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Multifaceted role of mTOR (mammalian target of rapamycin)
signaling pathway in human health and disease
Vivek Panwar1, Aishwarya Singh2, Manini Bhatt3, Rajiv K. Tonk4, Shavkatjon Azizov5,6, Agha Saquib Raza7, Shinjinee Sengupta2✉,
Deepak Kumar1✉ and Manoj Garg 2✉

The mammalian target of rapamycin (mTOR) is a protein kinase that controls cellular metabolism, catabolism, immune responses,
autophagy, survival, proliferation, and migration, to maintain cellular homeostasis. The mTOR signaling cascade consists of two
distinct multi-subunit complexes named mTOR complex 1/2 (mTORC1/2). mTOR catalyzes the phosphorylation of several critical
proteins like AKT, protein kinase C, insulin growth factor receptor (IGF-1R), 4E binding protein 1 (4E-BP1), ribosomal protein S6
kinase (S6K), transcription factor EB (TFEB), sterol-responsive element-binding proteins (SREBPs), Lipin-1, and Unc-51-like
autophagy-activating kinases. mTOR signaling plays a central role in regulating translation, lipid synthesis, nucleotide synthesis,
biogenesis of lysosomes, nutrient sensing, and growth factor signaling. The emerging pieces of evidence have revealed that the
constitutive activation of the mTOR pathway due to mutations/amplification/deletion in either mTOR and its complexes (mTORC1
and mTORC2) or upstream targets is responsible for aging, neurological diseases, and human malignancies. Here, we provide the
detailed structure of mTOR, its complexes, and the comprehensive role of upstream regulators, as well as downstream effectors of
mTOR signaling cascades in the metabolism, biogenesis of biomolecules, immune responses, and autophagy. Additionally, we
summarize the potential of long noncoding RNAs (lncRNAs) as an important modulator of mTOR signaling. Importantly, we have
highlighted the potential of mTOR signaling in aging, neurological disorders, human cancers, cancer stem cells, and drug resistance.
Here, we discuss the developments for the therapeutic targeting of mTOR signaling with improved anticancer efficacy for the
benefit of cancer patients in clinics.
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INTRODUCTION
The mTOR belongs to the class of evolutionarily conserved threonine
and serine kinases which recognize and incorporate a variety of
extracellular and intracellular signals to maintain cellular homeostasis
and metabolism.1–4 The name mTOR was obtained from rapamycin
isolated from a soil bacterium in 1970 on Rapa Nui.1–4 Further, the
structural elucidation of the rapamycin revealed 14–16 membered
lactone rings and reduced saccharide substituents. Interestingly, the
physiological characterizations have uncovered immunosuppressive
properties, curtailed organ rejection, kidney transplantation, and
inhibition of T-cell mitogenesis.2,5 Mechanistically, the mTOR has dual
kinase activity and can phosphorylate serine/threonine or tyrosine
residue. The mTOR has been considered a part of the phosphoinosi-
tide 3-kinase (PI3K) family due to the presence of the catalytic domain
within themTOR structure which has a similarity with lipid kinases like
PI3K. mTOR has been reported to be crucial for many biological
processes, including cell growth, cell survival, immunity, autophagy,
and metabolism.1,2

This has been reported that mTOR can generate two different
functional complexes named mTORC1 and mTORC2.6 The

mTORC1 was discovered as a complex of several proteins that
consist of mTOR, Raptor (regulatory associated protein of mTOR),
GβL (G protein β subunit-like protein)/mLST8 (mammalian lethal
with SEC13 protein 8), DEPTOR (DEP-domain-containing mTOR-
interacting protein), and PRAS40 (the 40 kDa proline-rich Akt
substrate).7,8 The mTORC2 is composed of mTOR, GβL/mLST8,
Rictor (rapamycin-insensitive companion of mTOR), Protor/PRR5
(Proline-rich protein 5), DEPTOR, and mSIN1 (mammalian stress-
activated protein kinase-interacting protein 1).7–14 The mTORC1
amalgamate signals from a variety of growth factors, and nutrients
to enhance cellular proliferation especially when there is adequate
energy and/or catabolism when the body is hungry.5,15 The
mTORC1 is well known for its function in cell growth and
metabolism, whereas the mTORC2 regulates proliferation and
survival.1 Several groups reported that mTOR is crucial for several
signaling cascades like AKT, PI3K, TSC1/TSC2 (tuberous sclerosis
complex subunit 1 and 2), Rheb, LKBL/AMP-activated protein
kinase (AMPK), VAM6/Rag GTPases.16 The mTOR signaling was
demonstrated to enhance gene transcription and translation to
control cellular growth, autophagy, and apoptosis.2,5,17
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Dysregulation of mTOR has been found to be strongly linked with
several diseases like aging, arthritis, insulin resistance, osteoporosis,
cancers, and neurological disorders.18 Cancer development is a
complex, and multifactorial process, including genetic aberration,
epigenetic modifications, dysregulated expression of hormones,
tumor suppressors, and conversion of proto-oncogenes to onco-
genes.19–21 The frequent alteration of mTOR was noticed to play an
important role during tumorigenesis, distant metastasis, and drug
resistance in human malignancies, such as lung, breast, liver, renal,
pancreatic, and prostate.22–25 The stimulation of the mTOR cascade
has been displayed to increase tumor growth through the
regulation of glycolysis, angiogenesis, growth factor receptor
pathway, lipid metabolism, and autophagy.5,9 Therefore, mTOR
represents an important and promising target for therapeutic
intervention against humanmalignancies.26,27 In this current review,
we have discussed the structure of mTOR complexes along with
their molecular functions, upstream regulators, as well as down-
stream effectors of mTOR signaling, the association of mTOR
signaling to modulate cellular metabolism and autophagy. Also,
how the dysregulated mTOR signaling is associated with aging,
neurological disorders, and cancers (Fig. 1). Importantly, we have
highlighted the opportunities and challenges for pharmacological
targeting of mTOR signaling for therapeutic intervention and
management of human malignancies.

