs functionalized with chitosan were synthesized, and then
loaded with CuS nanodots. The CuS nanodots could act as a
gatekeeper to seal the surface pores of MSNs, leading to the
controllable release of DOX. The as-resulted CuS/MSNs-based

therapeutic nanoplatform, with the photothermal conversion
efficiency being 36.4%, dramatically extended the survival rate
of tumor-bearing mice by the photothermal-enhanced synergistic
therapy.162 Similarly, in another study, the MoS2 nanosheets with
excellent photothermal conversion capability were also used as a
capping agent to block MSNs to realize the drug release.
Experimental results demonstrated that the MoS2/MSNs nano-
composite has the capability of pH-dependent and photothermal-
triggered DOX release, thus achieving the targeted tumor killing
by the combination of chemotherapy and PTT.187

In addition to the aforementioned metal sulfide NPs, the
titanium nitride (TiN) NPs are also considered as a promising
photothermal agent due to their high plasmonic absorption in the
NIR region.188 It is worth noting that the silica coating may be
beneficial to boost the photothermal conversion performance of
TiN NPs.153,189 Gschwend et al. found that the plasmonic
performance of silica-coated TiN NPs was much higher than that
of bare TiN NPs, due to the reduced plasmonic coupling effects.
The optimized nanocomposite showed a photothermal conver-
sion efficiency of up to 58.5%, much higher than that of Au
nanoshells that were used in the clinical trials and other
commonly used inorganic photothermal agents.153 Besides,
Chen’s group has reported the synthesis of a series of MSNs-
coated transition metal carbide nanostructures, such as Nb2C and
Ti3C2 with different surface modifications.166,167,175,190,191 These
nanocomposites were demonstrated to show excellent photo-
thermal properties, and realized the efficient combination of
multiple therapeutic modalities through MSNs-mediated targeted
drug delivery, thus providing some new solutions for the disease
diagnosis and treatment.

Upconversion NPs/MSNs nanocomposites
Upconversion NPs are a class of lanthanide ions-doped inorganic
nanomaterials that can absorb low energy light, and then emit
high energy light (visible or ultraviolet light) through the anti-
Stokes effect.192–194 The rare earth elements are the main
components used to prepare upconversion NPs (Fig. 4b).195 The
unique optical property of upconversion NPs, i.e., converting NIR
light with high biological tissue penetration into the visible or
ultraviolet light, can be used for the photosensitiser excitation in
PDT or serve as the contrast agents in bioimaging.196–201 In
general, the upconversion NPs consist of three main parts, namely
the activator, sensitizer and host.202 The common activators
include trivalent ions such as Pr3+, Nd3+, Er3+, and Tm3+. These
ions have abundant ladder-like energy levels and their spectra are
less affected by the host.203 Yb3+ is the most commonly used and
effective sensitizer, with a large absorption cross-section at about
980 nm and a good match with the absorption spectra of the
activator,204 which can significantly promote the energy transfer
efficiency between the activator and Yb3+ sensitizer.205–208

The upconversion NPs are characterized by large anti-Stokes
shifts, narrow emission bandwidths, and minimal spectral overlap
with tissue autofluorescence.209,210 To modify the surface hydro-
philicity of upconversion NPs to provide stable aqueous colloidal
dispersions, and obtain the ability to conjugate biomolecules and
other ligands on the upconversion NPs, a common approach for
researchers is to coat the upconversion NPs surface with a layer of
MSNs.211,212 Such constructed upconversion NPs/MSNs
nanocomposites-based platform offers a wide range of applica-
tions of the upconversion NPs in the biomedical field.212,213 In
bioimaging applications, the coating of MSNs is able to not only
reduce particle aggregation and enhance particle stability, but
also modulate the contrast properties of upconversion NPs.214,215

In Gd3+-doped core-shelled upconversion NPs/MSNs nanocom-
posite, the outer MSNs with flexible and adjustable shell layer
thickness and porosity can regulate the coordination number,
residence time and rotational correlation time of water molecules,
thus affecting the relaxation mechanism and magnetic resonance
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sensitivity of upconversion NPs.215 In the construction of
therapeutic systems, the drug delivery capability of MSNs can be
used to achieve NIR-mediated PDT, chemotherapy or multimodal
synergistic therapy. For example, NaYF4:Yb/Er, an upconversion
nanomaterial that produces both green and red emission under
NIR light excitation, enables dual photosensitisers activation at a
single NIR light excitation by encapsulating both merocyanine 540
(MC540) and zinc (II) phthalocyanine (ZnPc) photosensitisers into
the surface layer of MSNs, thereby achieving enhanced 1O2

production.216 In another study, to address the clinical aspects of
therapeutic agents in thrombolytic therapy, a NIR-mediated
upconversion NPs/MSNs therapeutic drug delivery platform was
constructed. The upconversion NPs emit UV/blue light upon
excitation by 808 nm NIR light, which could fuel azobenzene to
propel the release of urokinase (UK), as well as induce the
responsive release of NO, resulting in effective synergistic
thrombolytic and anticoagulation therapy.217

Metal-free NPs/MSNs nanocomposites
Among the non-metallic elements, two elements, carbon and
phosphorus, can be used to construct carbon-based nanomater-
ials (e.g., graphene,218–220 carbon dots,221–223 carbon nano-
tubes224–226 and amorphous carbon227–229) and black
phosphorus (BP),230–232 respectively, resulting in metal-free NPs/
MSNs nanocomposites (Fig. 4b). Compared to metal- or metal
compounds-based nanomaterials, metal-free NPs can largely
reduce potential metal ion-induced toxic effects.233,234 The
delivery of these functional metal-free NPs via MSNs often also
allows for desired therapeutic effects comparable to or even
higher than those of metal- or metal compound-based
nanomaterials.
For carbon-based nanomaterials, they can serve as photother-

mal agents for photothermal antibacterial and photothermal
tumor ablation due to their broad-spectrum light-absorption
properties.235–238 However, the disadvantages such as poor
solubility and negative material-biological interface interactions
limit their further applications.239,240 To address this issue, MSNs-
coated carbon-based nanomaterials have been created. Such-
constructed nanocomposites not only improve the surface inter-
face properties of carbon-based materials, but also combine the
advantages of two different drug carriers, including the enhanced
water solubility and dispersibility, easier surface functionalization
properties and higher drug loading and delivery perfor-
mance.219,241 Another problematic aspect of carbon-based mate-
rials is that their in vivo biodegradability is difficult to manipulate,
which may bring some potential long-term physiological toxicity
issues.242 In tumor therapy, although NPs smaller than 5.5 nm can
usually be cleared from the body by the renal metabolic system,
particle sizes too small to be enriched to tumor sites by the
enhanced permeability and retention (EPR) effect when perform-
ing administration intravenously.243–245 For this reason, research-
ers can use the MSNs with excellent biodegradable properties to
address these issues of carbon-based nanomaterials.229 A recent
study showed that by coating a carbon layer on the surface of
dendritic degradable MSNs, accelerated degradation of MSNs and
collapse of the surface carbon layer could be observed with NIR
irradiation. This carbon-silica nanocomposite was rapidly cleared
from the body after completion of a synergistic PTT and PDT.229