STRUCTURAL ARCHITECTS OF MTOR AND ITS COMPLEXES
Mechanobiology of mTOR unfolds it as a complex protein kinase
intricated with multielement complexes via its communication
network with other proteins. The cryo-electron microscopic
structure of the mTOR has revealed a hollow rhomboid
architecture with dimensions of ~280 × 210 × 130 (Å3).28 This has
been noticed that the C-terminus of mTOR was comprised of the
FAT domain (FKBP12 rapamycin-associated protein, ataxia telan-
giectasia, and transformation or transactivation domain associated
protein), FRB (FKBP12 rapamycin binding) domain which is
responsible for the interaction of FKBP protein bound to
rapamycin with mTOR, kinase domain that is an important site
for phosphorylation to control the activity of mTOR, and FATC
(FAT carboxyterminal domain). Also, the N-terminal part of the
mTOR consists of 20 HEAT repeats. The HEAT repeats were found
to be essential for interaction with Raptor and Rictor.22,29

The structural architect of mTORC1 defines the complex and
symmetric organization of Raptor, PRAS40, DEPTOR, and mLST8
(GβL) as its major components along with centrally located mTOR
protein.30 Interlocking interactions allying the two mTOR and two
Raptor subunits configure dimeric interfaces. Distal foot-like
perturbances of mLST8 (GβL) subunit interpose mTOR inside
complex 1. PRAS40 circumscribes itself to the adjoining adjacency
of Raptor subunits i.e., the middle section of the central core of
complex 1.31,32 Raptor is critical for the assembly, proper
localization, and stability of the mTORC1. Raptor was reported to
be important for the recruitment of the substrate on mTORC1.
PRAS40 has been shown to inhibit the activation of mTORC1
unless it is phosphorylated through growth factor receptor
signaling by growth factors/other stimuli. PRAS40 has an essential
role in human cancers and metabolic disorders. The mLST8 was
found to be associated with the kinase domain of the mTORC1
and can help in the stabilization of kinase activity. DEPTOR acts as
an inhibitory subunit in the mTORC1. The crystal structure and
functional analysis revealed that rapamycin-FKBP12 can efficiently
bind with the FRB domain of mTOR to obstruct the substrates
from active sites.1,29,31–33 The mTORC1 has been found to control
cellular growth by increasing the biogenesis of ribosomes, mRNA
translation, and autophagy.34

The mTORC2 complex is a hollow rhombohedral fold with
dimensions of 220 Å × 200 Å × 130Å.28 The complex embraces
binary symmetry, and each promoter incorporates one copy of

mTOR, GβL/mLST8, mSin1, and Rictor. mTOR-mLST8 (GβL)
heterodimer embraces overall architecture alike to complex 1
with a root mean square deviation of 6.7 Å for 3550 α-carbon
atoms.30,35 The two monomers of mTOR pack against each other
to form a central scaffold yielding a binding surface for the other
three components. Two copies of mLST8 (GβL), mSin1, or Rictor
bind symmetrically to the mTOR dimer.31,32 Rictor is important for
the assembly, substrate recognition, and stability of the mTORC2.
This has been observed that mSIN1 acts as a scaffold protein that
helps in the mTORC2 interaction with serum and glucocorticoid-
activated kinase 1 (SGK1) and negatively controls the kinase
activity of mTORC2.12 Protor-1, a Rictor-binding protein was found
to regulate mTORC2-dependent phosphorylation of SGK1.36 The
mTORC2 has been displayed to be associated with the cytoske-
leton, cell proliferation, cell survival, and migration.
Harwood et al. have identified another rapamycin-insensitive

complex known as mTORC3. The E26 transformation-specific
transcription factor ETV7 was found to interact with mTOR in the
cytoplasmic compartment. The mTORC3 displayed bimodal
mTORC1/2 activity that was independent of the components of
mTORC1/2. This was noticed that mTORC3 is robustly activated in
several cancers. The loss of mTORC3 expression in cancer cells
displayed marked sensitivity to rapamycin. Interestingly, this study
also demonstrated that mTORC3 induced tumorigenesis in a
murine model of rhabdomyosarcoma. Interestingly, the transgenic
ETV7 expression further enhanced tumor onset and penetrance.37

The detailed structure of the mTOR and its complexes, along with
their function, has been described in Fig. 2.