BP is a 2D semiconductor nanomaterial, commonly found as
quantum dots and nanosheets,246–248 whose excellent NIR
photocatalytic activity and broad-spectrum light-absorption give
it photodynamic effect and photothermal conversion capability,
respectively.249,250 Since BP nanosheets have a large number of
lone-pair electrons in their own structure, which are difficult to
stabilize in the presence of water and oxygen, BP nanosheets
exhibit rapid biodegradability under physiological conditions and
can be degraded to less toxic phosphate species.232,251 In
addition, BP nanosheets tend to exhibit a hydrophobic surface,

which is poorly dispersed and not easily functionalized under
physiological conditions.252,253 However, the formation of BP/
MSNs nanocomposites, on the one hand, reduces the rate of
degradation of BP and prevents its premature clearance through
renal excretion, on the other hand, have a more stable drug
loading capacity and an effective modification potential.230

Besides, MSNs also possess the ability to regulate the physico-
chemical properties of BP. For example, the MSNs encapsulated
on the surface of BP nanosheets could improve the photolumi-
nescence lifetime of BP to some extent by affecting the local
microenvironment, resulting in an extended photoluminescence
lifetime, significantly higher than that of pure BP NPs.254

SURFACE FUNCTIONALIZATION
MSNs have very competitive applications in various areas of
biomedicine, to a large extent due to their hydrophilic surface
containing a large proportion of Si–OH groups, which makes them
susceptible to various functionalization modifications on the
external or internal porous surface.255,256 Surface functionalization
to adjust the physicochemical properties of MSNs is expected to
overcome some of the shortcomings of MSNs, or to make them
smarter in their applications, adapting them to changes in
response to different application scenarios and external sti-
muli.257,258 For example, while MSNs can improve the drug
stability and delivery efficiency, it is still of interest to ensure that
the drug is protected from enzymatic degradation and to avoid
premature release.2,259 In this case, attempts have been made to
address this issue by coating the MSNs surface with polymers and
lipid bilayers, or by introducing environmentally responsive
factors.260–264 Surface-functionalized modifications of MSNs not
only offer unique advantages in terms of improved biosafety, long
circulation and targeting ability, but can also be used to construct
intelligent stimuli-responsive drug delivery systems.265–269 Once
they reach the lesion sites, the spatial and temporal controlled
release of drugs in response to stimuli such as pH,270,271

temperature,272,273 light274–276 and ultrasound277,278 can be
achieved. We next will describe the purpose of surface
functionalization of MSNs.

Improving the biosafety of MSNs
Although the biosafety of MSNs has been significantly improved
compared to other inorganic NPs, their toxicity mechanism study
cannot be ignored. In general, the toxicity of silica NPs is highly
related to their size, morphology, surface charge, crystallinity and
dose.56,279–282 For example, it was shown that MSNs with positive
surface charge were able to induce stronger ROS-mediated toxic
effects than MSNs with other charges.283–285 In addition, Napierska
et al. showed that MSNs with particle size larger than 100 nm
exhibited low cytotoxicity, while those smaller than 50 nm could
induce obvious cell death.286 The toxicity of MSNs to normal cells
can be attributed to two aspects: (1) Elevates intracellular
oxidative stress by inducing the production of toxic ROS and
decreases the expression level of glutathione, which has a role in
regulating redox homeostasis, leading to lipid peroxidation and
subsequent cell death.287,288 (2) The unbonded Si–OH groups on
the surface of MSNs interact electrostatically with phospholipids
on the cell membrane surface, leading to the damage of cell
membrane.284,289 In addition, bare MSNs are less stable under the
physiological ionic strength, are prone to aggregation,290 and are
rapidly removed from the circulation by nonspecific binding and
uptake by the immune system. Currently, the most prominent
mechanisms of toxicity for silica NPs include autophagy, oxidative
stress, and pro-inflammatory response (Fig. 5).291 For instance,
studies have pointed out that environmental exposure to silica
NPs can cause the ROS-mediated autophagy dysfunction and cell
apoptosis through MAPK/Bcl-2 and PI3K/Akt/mTOR signaling
pathways.292 The NLRP3- inflammasome-activation pathway
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underlies the asbestosis and silicosis.293 The NF-κB signaling
pathway, activated by silica NPs in many types of cells, leads to the
upregulation of inflammatory gene and autophagy-related cell
death.291,294

Considering these factors, substantial efforts have been carried
out to go for specific surface functionalization modifications of
MSNs to decrease their toxicity such as neurotoxicity, immuno-
toxicity, and systemic toxicity (Fig. 6a). A common approach is to
integrate the biocompatible polymers with MSNs. Polymers
including polyethylene glycol (PEG), polyethylenimine (PEI) and
chitosan have been demonstrated to be excellent surface coating
agents for MSNs, which can significantly improve the in vivo
circulation time, reduce cytotoxicity and hemolytic effect of
MSNs.295–298 In terms of reducing protein adsorption and
improving the colloidal stability of the particles, PEG is currently
considered as a very excellent polymer.298–300 Hao et al. system-
atically investigated the hemolytic activity and protein adsorption
behavior of bare MSNs, MSNs modified with chitosan (MSNs-CS)
and MSNs co-modified with chitosan and PEG (MSNs-CS-PEG).301

Results showed that the hemolysis percentage and protein
adsorption of MSNs-CS-PEG were 2% and 3.2%, respectively,
which were remarkably lower than those of bare MSNs (30.9% and
14.5%, respectively), and they also exhibited lower toxicity toward
MCF-7 cells.301 This was similarly demonstrated in a study by He
et al.302 In addition to polymers, liposomes have the advantages of
high biocompatibility, low immunogenicity and long circulation,
thereby they can also be used to improve the biosafety of
MSNs.303–305 MSNs can be encapsulated by lipid bilayers or
multilayers, and these liposomes act as protective shells to reduce
toxicity by masking the reactive groups on the surface of MSNs.
Compared to bare MSNs, liposome-encapsulated MSNs exhibit
superior particle dispersion and lower non-specific binding.306,307

Moreover, they lead to the higher bioavailability and the in vivo
half-life can be prolonged more than 10-fold, reducing the
distribution of MSNs in reticuloendothelial system (RES)-related
organs.306 Protein coating is also a way to improve the
biocompatibility and particle stability of MSNs.308,309 Negatively
charged bull serum albumin (BSA), which is highly physiologically
stable during blood circulation, can tightly bind to the amino
groups on the MSNs surface, preventing the premature release of

drug loaded on the MSNs.309 Besides, given that the positively
charged MSNs show significant toxicity effect, some researchers
have devoted to regulating the surface properties of MSNs by
direct group modification. The surface potential of MSNs can be
regulated by various functionalization via carboxyl (–COOH),
phenyl (–Ph), and methyl phosphonate (–PO3

−) groups with
negative and neutral zeta potentials.310,311

Increasing the targeting ability of MSNs to the lesion site
The pathway of administration of MSN during treatment includes
oral, inhalation, intravenous, intramuscular and intraperitoneal
injections. Regardless of the administration method, it is expected
that the MSNs will be maximally enriched at the lesion site.
However, in those delivery systems, MSNs-based formulations
tend to distribute throughout the body.312,313 Some studies have
shown that MSNs accumulate mainly in the liver and
spleen,312,314,315 and that the high concentration of MSNs at
these normal organ tissues not only severely reduces the
therapeutic efficacy of MSNs-based formulations, but also induces
some potentially toxic effects on the RES. Therefore, enhancing
the active targeting ability of MSNs has significant implications for
facilitating preclinical studies of MSNs-based therapeutic system.
Targeted delivery strategies are generally divided into two

categories: passive targeting and active targeting. Passive targeting
relies on the pathological characteristics of the disease micro-
environment and the nature of the drug delivery system itself,
which allows the drug to effectively accumulate at the lesion site of
disease. The most well-known passive targeting is the EPR effect of
tumor, which refers to the phenomenon that some particles with
specific size (20–200 nm) penetrate more easily into tumor tissue
and remain there for a long time when compared to normal
tissue.316,317 Therefore, controlling the size of MSNs to a suitable
range will facilitate their enrichment in the tumor sites. However, it
has also been pointed out that the passive targeting strategy
relying on the EPR effect can achieve only 0.7% of the injected NPs
enrichment in solid tumors,318 which will not be beneficial for the
clinical translation of nanotechnology. In contrast, active targeting
relies on the active recognition between the molecules on the NPs
surface and the specific molecules or proteins in the disease
microenvironment, which is also referred to as ligand-receptor