UPSTREAM REGULATORS OF MTOR SIGNALING
The mTOR signaling cascades control the cellular growth and
mitotic divisions by generating prominent metabolic energy from
glucose, lipid, protein, and nucleotides while inhibiting catabolic
processes like autophagy.38 Hence, the mTORC1 plays a central
role in maintaining the equilibrium between anabolism and
catabolism, especially in response to environmental stress. mTOR
signaling augments energy depots and consumption. mTORC1
can enhance cellular growth by integrating stimuli from growth
factors, DNA damage, oxygen, nutrients, amino acids, and energy,
whereas augmented mTORC1 prompts insulin resistance by
halting insulin receptor signaling and fat accumulation
(Fig. 3).1,38 This has been observed that dysregulated oncogenes,
enhanced anabolism, angiogenesis, and suppression of autophagy
underlie the tumorigenic behavior of mTORC1. mTORC2 is
activated by growth factors which in turn activates AKT and
AGC family leading to increased cellular proliferation and
survival.1,38 Growth factors are known to regulate several signaling
cascades that intersect on TSC, including receptor tyrosine kinases
(RTK), IGF-1, Wnt, TNFα, inflammatory cytokines, and Ras signaling
cascade. These growth factors stimulate the phosphorylation of
TSC2 through AKT. The phosphorylation was associated with the
inhibition of TSC through its dissociation from the lysosomal
membrane. The RTK-mediated Ras signaling was found to activate
the mTORC1 pathway through MAPK/ERK and its effector p90RSK

leading phosphorylation of TSC2. Moreover, the other growth
factors like Wnt, and TNFα were noticed with the activation of
mTORC1 through repression of TSC1.39 Importantly, the environ-
mental/extracellular and intracellular stresses are sensed by the
mTORC1 and modulate cellular growth and survival under
hypoxia, lower levels of ATP, and DNA damage conditions.40

Under glucose deprivation conditions, there is a marked reduction
in cellular energy levels that stimulates energy stress- sensing
metabolic regulator AMPK. The stimulation of AMPK was reported
to repress the mTORC1 either through direct phosphorylation of
Raptor or indirectly by phosphorylating TSC2.41 Furthermore, low
glucose levels were found to suppress mTORC1 signaling by
inhibiting the Rag GTPases activity, especially in cells lacking
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AMPK. Recently, Dai et al. have reported that AMPK-dependent
phosphorylation of WDR24 can modulate the glucose-dependent
activation of mTORC1.42 These results indicated that mTORC1 can
efficiently sense glucose or energy stress through multiple
molecular mechanisms.43,44 Hypoxia or oxygen deprivation stress
was reported to produce an inhibitory effect on the mTORC1
through activation of AMPK, and induction of REDD1 that resulted
in the activation of TSC. Also, the induction of the DNA damage
response signaling was found to repress mTORC1 via induction of
p53 target genes like AMPKβ, PTEN, and TSC2 leading to increased
activation of TSC activity. Amino acids are not only required as the
building blocks of proteins but also a great source of carbon and
energy for a variety of metabolic signaling cascades.45 The
activation of the mTORC1 pathway is coupled with diet-
mediated changes in the concentration of amino acids. Interest-
ingly, the mechanism of sensing the amino acids through
mTORC1 with the help of Rag GTPases as essential components
of mTORC1 signaling was one of the groundbreaking discoveries
in the field of mTOR signaling.46 Rags were discovered as
heterodimers of RagA/RagB with RagC/RagD. These are mostly

bounded by the membrane of the lysosome through their close
association or interaction with a well-characterized pentameric
complex composed of p14, HBXIP, p18, MP1, and c7ORF59.47,48

The amino acid stimulation converts the Rags to an active
nucleotide-bound state which allows Rags to bind with Raptor and
recruit mTORC1 on the surface of the lysosome, where Rheb is
localized. The mTORC1 has been found to sense cytosolic as well
as intra-lysosomal amino acids through different molecular
mechanisms.49,50 SLC38A9, lysosomal amino acid transporter
was displayed to interact with the Rag-v-ATPase complex which
is responsible for arginine transport and activation of
mTORC1.50,51 The cytosolic arginine and leucine signal to mTORC1
through GATOR1 and GATOR2 complexes. The GATOR1 is
comprised of Nprl2/3, DEPDC5 and acts as a GAP for RagA/B to
inhibit the mTORC1 pathway. The KICSTOR complex comprised of
Kaptin, c12orf66, ITFG2, and SZT2 and bound to GATOR1 on the
surface of the lysosome to modulate the mTORC1 pathway for
nutrient/amino acids sensing.52 On the other hand, GATOR2 was
discovered as a pentameric complex of WDR24, Seh1L, Mios,
WDR59, and Sec13. GATOR2 interacts with GATOR1 on the surface

Fig. 1 History of research on the discovery and development of mTOR signaling. The figure describes the journey of mTOR signaling from its
origin to the most advanced scientific discoveries including the identification, isolation, development of inhibitors, and their application as
therapeutics in human health and diseases. Created with BioRender.com. FDA Food and Drug Administration, TOR target of rapamycin, mTOR
mammalian target of rapamycin, mTORC1 mTOR complex 1, mTORC2 mTOR complex 2, MCL mental cell lymphoma, Nab-sirolimus
nanoparticle albumin-bound sirolimus, PEComa perivascular epithelioid cell tumor, PNET pancreatic neuroendocrine tumor, RCC renal cell
carcinoma, SEGA subependymal giant-cell astrocytoma
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of the lysosome as a positive regulator of the mTORC1 pathway.53

Sestrin2 was discovered as a GATOR2 interacting protein partner
that senses cytosolic amino acid. This led to the inhibition of
mTORC1 signaling under the deprivation of the amino acid.54