Fig. 5 The main mechanism of toxicity mediated by silica NPs. The prominent mechanisms of toxicity for silica NPs include autophagy,
oxidative stress, and pro-inflammatory response
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specific binding.319 The active targeting shows a higher drug
delivery efficiency compared to passive targeting.320 Targeted
ligands, such as proteins, antibodies, peptides, nucleic acids and
chemical small molecules, can be modified on the surface of MSNs,
and the modified MSNs are capable of selectively aggregating at
the lesion site based on the strong affinity between the targeted
ligands and the specific receptors overexpressed in the disease
microenvironment.321–324 For example, compared to mature
vascular endothelial cells, tumor neovascular endothelial cells are
highly expressed in a variety of proteins, including integrins,
transmembrane glycoproteins and aminopeptidase N. Molecules
that recognize these highly expressed proteins can be used for
neovascular-based targeted drug delivery. A typical example is that
arginylglycylaspartic acid (RGD)-modified MSNs can selectively
bind integrin ανβ3 receptor and thus be applied to target tumor
neovascularization.325

In addition to targeted ligand, cell membrane-based biomimetic
strategy is also a current and very feasible approach to improve
the targeting ability of MSNs (Fig. 6b). The cell membrane

biomimetic technique dates back to 2011, when Zhang’s group
used intact red blood cell membranes to encapsulate NPs via a
top-down strategy. Compared with unencapsulated NPs, NPs
encapsulated by red blood cell membranes have a longer half-life
in mice and remain in circulation for up to 72 h due to the
immune escape function possessed by the cell membrane.326 The
preparation process is generally divided into three steps:
membrane extraction, preparation of inner core NPs, and fusion
of membrane and NPs. The cell membrane-coated NPs combine
the advantages of outer cells and inner core NPs, and achieve
long-term in vivo circulation and targeted delivery while greatly
improving biocompatibility.327 The therapeutic potential of
various types of cell membranes-engineered MSNs-based drug
delivery systems has been demonstrated in a variety of disease
models. For example, platelet membrane-coated MSNs were used
for early atherosclerosis therapy by mimicking the immune escape
ability of platelet.328 Cancer cell membrane-coated MSNs were
specifically enriched in tumor sites by homologous targeting
properties, and activated the ferroptosis-related immunogenic cell

Fig. 6 Surface-functionalized modifications of MSNs for different application purposes. a Coating MSNs with polymer, protein, or liposome to
improve the biosafety of MSNs, and avoid the potential toxicity effect induced by bare MSNs. b Surface modification of MSNs through cell
membrane-based biomimetic strategy to improve the target ability of MSNs. c Surface modification of MSNs using cap agents to impart the
stimulus-responsive properties to MSNs. The image elements were created using Autodesk 3ds Max
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death on gastric cancer.329 Bacterial outer membrane-coated
MSNs are used for targeted delivery of the antibiotic rifampicin to
achieve in vivo resistance to gram-negative bacterial infections.330

Despite the limitations of current research related to cell
membrane biomimetic strategy, these examples invariably
demonstrate the effectiveness of cell membrane-based active
targeting strategy in improving the targeting ability and
therapeutic efficacy of MSNs.

Controlling the drug delivery of MSNs
MSNs are gradually being developed as promising drug delivery
carriers due to their excellent biocompatibility, biodegradability,
and highly ordered pore structure. Due to the great flexibility in
tuning the surface properties of MSNs, specific surface functiona-
lization modification of MSNs can achieve precise modulation of
drug delivery behavior, thus to meet the application requirements.
Currently, the most researched is the construction of stimuli-
responsive MSNs-based drug delivery system (Fig. 6c), i.e., when
MSNs reach the lesion site, the release of drugs is controllably
stimulated by specific internal or external factors, thus achieving
the improved drug utilization and avoiding drug leakage at non-
lesion sites.259,272,331 The most core step in this process is
connecting some caps with stimulus-responsive properties onto
the MSNs surface, which can be called gatekeepers,119,158

nanovalves,332,333 or others. Once the therapeutic drug is filled
into the mesopore of MSNs, the pore entrances are blocked by the
caps to prevent the drug from diffusing out. Under normal
physiological conditions, the caps always keep the pores in a
closed state, but when reaching to the lesion, the caps are
separated under the stimulation of certain factors, which in turn
induces targeted on-demand release of drugs. These caps can be
polymers,334 metal/metal compound NPs,170,335 biomolecules,336

etc. While exogenous stimuli such as light, ultrasound, magnetic
field and electric field, endogenous stimuli such as temperature,
pH, redox agents, and enzymes, can activate the caps. Several
examples about the surface modification of MSNs and the
corresponding stimuli-responsive strategies are briefly
described here.
The pH in normal tissues under physiological conditions is

generally neutral, while in solid tumors, the tumor microenviron-
ment is generally slightly acidic due to the exuberant metabolism
of tumor cells that leads to the production of large amounts of
lactic acid.337,338 Therefore, the construction of pH-responsive
MSNs nanocarriers can achieve targeted drug release and tumor
therapy. Wagner et al. functionalized the external surface of MSNs
by carboxylic groups, followed by attaching a stimuli-responsive
capping system, that consists of a pH-responsive acetal linker and
a biotin–avidin gatekeeper.339 After uptaken by lysosome in tumor
environment, the biotin–avidin caps were separated out and the
immune-stimulant R848 (resiquimod) could be released, thus
achieving enhanced targeted delivery of immune modulator to
antigen-presenting cells.339 Besides, in the construction of a light-
responsive drug delivery system, Zhao et al. grafted the light-
responsive azobenzene group on the surface of biodegradable
MSNs, and β-cyclodextrin-modified polymer as the cap agent. In
vitro experiments verified that the visible light triggered the
isomerization of azobenzene, followed by the dissociation of CD-
PMPC from MSNs surface and subsequent drug release. The
excellent anti-inflammatory effect of MSNs-based platform
demonstrated their potential in the treatment of osteoarthritis.274

Regarding enzyme-responsive drug delivery system, some
researchers reported the synthesis of MSNs attached with chitosan
gatekeeper via azo bonds. The azo bonds could be cleaved by the
colon-specific enzyme, leading to the separation of chitosan
gatekeeper and the release of DOX.334 In all, these functionalized
MSNs-based drug delivery systems that specifically respond
multiple stimulus signals offer a precisely localized and targeted
way for disease treatments.

BIOMEDICAL APPLICATIONS
MSNs are chemically and biologically inert nanomaterials com-
pared to other inorganic nanomaterials. Only a few studies have
been reported on the biomedical applications based on the
inherent activities of MSNs. For example, it has been pointed out
that the MSNs containing rich pore structure possess ultrasound-
induced cavitation effect, and they exhibit sonodynamic activity
by moderately modulating the surface wettability for thrombolysis
therapy.340 In addition, Si ions have been demonstrated to show
some natural bioactivity in tissue engineering, and the Si ions
released from the degradation of MSNs can activate the
expression of bone-related genes or proteins, stimulate the
cartilage differentiation, and thus play an important role in the
formation process of bone and cartilage.341 However, given their
relatively low outcome efficiency, the current research on MSNs in
the biomedical field is more focused on acting as matrix to form
nanocomposites, or as nanocarriers to deliver various cargos. In
this part, the various types of MSNs-based nanomaterials in
biosensing, bioimaging, targeted disease therapy and tissue
engineering will be summarized (Table 2).

Biosensing
Biosensing technology provides a simple, convenient and fast
method for basic medical research and clinical diagnosis. In MSNs-
based biosensing applications, the functionalized MSNs matrix
and the receptor or indicator embedded in the MSNs together
consist of a biosensor.342 The principle of sensing is to detect the
changes in optical or electrical signal of some specific analytes. Of
these, the optical signal is easier to detect and more sensitive. The
detection of different kinds of biological targets (glucose,
glutathione, amino acids, proteins, bacteria, viruses, etc.) can be
achieved by various optical detection means,343–348 such as
naked-eye colorimetric detection, UV-Vis spectroscopy, fluores-
cence spectroscopy and Raman spectroscopy based on the MSNs-
based nanosensors. MSNs have multiple roles in biosensing
applications. On the one hand, MSNs matrix has the capability to
enhance the physiological stability of the receptor or indicator,
resulting in increased sensitivity and detection rate. On the other
hand, as the location where the reaction takes place, MSNs
provide some reaction chambers or facilitate interfacial interac-
tions through ordered mesoporous structures.342 Researches on
MSNs-based nanosensors have been ongoing for the past two
decades. In a recent study, researchers achieved the bacterial
quantitative determination via aptamer-gated aminated MSNs.346

During the construction of biosensor, the 4-aminothiophenol (4-
ATP) signal molecules were firstly encapsulated into the pores of
MSNs, and then the negatively charged aptamers were connected
to the pore entrance. After adding the Staphylococcus aureus, the
aptamers gatekeepers were specially separated and 4-ATP
molecules were released, which could be detected by Raman
spectroscopy for analyzing the concentration of Staphylococcus
aureus.346 In another study on aptamer-gated MSNs nanosensors,
Tabrizi et al. encapsulated the methylene blue into the pores of
MSNs, and developed an electrochemical biosensor for detecting
the receptor-binding domain of SARS-CoV-2. The electrochemical
signal increased with decreasing methylene blue concentration,
and the biosensor thus constructed exhibited good stability,
sensitivity and selectivity, providing a new tool for the early
detection of SARS-CoV-2.349

Bioimaging
Bioimaging is a powerful tool that can be used for the diagnosis of
various diseases, and the NPs-based contrast agents have become
the research frontier in the field of bioimaging.350–352 The
integration of contrast agents onto MSNs can address the
problems of insufficient stability and poor water solubility of
contrast agents, as well as the targeting ligand modification on
the surface of MSNs can enhance the enrichment of contrast
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Multifunctional mesoporous silica nanoparticles for biomedical applications
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agents at selected sites.353,354 In magnetic resonance imaging
(MRI), the mesoporous structure of MSNs allows the free access of
water molecules in the MSNs matrix, thus enhancing the contrast
performance of Fe/Mn/Gd-involved MSNs-based nanoprobes.353

In fluorescence imaging (FL), the protective effect of MSNs can
prevent the dye self-aggregation or self-quenching, improves the
photobleaching resistance property and enhances quantum
yields.354 Positron emission tomography (PET) imaging is a
noninvasive imaging modality and often applied in disease
diagnosis. The molecular probes used in PET imaging need to
be labeled with the radioisotopes, e.g., 64Cu and 18F. The
introduction of MSNs matrix offers great potential in extending
the half-life of radioisotopes.355–357 In photoacoustic (PA) imaging,
the PA contrast agents such as polydopamine (PDA) NPs,358

Cy754,359 and ICG360 have also been demonstrated to be
protected by MSNs matrix, thus to obtain desirable PA signals.
In addition to those listed above, MSNs have been widely applied
in ultrasound imaging,361,362 X-ray computed tomography (CT)
imaging,168,363 or multimodality imaging.364–366

Targeted disease therapy
The unique properties of MSNs make it highly superior for the
construction of multifunctional nanocomposites and drug delivery
system. Different therapeutic nanoplatforms obtained through the
careful design of MSNs have shown promising potential in the
field of targeted disease therapy. Current applications of MSNs
include tumor therapy,367–369 anti-infection therapy (bacteria and
virus),370–373 anti-oxidant/anti-inflammatory therapy (Alzheimer’s
disease, acute kidney injury, etc.),374–376 and metabolic diseases
treatment (diabetes, osteoporosis, fatty liver, etc)377–380 (Fig. 7). In
general, the targeted therapeutic characteristics of MSNs can be
reflected in the following aspects: (1) Loading chemotherapy
drugs or other drugs with toxic side effects, so that they can be
released in a controlled manner by MSNs at the targeted sites to

prevent their premature release. (2) Selective enrichment at the
lesion sites through passive targeting or active targeting, resulting
in the higher therapeutic efficacy. (3) Use the MSNs matrix to
develop a non-invasive, spatial and temporal controllable targeted
therapeutic strategy, thus to overcome the limitations and defects
of conventional clinical treatment modalities. To date, the
emerging targeted therapeutic modalities developed based on
MSNs include dynamic therapy such as photodynamic, sonody-
namic and chemodynamic therapies, thermal ablation therapy
such as photothermal therapy and magnetic thermotherapy,
enzyme-like catalytic therapy, immunotherapy, gene therapy, and
others. Meanwhile, the integration of various therapeutic mod-
alities on a single MSNs is expected to enhance the therapeutic
efficacy synergistically (Fig. 7). In this part, we will discuss MSNs-
based therapeutic modalities.

Chemotherapy and radiotherapy. Chemotherapy and radiother-
apy are routine clinical treatments. In chemotherapy, numerous
chemotherapeutic agents such as doxorubicin, camptothecin and
cisplatin have proven to be very effective in the treatment of
malignant tumors, but they suffer from low solubility in the
aqueous systems, poor physiological stability, and hard intrave-
nous administration. To overcome these obstacles, researchers
have been making a variety of attempts. Back in 2007, Lu et al.
tried to encapsulate the anti-tumor drug camptothecin into the
pores of fluorescent MSNs, and the resulting camptothecin-loaded
MSNs showed remarkably growth inhibition of human cancer cells
including pancreatic cancer cells, colon cancer cells and stomach
cancer cells, compared with free camptothecin.381 And since
chemotherapy has been associated with high side effects and
poor patient compliance, more research has focused on combin-
ing chemotherapy with other treatment modalities, e.g., chemo-
photothermal therapy based on Pd/MSNs nanocomposite,137