Structural and biochemical analyses revealed that Sestrin2 is a
direct sensor of leucine and upstream of mTORC1. Further,
Sestrin2 was shown to be transcriptionally induced after
prolonged amino acid starvation through ATF-4. These results
indicated that Sestrin2 can function as an acute leucine sensor
and indirect mediator of prolonged starvation of amino acid.55

Arginine activated mTORC1 via the GATOR1/2-Rag pathway and
binding the CASTOR1. CASTOR1 interacts and suppress GATOR2 in
the absence of arginine and dissociates upon arginine binding
resulting in the mTORC1 activation.56,57 These findings verified
that CASTOR1 has the arginine sensing ability for the mTORC1
pathway. Additionally, other molecular mechanisms that control
amino acids mediated mTORC1 signaling were reported and
recruitment of Folliculin-FNIP2 complex on the lysosome coop-
erates as a GAP for RagC/D in the presence of amino acids.58 The
glutamine is utilized as a source of nitrogen by highly dividing
cells to stimulate mTORC1 independent of the Rag GTPases via Arf
family GTPases.59 The long noncoding RNA-SPAR was found to
cooperate with the v-ATPase-Ragulator complex. This cooperation
caused a hamper in the process of the mTORC1 recruitment to
lysosomes.60 Recently, Yan and colleagues have performed
genome-wide CRISPR-Cas9 screening and identified interleukin
enhancer binding factor 3 (ILF3) as a critical regulator for the

sensing of the amino acids in a mTORC1-dependent manner. ILF3
was found to tether with GATOR complexes on the lysosomes.
Further, the addition of the sequences that specifically target
lysosome to the GATOR2 component WDR24 was found to bypass
the ILF3 requirement and modulated the amino acid-mediated
mTORC1 pathway.61 Another study by Jiang and colleagues
demonstrated that WDR24 or Ring domains were critical for
GATOR2 to disseminate amino acids availability to mTORC1 during
embryonic development.62 Further, studies have confirmed the
potential of mTORC2 as an effector of IGF and PI3K signaling. The
mSin1 of the mTORC2 was found to have a phosphoinositide-
binding domain which proved to be important for the insulin-
regulated activity of the mTORC2. In the insufficiency of insulin,
the PH domain of the mSin1 was noticed to hamper the mTORC2
catalytic activity. This autoinhibition was rescued upon binding to
PI3K-generated PIP3

63 and mSin1 was phosphorylated by AKT,
indicating the existence of a positive-feedback loop that partially
activates Akt and promoted the activation of mTORC2.64 The S6K1
was found to inhibit the mTORC2 signaling through the
degradation of IRS1, insulin receptor substrate-1.65 The negative
feedback loop among insulin-dependent PI3K pathway and
mTORC1 is another mechanism for the mTOR2 regulation
(Fig. 3). The mTORC1 was found to phosphorylate Grb10 (negative
regulator of IGF-1R signaling) that is upstream to AKT and
mTORC2.66,67 During the past several decades, the emerging
pieces of evidence have provided valuable information about the
regulation of the mTOR signaling that leads to the development of

Fig. 2 The domain structures of mTORC1 and mTORC2, their downstream signaling targets and functional role. N-terminal domain of mTOR
possesses tandem HEAT repeats and C-terminal domains composed of FATC, kinase, FRB, and FAT. The mTOR signaling pathway is majorly
constituted of two distinctive mTOR complexes named mTORC1 and mTORC2. The mTORC1 is a complex of DEPTOR, Raptor, PRAS40, mLST8,
mTOR, and phosphorylate downstream targets to regulate protein synthesis or mRNA translation, lipid synthesis, nucleotide synthesis,
lysosomal biogenesis, and autophagy. The mTORC2 is a complex of mTOR, DEPTOR, mSIN1, Rictor, Protor, and mLST8 to regulate cell survival,
proliferation, migration, and cytoskeleton remodeling. Created with BioRender.com
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several clinical drugs. However, the complete knowledge of the
integration of a variety of signals through TSC to regulate
mTORC1/2 activity remains an open research question in the field.

Role of the mTOR signaling cascade in glucose metabolism
The energy requirement of the cell is regulated by mTORC1 by
AMPK, the sensor of intracellular energy levels. Augmented
glucose metabolism promotes mitochondrial activity by prompt-
ing AMP levels that disturb the ATP: AMP ratio resulting in the
activation of the AMPK leading to phosphorylation of TSC2 which
enhances the GAP activity of TSC2 for the Rheb to repress the
mTORC1 activity.68 Moreover, AMPK can directly phosphorylate
Raptor and reduce mTORC1 activity under energy-deprived
conditions.41 Also, mTORC1 can favor cellular proliferation through
a prominent shift in glucose metabolism from oxidative phos-
phorylation to glycolysis. This metabolic reprogramming is known
as the Warburg effect and is characterized by an increase in the
uptake of glucose and the production of lactate, even in
the presence of oxygen (aerobic glycolysis).69 mTORC1 enhanced
the Warburg effect by increasing the gene expression and
catalytic activity of key enzymes required during glycolysis, such
as pyruvate kinase muscle isozyme 2, hexokinase 2, and lactate
dehydrogenase A, among others. This results in increased flux
through the glycolytic pathway, which provides the building
blocks and energy required for cell growth and division.69–71