synergistic electrodynamic-chemotherapy based on Pt/MSNs

Fig. 7 Schematic illustration of MSNs in targeted disease therapy. MSNs-based nanoplatforms are utilized in antioxidant therapy (e.g.,
Alzheimer’s disease), anti-infection therapy (e.g., bacterial infection), tumor therapy, or metabolic disease treatment (e.g., osteoporosis). The
current developed MSNs-based therapeutic modalities include radiotherapy, chemotherapy, thermal therapy, dynamic therapy, enzyme-like
catalytic therapy, immunotherapy, gene therapy, and multimodal synergistic therapy. The image elements were created using Autodesk 3ds
Max and Servier Medical Art (https://smart.servier.com)
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nanocomposite,141 chemodynamic-chemotherapy based on Mn/
Au/MSNs nanocomposite.382 In radiotherapy, Au NPs have been
widely studied as a radiosensitizer because of their high X-ray
absorption coefficient, and MSNs are often used to improve the
stability, non-specific interactions and toxicity of Au NPs.383,384 A
study reported by Chen et al. demonstrated that the gold-
nanorod-seeded MSNs could avoid the undesired aggregation in
the physiological medium, and act as a highly efficient radio-
sensitizer for the radiotherapy of oral squamous carcinoma with
high therapeutic index.384 Of course, the combination of radio-
therapy with other treatment modalities has been also extensively
studied to offer higher therapeutic outcome. For example, cell
membrane-coated, and CuS-loaded MSNs were designed by Wu
et al. for synergistic photothermal-radiotherapy,385 selenadiazole
derivative-loaded and folic acid-modified MSNs reported by Liu
et al. for synergistic cervical cancer chemo-radiotherapy.386

Thermal therapy. The common thermal therapy strategies
include PTT and magnetothermal therapy (MTT). The integration
of some certain functional components into the MSNs can induce
photothermal or magnetothermal effects by external light
irradiation or by applying a magnetic field, respectively. During
the thermal therapy, the locally generated thermal effect can
cause irreversible damage to cells or tissues at the lesion, thus
achieving targeted, non-invasive treatment. In terms of PTT,
organic photothermal agents (PTAs) such as phthalocyanines and
porphyrins can convert light energy into heat energy through
non-radiative forms of decay-vibrational relaxation,387,388 as well
as inorganic PTAs such as noble metals achieve photothermal
conversion through LSPR effect,389,390 to produce the temperature
required for treatment. The single MSNs-based PTT modality has
been thoroughly studied, and the current research focuses on the
construction of integrated nanoplatform for diagnosis and
treatment, or the development of multimodal synergistic treat-
ment strategies.391 A recent study reported by Kadria-Vili et al.
demonstrated that MSNs could encapsulate Gd2O3 NPs for dual
T1/T2 contrast and Au nanoshell PTA for NIR light-responsive PTT,
thus giving clinicians the ability to “see and treat”.392 In addition,
MSNs were considered as a biocompatible and multifunctional
nanoplatform for photothermal-immunotherapy against mela-
noma tumors, through simply integrating polydopamine PTA,
ovalbumin model antigen, and ammonium bicarbonate antigen
release promoter.393 PTT suffers from insufficient penetration
depth of NIR light, resulting in decreased treatment efficiency. In
contrast, MTT is able to kill deep tumor cells by increasing the
temperature to 43–48 °C, without causing significant side effects
to surrounding normal cells.394 During the action, the magnetic
NPs act as thermoseeds, exposed to an alternating magnetic field,
absorbing magnetic energy and dissipating thermal energy
through the magnetic relaxation effect.395,396 In a study reported
by Yao et al., MSNs-based nanoplatform was proven to achieve
synergistic therapeutic effect of PTT and MTT. They utilized MSNs
shell to coat magnetic Fe3O4, and served graphene quantum dots
with photothermal conversion capacity as the cap to control DOX
release. After reaching the tumor acidic microenvironment and
applying external light and magnetic field stimuli, DOX was
released in a controlled manner and the accelerated tumor
hyperthermia was achieved.397 In addition to PTT and MTT, the
MSNs-mediated radiofrequency thermotherapy is also reported.
Especially, the Si NPs themselves can serve as an excellent
sensitizer to enhance the radiofrequency radiation effect.398 A
study by Tamarov et al. demonstrated that the radiofrequency
radiation could more efficiently trigger temperature-responsive
drug release than infrared light, thus inhibiting tumor cell growth
even after one treatment.399

Dynamic therapy. Dynamic therapy refers to an emerging
therapeutic modality in which nanosensitizers are activated in

the presence of exogenous stimuli such as light, ultrasound and
electric field or endogenous small molecules such as H2O2, and
sequentially induce the in situ production of toxic free radicals for
damaging important cellular components (e.g., lipids, proteins or
DNA), thus leading to cell apoptosis or necrosis.400,401 Typical
dynamic therapy strategies include photosensitizer-mediated PDT,
sonosensitizer-mediated SDT, nanocatalyst-mediated CDT and
electrodynamic therapy (EDT).401 In dynamic therapy processes,
MSNs are excellent substrate materials for loading nanosensitizers,
and their roles include enhancing nanosensitizer stability, redu-
cing potential toxicity, providing a suitable microenvironment for
chemical reactions, and acting as a therapeutic nanoplatform to
integrate multifunctional components. For example, PDT is an
oxygen-dependent therapeutic modality, and its therapeutic
efficiency is affected by the oxygen concentration. However, the
tumor microenvironment or biofilm microenvironment are always
characterized with hypoxia.402–404 For this reason, the simulta-
neous integration of some components with oxygen-producing
functions, such as catalase,405,406 MnO2,

407,408 and Pt NPs,409,410

into the pores or surfaces of MSNs is expected to enhance the
photodynamic performance. Similar to PDT, SDT is also a non-
invasive therapeutic modality and many of sonosensitizers are
originated from photosensitizers,411 such as Mn protoporphyrin-
encapsulated biodegradable MSNs for MRI-guided tumor SDT,412

and IR-780 sonosensitizer-loaded hollow MSNs for SDT of
pancreatic cancer.413 Differently, a very unique feature in MSNs-
based SDT is that MSNs themselves are potentially effective
sonosensitizers with the ability to enhance ultrasound-induced
cavitation effect, without the introduction of additional sonosen-
sitizers.414 The main reason for this is that MSNs possess large
amounts of hydrophobic mesopores that can serve as bubble
nucleation seeds in response to low-intensity ultrasound.415,416

CDT exploits the disease microenvironment to activate the
Fenton/Fenton-like reaction to produce strongly oxidizing •OH
for specific and targeted disease therapy, which is first proposed
by Zhang et al. in 2016,417 and has subsequently attracted much
attention from researchers.418,419 The efficiency of CDT is closely
related to the H2O2 content in the disease microenvironment, so
researches have focused on introducing functional components
on MSNs matrix to enhance the content of H2O2 reactants, thus
increasing the yield of •OH. In this regard, Li et al. encapsulated
both ultra-small CaO2 and Fe3O4 NPs in dendritic MSNs. In the
acidic tumor microenvironment, CaO2 reacts with H+ to produce
large amounts of H2O2, leading to the enhancement of Fe3O4-
mediated Fenton reaction.420 In another study, natural glucose
oxidase was used to consume intratumoral glucose while
generating additional H2O2 for the subsequent Fenton reaction
catalyzed by Fe3O4 NPs.421 Besides, EDT is an emerging
therapeutic approach newly proposed in 2019.422 In this pioneer-
ing work, Pt NPs, assisted by a square-wave alternating current
electric field, induced the breakdown of water molecules on their
surface to generate cytotoxic •OH, which effectively inhibited
tumor cell proliferation and triggered tumor cell apoptosis.422