Hypoxic stress or anaerobic condition has been found to promote
the reduction of pyruvate to lactate by NADH through lactate
dehydrogenase that may augment the lactic acid concentration
leading to lactic acidosis. Lactic acidosis favors oncogenesis by
modulating the tumor microenvironment. Hypoxia-inducible

factor 1 alpha (HIF-1α) was reported as a well-known regulator
to increase the expression of the glycolytic enzymes, and glucose
transporters.70,71 Glucose transporters thus facilitate the transport
of glucose into cells while glycolytic enzymes catalyze the
breakdown of glucose into energy.69–72 Moreover, mTORC1 has
been found to enhance the translation of the HIF-1α which in turn
activates the expression of key enzymes involved in glycolysis like
phospho-fructokinase. The mTORC1-mediated SREBP stimulation
caused increased flux by the pentose phosphate pathway leading
to the generation of NADPH from the glucose and other
intermediate metabolites for proliferation and growth.56

Role of the mTOR signaling cascade in lipid metabolism
mTOR plays a significant role in regulating lipid biosynthesis
required for cell growth and division by maintaining the cellular
membrane. The mTORC1 has been shown to enhance the synthesis
of lipids through the regulation of SREBP (sterol regulatory element-
binding protein) that modulates the expression of the genes
associated with cholesterol and fatty acid biosynthesis.56 Generally,
during lower levels of sterol, the SREBP gets activated. The mTORC1
signaling cascade was reported to stimulate in two ways (1) SREBP
activation via the S6K1 mechanism, and (2) through phosphoryla-
tion of the Lipin-1 that can repress SREBP activity in the absence of
mTORC1.56,73 In the first mechanism, mTORC1 activates SREBP
through the downstream effector S6K1, which phosphorylates and
activates SREBP cleavage-activating protein (SCAP). This leads to the
translocation of the active form of SREBP to the nucleus and the
upregulation of genes involved in lipid synthesis. In the second
mechanism, mTORC1 phosphorylates and inactivates Lipin-1, which
is a negative regulator of SREBP activity.73 In the absence of

Fig. 3 The major upstream regulators of mTORC1 and mTORC2. Growth factors, amino acids like arginine and leucine, energy from glucose or
other sources, cell stresses including DNA damage, and ROS stimulate mTORC1 to modulate various biological processes like mitochondrial
biogenesis, nucleotide synthesis, mRNA translation (protein synthesis), lipid synthesis, and autophagy. The growth factors are the main
regulators of the mTORC2 to control cell proliferation, migration, cytoskeleton remodeling, ion transport, and glucose metabolism. Created
with BioRender.com
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mTORC1 signaling, Lipin-1 represses SREBP activity by promoting
the formation of a repressor complex that inhibits SREBP-mediated
transcription. However, under conditions of mTORC1 activation,
Lipin-1 is phosphorylated and inactivated, leading to the derepres-
sion of SREBP activity and the upregulation of lipid biosynthesis.73

Overall, the regulation of SREBP by mTORC1 provides an important
mechanism by which mTORC1 can promote lipid synthesis and
support cellular growth and proliferation (Figs. 2 and 3).

Role of the mTOR signaling cascade in nucleotide biogenesis
This has been confirmed that mTORC1 can promote the
biosynthesis of nucleotides, especially in the proliferative cells to
support the replication of the DNA and biogenesis of ribosomes.
Moreover, mTORC1 was displayed to enhance the expression of
MTHFD2 (methylenetetrahydrofolate dehydrogenase 2) in an ATF-
4-dependent manner that can provide carbon units for the
synthesis of purine. Ben-Sahra and colleagues have shown that
S6K1 phosphorylates and stimulates carbamoyl phosphate
synthetase (CAD) that helps in the pyrimidine synthesis path-
way.74 Robitaille and colleagues have performed quantitative
phosphoproteomics and identified that mTOR regulates the
phosphorylation of approximately 335 proteins.75 This study
showed that mTORC1 can phosphorylate CAD at serine 1859 via
S6K and activated de novo synthesis of pyrimidines leading to the
cell cycle through the S phase (Figs. 2 and 3). Therefore, mTORC1
regulates the production of nucleotides to adjust the RNA and
DNA synthesis required for ribosome biogenesis.75

Role of mTOR signaling in protein biogenesis
mTOR signaling cascade is well known for protein synthesis through
the phosphorylation of eIF4E binding protein (4EBP), and S6K1.
mTORC1 can phosphorylate S6K1 at Thr389 residue which leads to
its phosphorylation and activation via PDK1 (3-phosphoinositide-
dependent protein kinase 1). S6K1 can lead to the phosphorylation
and activation of a variety of substrates that promote mRNA
translation initiation, particularly the eIF4B which is crucial for the 5′
cap binding eIF4F complex.76 Dorrello and colleagues have revealed
that programmed cell death protein 4 (PDCD4) repressed the
translation initiation factor eIF4A. During mitogen response, the
phosphorylation of PDCD4 at Ser67 by the S6K1 leading to its
degradation through the ubiquitin ligase SCF (β-TRCP) enables the
synthesis of protein synthesis and cellular proliferation.77 Exon
junction complex has been displayed to regulate mRNA synthesis.78

The SKAR-dependent recruitment of S6K1 to the newly generated
mRNPs acts as a bridge between mTOR signaling and translation.
The mTOR kinase has been recognized as one of the master
regulators of translation to meet the demand for cancer cells. The
global ribosome profiling was performed to unravel the mechanism
of translation that regulates gene expression through mTOR in
cancers. This study showed the enrichment of the specific genes
associated with cellular growth, invasion, and metabolism. These
genes were downstream targets of mTOR signaling in prostate
cancer.79 Moreover, the potent and ATP-competitive mTOR
inhibitor repressed mRNA translation and suppressed cellular
proliferation.80 Another study has revealed that mRNAs that are
controlled by mTORC1 are 5’ terminal oligopyrimidine (TOP) motifs.
Moreover, the 4EBPs suppressed the initiation of translation by
hampering the interaction between eIF4E and eIF4G1. This
diminished the ability of eIF4E to interact with TOP and TOP-like
mRNAs which explains why mTOR inhibition selectively repressed
their translation.81 The mTORC1 phosphorylates its substrate 4EBP
that triggers its dissociation from eIF4E allowing 5′cap-dependent
mRNA translation (Figs. 2 and 3).82,83

MTOR SIGNALING IN HUMAN CANCERS
The deregulation of mTOR signaling has been noticed in human
malignancies. The emerging data has suggested that the mTOR

signal is frequently altered in approximately 30% of cancers.23,84 The
activation of the mTOR pathway is dependent in three different
ways (1) the activating mutations in the mTOR, and mTORC1/2 or
mutations in upstream genes lead to hyperactivation of the mTOR
signaling(2) overexpression/amplification of the components of
mTORC1 and mTORC2 (3) loss of function of negative regulators in
themTOR signaling cascade.85 The gain of the functionmutations in
the kinase domain of mTOR can directly activate the mTOR
pathway. The genome sequencing of human tumors has reported
approximately 33 mutations in the mTOR gene. These mutations
were associated with the activation of the mTOR pathway in
colorectal cancer, endometroid carcinoma, stomach cancer, lung
carcinoma, renal cell carcinoma (RCC), and melanoma.86 This study
displayed thatmTORmutations were clustered in six distinct regions
in the c-terminal part of mTOR in human tumors. These mutations
did not affect the mTOR complex assembly but suppressed the
binding of DEPTOR. Interestingly, the cell lines withmTORmutations
displayed marked sensitivity to mTOR inhibitors in both in vitro and
murine models.86 Moreover, mutations in the components ofmTOR
complexes have been observed in several cancers. For instance,
RICTOR was reported to be highly amplified in patients with lung
and breast carcinoma. The RICTOR amplification in squamous cell
lung carcinoma was linked with a bad prognosis and short
survival.87 Further, this study showed the sensitivity of mTORC1/2
inhibitors against RICTOR-amplified lung cancer cells. Interestingly,
the patient was treated with mTORC1/2 inhibitors and displayed
stabilization of the tumor for at least 18 months.87 Joly et al. also
confirmed that RICTOR was robustly expressed in the HER2-
amplified breast carcinoma specimens which in turn enhanced
phosphorylation of AKT at S473 residue.88 A case study by Shamieh
and colleagues reported that amplification in the RICTOR gene was
associated with metastasis and drug resistance in TNBC.89 Also,
upregulation of RICTOR was associated with increased mTORC2
activity which promoted the cellular motility and proliferation of the
glioma cell.90 In addition, the hyperactivation of mTOR signaling can
be the result of mutations in the upstream genes, including
oncogenes and tumor suppressor genes.34,91 Gao et al. have
reported the overexpression of Rheb1 in acute myeloid leukemia
(AML) that was associated with worse median survival. Depletion of
Rheb1 in the murine MLL-AF9 model displayed increased survival
through suppression of mTOR signaling.92 Ghosh et al. reported the
mutations in FAT domain of the mTOR gene in RCC. This study also
identified Rheb mutations in patients with RCC leading to an
increase in mTORC1 activity.93 The mutations, amplification, and
overexpression of PIK3CA, KRAS, AKT, IGFR, and EGFR are more
common in cancer, which are upstream molecular targets for mTOR
complexes resulting in the activation of the mTOR signaling cascade
in human malignancies. PIK3CA mutations are frequently observed
in a variety of cancers, including breast, colorectal, and ovarian
cancer, and result in the activation of the PI3K/AKT/mTOR cascade.
Similarly, mutations in KRAS, a key mediator of cell growth and
differentiation, can lead to the marked activation of the mTOR
signaling and contribute to the process of carcinogenesis. Also, the
inactivation of the p53, PTEN, STK11, and TSC1/2 was noticed to
enhance the activation of the mTOR signaling cascade in human
tumors.34,94 The loss of p53 function can contribute to oncogenesis
through multiple mechanisms, including promoting cell prolifera-
tion and survival, reducing apoptosis, and increasing genomic
instability.95 The emerging data from various sources have shown
that p53 can negatively regulate mTOR signaling by inducing the
expression of the mTOR inhibitor, REDD1, and by inhibiting the
expression of S6K1, a downstream target of mTOR. In the absence of
functional p53, these negative regulatory mechanisms are dis-
rupted, leading to increased activation of the mTOR pathway and
promoting tumor growth and survival. Additionally, p53 inactivation
can lead to increased expression of growth factors and cytokines,
such as IL-6, that can activate the mTOR pathway through other
mechanisms. Alterations of PTEN were reported in breast, multiple
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myeloma, and endometrial cancers, and treatment with mTOR
inhibitors displayed strong antitumor activity in these cancers.96–98

Inactivation of TSC1/2 has been observed in tuberous sclerosis and
can initiate tumorigenesis. The TSC1/2mutations have been noticed
in many cancers like pancreatic neuroendocrine, urothelial, bladder,
and renal.99–101 Another side of mTOR signaling is to control the
cellular growth and metabolism of the cancer cells through
enhanced ribosome biogenesis. Recently, the mTOR complex has
been shown as a nutrient sensor in cancer metabolism which
includes glucose, lipid, amino acids, nucleotides, growth factors, etc.