Regarding the MSNs-based EDT, Gu et al. designed a Pt/MSNs
nanocomplex for the first time and encapsulated DOX into MSNs
pore channels, followed by a layer of chitosan to prevent the
premature drug release. Under the tumor microenvironment and
alternating current electric field, the designed MSNs-based
nanoplatform effectively eliminated large-sized tumors (over
500mm3) while ensuring minimal side effects. This work is the
first study to combine EDT and chemotherapy, and it provided
new insights into the development of MSNs-based EDT
nanoplatforms.141

Enzyme-like catalytic therapy. In this process, nanozymes are
capable of following enzyme kinetics under physiological condi-
tions and catalyzing the conversion of enzyme substrates by
mimicking the structure or function of natural enzymes. Current
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nanozymes are dominated by oxidoreductase activity, i.e.,
oxidative stress amplification-related POD or OXD mimics,423,424

and antioxidation-related CAT or SOD mimics.425,426 By designing
nanozymes with various catalytic activities, the redox balance of
cells can be precisely regulated, i.e., boosted ROS generation or
ROS scavenging, enabling symptomatic treatment in a variety of
disease models.427–430 Due to the rich and tunable pore structure,
MSNs have become an excellent nanoreactor in enzyme-like
catalytic therapy.431–435 In a study by Wu et al., MSNs were
developed as a compartmental hierarchical nanoreactor for multi-
pathway generation of 1O2. Specifically, they designed a
compartmental multienzyme nanoreactor with penetrated super
cavity and connected dual mesoporous channels for the
encapsulation of a multi-enzyme complex (SOD-lactoperoxidase
(LPO)) and a photosensitizer ICG molecule. The cascade biocata-
lysis and enzyme-enhanced photosensitization could occur in
parallel, due to the unimpeded substrate diffusion between SOD
and LPO and reduced external diffusion effects. This strategy
offers unique advantages in the treatment of hypoxia tumors.436

In terms of MSNs-based ROS elimination platform, Purikova et al.
filled ultrasmall cerium dioxide (CeO2) NPs with superior colloidal
stability into the pore channels of MSNs, and functionalized the
MSNs surface with ROS-responsive methylthiopropyl groups. The
released CeO2 NPs could scavenge more than 80% of H2O2 within
10min in an ROS-excess environment, which was demonstrated
to be a potentially safe and efficient antioxidant therapeutic
agent.437

Immunotherapy. Immunotherapy is a therapeutic approach
implemented using the immune system of biological organisms,
and can be carried out by activating or suppressing the immune
system.438,439 The most common application is cancer immu-
notherapy.440,441 In cancer therapy, immunotherapeutic agents
such as tumor-associated antigens or immune adjuvants are often
used to educate antigen-presenting cells and T cells, thus to
enhance the host immune response to cancer. However, it
remains a challenge to improve the delivery efficiency of
immunotherapeutic agents, to avoid dose-dependent toxicity,
and to mitigate immune-mediated adverse effects.438,439 In this
regard, MSNs have emerged as an ideal multifunctional platform
for improving immunotherapy because of their excellent porosity,
good biocompatibility and ease of surface modification.30,31 In
MSNs-based immunotherapy, MSNs can play a role in different
periods of the cancer immune cycle.31 For example, chemokine-
loaded MSNs promote T-cell tumor chemotaxis,442 MSNs-based
platforms regulate the immune checkpoint proteins,443 MSNs
loaded with chemotherapeutic drugs,444 photosensitizers,445

sonosensitizers446 or PTAs447 induce immunogenic cell death
(ICD), and MSNs as vaccine vehicles are utilized to deliver antigens
and adjuvants. In particular, MSNs themselves can serve as
effective adjuvants, and contribute to the recruitment and
activation of immune cells.448–450 At present, there has been
considerable progress in MSNs-based immunotherapy platforms.
A few recent studies are presented as brief examples. Large-pore
MSNs-coated upconversion NPs are used as immune adjuvants to
deliver photosensitizers merocyanine 540, model proteins, and
tumor antigens for synergistic photodynamic immunotherapy of
cancer.122 The diselenide-bridged organic MSNs loaded with
chemotherapeutic ruthenium compound were acted as potential
ICD nanoamplifiers for improved cancer chemo-
immunotherapy.451 Au, BP co-loaded MSNs modified with
macrophage cell membrane were applied to deliver CO precursor
for improving SDT-induced ICD effect and inhibiting the growth
and metastasis of breast tumor.446

Gene therapy. Gene therapy refers to the introduction of
exogenous genes into the target cells to treat diseases by
replacing defective genes or adding new genes.452,453 In many

cases, the core of gene therapy lies in the selection of a suitable
gene vector to efficiently deliver the gene to the target cells.454,455

Viral vectors are frequently used in clinical settings, and although
they have high efficiency in gene transfection, their safety issue,
i.e., causing adverse immune response in the body, cannot be
ignored.454 MSNs, as excellent multifunctional non-viral vectors,
have advantages in biocompatibility, tissue toxicity, and target-
ing.456,457 As early as 2004, MCM-41-type MSNs were used as gene
transfection reagents for delivery of plasmid DNA.52 Since then,
many different gene therapy strategies have been developed
based on MSNs, and their therapeutic effects have been validated
in the fields of tumor therapy,458–460 diabetes treatment,378 and
wound healing.461,462 As an example, suicide gene therapy as a
gene-mediated enzyme prodrug treatment, is able to kill tumor
cells specifically after in situ conversion of the drug into toxic
drugs.463 To control the synergistic intracellular release of suicide
genes and prodrugs and enhance therapeutic efficacy, Wang et al.
investigated the efficacy of spherical and rod-shaped magnetic
MSNs in targeted drug delivery, and gene transfection, MRI
imaging, and hepatocellular carcinoma treatment. It was demon-
strated that the Janus-type rod-like magnetic MSNs loaded with
ganciclovir (GCV) and functionalized by PEG-g-PLL showed better
drug-loading capability and faster drug release behavior, indicat-
ing that they are a useful tool to construct the herpes simplex
virus thymidine kinase/ganciclovir (HSV-TK/GCV) gene therapy
system.464

Multimodal synergistic therapy. The complexity and heterogene-
ity of the disease microenvironment leads to the problem of poor
therapeutic efficiency of single therapies.465–469 The current
clinical research trend has gradually shifted to multimodal
synergistic therapy, as we have mentioned above with many
examples of multimodal synergistic therapy platform construction.
In multimodal synergistic therapy, the interaction between
different treatment modalities can significantly improve the
shortcomings of single therapy, such as overcoming the lack of
light penetration depth in PDT, reducing the toxic side effects of
chemotherapy, etc., and generating stronger therapeutic outcome
through superimposed effects (namely “1+ 1 > 2”).470–472 A
prominent feature of multimodal synergistic therapies is the
ability to effectively overcome multidrug resistance in diseases,
and MSNs are uniquely advantageous in integrating these
aforementioned treatment modalities.369,473–475 As an example,
most of the multidrug resistance generated during chemotherapy
of malignant tumors might stem from the overexpression of
transmembrane ATP-binding cassette transporter and transmem-
brane Ca2+ channels.476,477 To address this problem, researchers
used mesoporous silica nanocapsules to encapsulate and deliver
the cytotoxic drug DOX and T-type Ca2+ channel siRNA.478 On the
one hand, MSNs can bypass the drug efflux pumps and enter cells
directly through endocytosis, increasing the intracellular accumu-
lation of drugs. On the other hand, siRNA can knock down the
T-type Ca2+ channel, leading to a decrease in cytosol Ca2+

concentration in the cytosol, thus increasing the sensitivity of
tumor cells to DOX. Accordingly, the as-designed MSNs-based
therapeutic system achieved effective chemotherapy-gene ther-
apy to overcome the multidrug resistance in breast cancer.478

Besides, drug-resistant bacterial infections are a current thorny
public health issue.479 In this regard, researchers have developed a
photodynamic combined lysozyme antimicrobial therapy based
on upconversion NPs/MSNs nanocomposites to combat the
problem of drug-resistant bacterial infections in deep tissues.
Briefly, upconversion NPs were sequentially encapsulated with
hierarchical coating of dense silica and dendritic mesoporous
silica, followed by loading photosensitizers and lysozyme, and
finally modified with bacterial hyaluronidase-response valves on
the MSNs surface to achieve controllable release of lysozyme. The
results showed that this system promoted direct attack of ROS on

Multifunctional mesoporous silica nanoparticles for biomedical applications
Xu et al.