Long noncoding RNAs (lncRNAs) as a regulator of mTOR signaling
in cancers
LncRNAs are >200 nucleotides long RNAs with a close structure of
the mRNA that includes 3′-polyadenylated tails, 5′-caps, transcrip-
tion start site, and splicing resulting in a final gene product
(transcript) but do not code for protein.102–105 The lncRNAs
perform their function by acting as a signal molecule, decoy,
guide, and scaffold.106–109 During the last decade, a variety of
studies have revealed that dysregulated expression of lncRNAs
can modulate mTOR signaling and vice versa.110,111 The lncRNAs
can modulate the mTOR activity in several ways, including (1)
direct binding to components of the mTOR complexes and (2)
regulating upstream or downstream targets of mTOR. DLEU1 and
HAGLROS lncRNAs were reported as direct targets of the mTOR
complex through RNA immunoprecipitation.112 DLEU1 was over-
expressed in endometrial carcinoma than in healthy endome-
trial.112 The overexpression of DLEU1 showed a significant
increase in proliferation, clonogenicity, and migration while
suppressing apoptosis through the mTOR pathway. Overexpres-
sion of DLEU1 resulted in the phosphorylation of mTOR and
subsequent activation of downstream targets like PI3K, AKT, and
pS70K. This study suggested that DLEU1 enhanced endometrial
carcinogenesis through its binding with mTOR protein and
activation of the PI3K/AKT/mTOR axis.112 Chen and colleagues
have noticed that overexpression of HAGLROS was associated
with worse outcomes in patients with gastric cancer.113 Silencing
of HAGLROS suppressed the expression of the mTOR leading to
increased expression of ATG9A and ATG9B. Moreover, HAGLROS
was found to control mTOR signaling through the sponging of
microRNA-100-5p (miR-100-5p) to activate mTOR and its interac-
tion with mTORC1 components to stimulate the mTORC1 path-
way.113 However, these interactions need to be confirmed
through other assays based on RNA/protein crosslinking methods.
Several lncRNAs are found to regulate upstream and downstream
molecules of the mTOR complex to modulate the mTOR pathway.
For example, the NBR2 lncRNA was found to function through the
LKB1-AMPK by maintaining the NBR2-AMPK feedback-forward
loop. Further, the RNA pulldown experiments confirmed the
interaction of NBR2 with the AMPK-α subunit. This interaction was
markedly enhanced under glucose starvation conditions. NBR2
regulates cell growth, autophagy, and apoptosis in response to
energy-related stresses through mTOR signaling.114 MALAT1
lncRNA was found to act as oncogenic lncRNA in hepatocellular
carcinoma (HCC) via splicing factor SRSF1/mTOR/S6K1 axis.115

Overexpression of LINC00152 was reported to increase HCC
tumorigenesis regulating the EpCAM expression through mTOR
signaling cascade.116 Another study displayed that H19 lncRNA
was downregulated in human pituitary adenomas. Forced
expression of H19 suppressed the cellular proliferation and tumor
growth of pituitary cancer cells. Mechanistically, H19 interacts with
4E-BP1 which hampered the 4E-BP1 interaction with Raptor.117

This study displayed the potential role of the H19-mTOR-4E-BP1
axis in pituitary tumors.117,118 LINC00963 overexpression was
associated with poor prognosis, cell proliferation, invasion, and
metastasis in non-small cell lung carcinoma (NSCLC). RNA
precipitation and mass spectrometry analysis confirmed that
LINC00963 interacts with PGK1 which in turn caused activation of

AKT/mTOR signaling cascade in NSCLC.119 Several groups have
displayed that altered lncRNA expression can change mTOR
activity or vice versa. The upregulation of the GAS5 lncRNA
inhibited the tumorigenesis of gastric carcinoma through the
miRNA-106a-5p/AKT/mTOR axis in both in vitro and nude mice
xenograft models.120 Restoration of the GAS5 expression
enhanced the sensitivity of the cisplatin in glioma through
mTOR-mediated autophagy.121 Depletion of CASC9 suppressed
the tumor growth of OSCC xenograft by autophagy-dependent
apoptosis via AKT/mTOR pathway.122 Silencing of TUG1 lncRNA
caused apoptosis of HCC cells through mTOR signaling. Moreover,
this study used both the activators and inhibitors of the mTOR/S6K
pathway and confirmed that TUG1 controls HCC growth via the
mTOR/S6K axis.123 CRNDE is one of the highly overexpressed
lncRNA in patients with glioma and glioma cell lines. Over-
expression of CRNDE promoted the growth, clonogenicity,
invasion, and migration of glioma cells through increased
expression of P70S6K. Mechanistically, the acetylation of histones
at the promoter region can lead to the upregulation of CRNDE.124

HULC has been found to regulate many cellular processes that are
overexpressed in human malignancies. Depletion of HULC
decreased angiogenesis, proliferation, and invasion by inhibiting
the phosphorylation of ERK/AKT/mTOR and downstream target
eIF4E.125 The UCA1 lncRNA was found to support the increased
glycolysis due to the activation of hexokinase 2 via the mTOR-
STAT3/miRNA143 axis in bladder cancers.126 ZNNT1 lncRNA is
localized on chromosome-8 and has only a single exon. ZNNT1
was identified as a downstream target of the mTOR pathway.
ZNNT1 expression was induced upon treatment with rapamycin in
uveal melanoma.127 The overexpression of the ZNNT1 was
reported to induce autophagy that regulates tumorigenesis by
regulating the expression of ATG12 in uveal melanoma.127 We
have discussed the role of several other lncRNAs involved in the
mTOR signaling in Fig. 4. However, the molecular mechanism(s)
behind the deregulation of the lncRNA/mTOR axis need to be
investigated in greater detail.