16

Signal Transduction and Targeted Therapy           (2023) 8:435 



cell membranes and cytoplasm through enzymatic cell wall
disassembly, resulting in an excellent bactericidal rate toward
methicillin-resistant Staphylococcus aureus (> 5 log10 viability
reduction).480

Tissue engineering
In addition to being widely used in targeted disease therapy,
MSNs are emerging in the field of tissue engineering.341,481 Tissue
engineering refers to the fabrication of bioactive scaffolds by
technical means for restoring, maintaining and enhancing the
function of damaged tissues and organs.481 The ideal bioactive
scaffolds should have excellent biocompatibility and good
interaction with cells. The unique advantages of MSNs can be
well combined with scaffolds to enhance the bioactivity by
utilizing the carrier nature of MSNs to achieve controlled release of
bioactive agents. In particular, the inherent bioactivity of Si ions
gives them an advantage in repair-related regenerative medi-
cine.341,482 Up to now, MSNs have made great research progress in
many aspects of tissue engineering, especially in bone tissue
engineering.
MSNs-based scaffolds are able to enhance the cell proliferation,

migration, adhesion and differentiation in bone tissue engineer-
ing. Many studies have systematically investigated and revealed
the role of MSNs-based scaffolds in the regulation of cellular
functions.483–486 Bone defects-involved regenerative repair is
difficult to obtain a desired outcome due to the delay of early
vascularization and poor osteogenic activity of bone implants. In
this regard, researchers have designed a polycaprolactone
network containing vascular-like structure, and introduced a
nanofibrous gelatin-silica scaffold into it. Dimethyloxalylglycine
(DMOG) and peptide-1 (BFP) were then loaded into MSNs, and the
differential spatial distribution and sequential release of DMOG
and BFP allowed the bioactive scaffold to promote angiogenesis
by stimulating the migration of human umbilical vein endothelial
cells (HUVECs), the tube formation and the expression of
angiogenesis-related genes/proteins (HIF-1α, e-NOS, KDR and
VEGF), as well as enhance osteogenesis by upregulating the
expression of bone marrow-derived mesenchymal stem cells
(BMSCs)-related osteogenic genes (Runx2, Col I, OPN and OCN)
and promoting mineral matrix formation.487 Besides, Mora-
Raimundo et al. reported MSNs as a nanocarrier to deliver SOST
small interfering RNA (siRNA) and osteostatin, and the as-designed
system could be used for osteoporosis remission via improving
the bone microarchitecture.379 Wang et al. designed a biomimetic
silica-collagen scaffold via a robust biosilicification strategy, and
the silica-collagen scaffold could mimic the unique microenviron-
ment of bone extracellular matrix (ECM), resulting in the
improvement of mesenchymal stem cell (MSC) recruitment and
bone repair.488 These MSNs-based scaffolds have great potential
for clinical translation in the treatment of bone defects.
A few studies on MSNs as a nanocarrier to deliver drugs for

vascular tissue engineering were also reported. To promote the
early angiogenesis in revascularization, Guo et al. developed
salvianic acid-loaded MSNs and subsequently doped into a
bilayered gelatin/polyurethane tubular scaffold. The addition of
salvianic acid-loaded MSNs allowed the tubular scaffold to show
better cell proliferation capacity and anticoagulant function.489 In
another study, researchers constructed a bilayered vascular graft,
which consisted of the inner layer Poly(lactic-co-glycolic acid)
(PLGA)/Collagen (PC) nanofibers and the outer layer polyurethane
(PU) nanofibers. The heparin-loaded MSNs were modified into the
inner layer for promoting cell proliferation and blood compat-
ibility. The hematoxylin-eosin and immunohistochemical staining
experiments indicated the regeneration of monolayer endothe-
lium and smooth muscle on the vascular grafts, demonstrating
their feasibility in serving as useful blood vessels with long-term
patency.490 In addition, in wound healing, MSNs contribute to
promoting healing efficiency through similar effects as discussed

above. One difference, however, is that MSNs can also deliver
some antioxidant components for ROS scavenging,491,492 since the
over-expression of ROS at the wound site can slow down the
healing process.493,494

In oral tissue engineering, MSNs can act as a noninvasive vehicle
for oral rehabilitation.495 Typically, oral disease such as dental
caries and dentin hypersensitivity can be well treated by
constructing stimu-responsive delivery nanoplatforms. Chlorhex-
idine (CHX) is a broad-spectrum antimicrobial agent, and often
used in oral rehabilitation. To enhance its antibacterial effect, CHX-
loaded MSNs are modified into dentin adhesives. Under the acidic
environment caused by cariogenic bacteria, CHX can be released
by pH responsiveness, thus inhibiting the formation of cariogenic
biofilm.496,497 To achieve effective treatment of dentin hypersen-
sitivity, MSNs-based biomaterials are used to block the dentinal
tubules to reduce their sensitivity to chemical and physical stimuli.
For example, in nano-hydroxyapatite@MSNs complexes, MSNs
enhance the acid stabilization of nano-hydroxyapatite and allow it
to form stable crystal deposits in the demineralized portion of the
teeth.498 Ag-based bioactive glass nanoparticles@MSNs are used
to treat dentin hypersensitivity by blocking dentinal tubules and
promoting soft tissue regeneration.499

CLINICAL TRANSLATION
Clinical trials involving mesoporous silica have been ongoing since
2007, exploring its potential in various biomedical applications
(Table 3). To date, the clinical trials have demonstrated the safety
and good tolerability of silica in human subjects. In 2014, MSNs as
oral delivery carriers for enhancing the pharmacokinetic profile of
drugs with limited aqueous solubility were reported.500 A silica
NPs-lipid hybrid formulation loading with ibuprofen (Lipoceramic-
IBU) was prepared. The randomized, double-blind, single-dose oral
administration study (20 mg ibuprofen) was conducted on 16
healthy male volunteers. The bioavailability of Lipoceramic-IBU
was found to be 1.95 times higher than that of the commercial
tablet Nurofen®.500 This result suggested the safe and effective
use of silica-based NPs in mimicking food effects to optimize the
oral absorption of drugs with poor water solubility. In another
clinical trial consisting of 12 participants in 2016, the bioavailability
of ordered MSNs-based fenofibrate formulation increased by
54.1% after a single oral dose, when compared to the commercial
formulation Lipanthyl®.39 Due to the potentially ideal clinical
outcomes of silica-based nanocarriers, the pharmacokinetics,
safety, and metabolic profile of a hybrid core-shell silica NP
(named Cornell dots, C dots) with a diameter of 6 nm
functionalized with 124I, targeting peptide cyclo-(Arg-Gly-Asp-
Tyr), and Cy5 (124I-cRGDY–PEG–C’ dots) is first conducted in
humans using PET imaging and clinical tracer at clinical trials in
2014 (NCT01266096).58 Results showed the good safety and
reproducible PK signatures of C dots with the whole-body
clearance half-time of 13–21 h after intravenous administration
in patients, which is shorter than 111In labeled liposomes and
131I-labeled humanized monoclonal antibody A33. These results
verified the possibility of these NPs for cancer diagnostics in
humans.58 Similarly, 8 nm core-shell silica NPs encapsulated with
Cy5.5 in the core and connected with cRGDY on the surface
(cRGDY-PEG-Cy5.5-nanoparticles) were used in patients at nano-
mole doses for sentinel lymph nodes detection of head and neck
melanoma at a phase 1/2 human clinical trial.501 The remarkable
safety, accuracy, reliability, and high contrast of these particles for
visual identification of sentinel lymph nodes are irreplaceable by
other available imaging molecules currently, of which phase 2
clinical trial is ongoing and will be finished in 2024
(NCT02106598). In the meantime, another two clinical trials based
on C dots are carried out. In 2018, the 89Zr-DFO-cRGDY-PEG-Cy5-C’
dots tracers were first used in both surgical and non-surgical
patients for PET-CT imaging of malignant brain tumors in phase 1
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clinical trial (NCT03465618). The distribution and removal profiles
from the body of these particles will also be assessed till 2023. In
2019, 64Cu-NOTA-PSMA-PEG-Cy5.5-C’ dots tracer was used in
another human phase 1 clinical trial for guiding the surgery of
prostate cancer by PET and MRI imaging (NCT04167969).As a
nanocomposite with high safety and excellent photothermal
conversion efficiency, the silica-gold NPs have also been demon-
strated to be potential therapeutic agents for plasmonic photo-
thermal therapy of atherosclerosis (NCT01270139),502,503 and
photothermal ablation of tumors (NCT00848042,
NCT04240639).40 In addition, an engineered mesoporous silica
(SiPore15™) with particle size of 1.1–1.5 μm× 0.2–0.4 μm was
developed by Baek et al., and they demonstrated that such pure
synthetic amorphous silica could remarkably decrease long-term
blood glucose levels, showing great promise for the treatment of
prediabetes (NCT03823027).504 In other clinical trials, an amor-
phous silica-containing bioactive scaffold, called Siloss®, was used
to promote bone regeneration, and could be replaced by natural
bone due to its fully resorbable nature (NCT02639572), and the
silica-calcium phosphate nanocomposite (SCPC) was developed as
graft material for the reconstruction of the volume-deficient
alveolar ridges (NCT05317039). In all, these clinical trials demon-
strate the safety and efficacy of MSNs in various biomedical
application scenarios.

CONCLUSION AND PERSPECTIVE
With the continuous research and development of nanotechnol-
ogy in the biomedical fields, the global healthcare nanotechnol-
ogy market is expected to grow gradually from US$ 17,245 million
in 2019 to US$ 252,400 million by 2024.505 As an important part of
the nanomaterials library, MSNs have become indispensable in
the biomedical field due to their easily tunable structure and
composition, relatively excellent biocompatibility, and flexible
surface functionalization properties. Their footprints have covered
various aspects, serving as carriers to deliver various therapeutic
agents, as matrixes to construct nanocomposites for meeting
specific requirements, or as efficient agents with intrinsic
therapeutic effect or bioactivity.
This review provides an overview of the development of MSNs

in the biomedical field, highlighting some key research advances,
briefly summarizing the types of MSNs developed by different
research groups (M41S-series, SBA-series, FDU-series, KIT-series,
etc.). In addition, in view of the high versatility of MSNs-based
nanocomposites for diagnostic and therapeutic applications, the
current MSNs-based architectures and the types of nanocompo-
sites by active elements are summarized. Subsequently, the
purpose of surface functionalization of MSNs is discussed. Further,
we comprehensively review the biomedical applications of MSNs,
including biosensing, bioimaging, targeted disease therapy, and
tissue engineering, etc. In particular, targeted therapeutic
modalities based on various strategies are meticulously discussed.
Finally, the current status of MSNs in clinical trials is presented. It is
believed that this review will provide a thorough understanding of
MSNs involved in the development history, design, functionaliza-
tion, and biomedical applications. Despite numerous break-
throughs, the current challenges in MSNs research include three
main aspects: systematic toxicity study, construction of simple but
efficient MSNs-based nanoplatforms, and in-depth insight into the
in vivo action mechanism.
Firstly, although several silica-based nanoformulations have

already proceeded to the clinical trial stage and have been
shown to be remarkably efficacious and acceptably safe, this is
not nearly enough given the tremendous cost researchers have
put in upfront. The most important consideration driving the
successful clinical translation is a comprehensive and systematic
toxicity study of MSNs. Despite the fact that a relatively complete
set of toxicity studies on MSNs has been established in theTa
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scientific community, a sustained effort is still needed. It is
noteworthy that many of the currently designed therapeutic
systems for MSNs are disconnected from systematic toxicological
evaluations. Some researchers have focused more on the
therapeutic effects, but the feasible MSNs-based nanocompo-
sites constructed on this basis are far from the silica NPs used by
another part of the researchers in MSNs toxicology evaluation. In
future research, under the premise of guaranteeing the efficacy
of MSNs-based nanomedicines, more emphasis on the toxicolo-
gical evaluation and long-term biosafety assessment of MSNs will
be more beneficial to promote the possibility of their clinical
translation.
Secondly, it is needed to construct simple but efficient MSNs-

based nanoplatforms. The abundant characteristics of MSNs have
led to their extensive exploitation as multifunctional nanocarriers,
and this may be accompanied by the introduction of two or more
components into MSNs. Although these multifunctional nanoplat-
forms have proven to be very effective in numerous papers, the
complexity of these platforms does not seem to be friendly to the
scale-up preparation and clinical translation. On the one hand, it is
well known that the laboratory-level synthesis methods of MSN
are very different from those used for industrial scale-up
production required for clinical screening and use. The reprodu-
cibility and batch stability of nanoformulations are always an
important factor to consider in industrial scale-up production, and
in this process, simplifying the production steps is the key to
promote the industrial scale-up production. However, the complex
MSNs-based nanoplatforms require higher nanoformulation pre-
paration technologies and more stringent storage methods, which
often require more time, effort, and economic investments. On the
other hand, the multiple components may introduce more unsafe
factors, it appears to be a huge challenge at this stage to
systematically reveal the toxicity mechanisms of these different
components when we still do not fully understand the toxicity
mechanisms of MSNs. Therefore, it is advocated to slim down the
MSNs-based platform as much as possible while meeting the
clinical requirements.
Thirdly, an in-depth insight into the in vivo action mechanism of

MSNs is needed. The lesion microenvironment has many features
that are quite different from normal tissue, and the clinical
manifestations of many diseases show heterogeneity in pathol-
ogy. There is a discrepancy between studies on the action
mechanism of MSNs-based nanomedicines at the cellular level
and the nanomedicines behavior in the real in vivo environment.
In this regard, we need to closely combine different disciplines,
research models and characterization tools to deeply reveal the
molecular mechanisms of MSNs-based nanomedicines and
elucidate the action behavior between materials and biological
interfaces.
With the increasing research on MSNs and the continuous

efforts to address the aforementioned key scientific problems of
MSNs in the biomedical field, it is reasonable to believe that more
MSNs-based nanoformulations will move toward clinical trials and
achieve successful clinical translation in the future.
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