Role of the mTOR signaling in cancer stem cells
CSCs have been characterized as a unique sub-population that has
the ability of self-renewable, metastasis, and drug resistance
leading to relapse.102,128 During the last decades, CSCs have been
observed in a variety of human cancers, including ovarian,
pancreatic, breast, liver, and lung.129,130 Several groups have
displayed the involvement of the Wnt/β-catenin, Hedgehog,
STAT3, TGF-β, PI3K/AKT/mTOR signaling cascade in the CSCs.
Recently, mTOR signaling has been reported to be critical for CSC
self-renewal, maintenance, and tumorigenicity. Zhou et al. have
shown the potential role of mTOR signaling in breast cancer stem
cells that increased the clonogenic ability and tumor formation
in vitro and xenograft models, respectively.131 Treatment of HCC
with branched-chain amino acids resulted in the activation of
mTORC1. Further, the overexpression and silencing approach
displayed that mTORC1 activation or silencing of mTORC2
inhibited the CSC population and tumorigenicity by suppressing
the expression of EpCAM in HCC.132 The activation of the PI3K/AKT
pathway was noticed in glioblastoma multiforme (GBM) neuro-
spheres. Interestingly, the combination of alpelisib with pharma-
cologic mTOR inhibition led to a dramatic and significant decrease
in the growth of glioma stem cells.133 In another study, the
silencing of mTOR or the treatment of rapamycin in A172 cells
resulted in the repression of NSC/progenitor markers in GSCs
leading to decreased sphere formation. NVP-BEZ235 (PI3K/mTOR
inhibitor) treatment demonstrated a significant decrease in the
growth of GSCs derived from patient samples in xenograft
models.134 Importantly, the Yamanaka stem cell factors were used
to generate CSCs for understanding the molecular basis of CSCs in
human breast cancer cells. This study observed that transcriptional
suppression of mTOR repressors plays an important role during
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the attainment of the CSCs-like characteristics.135 This has been
reported that PTEN/PI3K pathway is essential for sphere formation
and maintenance of CSCs in prostate carcinoma. The NVP-BEZ235
(PI3K/mTOR inhibitor) was effective in suppressing the CSCs and
growth of prostate cancer.136 The hyperactivation of the PI3K/Akt/
mTOR pathway was linked with the upregulation of CXCR4 in
A549 gefitinib-resistant (A549-GR) lung cancer cells. This study
showed that the population of CXCR4+ cells is quite high in the
A549-GR cell and has a high capability of self-renewal in vitro and
tumorigenicity in the murine model. The CXCR4-mediated
STAT3 signaling was also active in A549-GR cells, indicating its
importance during the stemness in lung cancer cells.137 A study
found that phosphorylated IGF-1R was markedly high in breast
cancer stem cells (BCSCs) which resulted in mammosphere and
tumorigenicity. Interestingly, rapamycin (mTOR inhibitor) dis-
played a significant reduction in BCSCs in vitro and xenograft
model.138 Hoshii et al. have generated conditional knockouts of
Raptor, a component of mTORC1. Depletion of Raptor was
associated with the inhibition of leukemia in a murine AML
model through apoptosis of differentiated leukemia cells. Further,
the transplantation of Raptor-deficient AML cells demonstrated
that mTORC1 is critical for the initiation of leukemia, suggesting
that loss of mTORC1 supports the self-renewable ability of
leukemic stem cells (LSCs).139 Ghosh et al. have reported that

depletion of S6K1 enhanced the survival of mice transplanted with
MLL-AF9+ LSCs through AKT and 4E-BP1 phosphorylation. The
S6K1 can work through many targets of the mTOR signaling to
increase the renewal and progression of LSCs. The inhibitors
against PI3K/mTOR pathway sensitize chronic myeloid leukemia
stem cells with tyrosine kinases like nilotinib as well as restore the
response of progenitors against nilotinib even in the presence of
stem cell factor.140 On the other hand, pharmacological inhibition
of mTOR was reported with increased expression of CD133 in
gastric cancer both in time and dose-dependent fashion.141 Yang
and colleagues have revealed that suppression of mTOR signaling
markedly blocked the conversion of CD133+ to CD133− in liver
cancer. In xenograft models, the treatment of rapamycin enriched
the population of CD133+ cells and promoted tumorigenesis of
HCC cells.142 Altogether, the data from several groups suggested
the dual role of mTOR signaling in cancer stem cells in human
malignancies. This might be because of different cell types.
Therefore, careful thoughts are needed to use mTOR inhibitors
against different cancer types.

Resistance to mTOR inhibitors in human cancers
Drug resistance is one of the most serious problems during the
treatment of human cancers in clinics. Several reasons for drug
resistance include (1) tumor heterogeneity, (2) clonal selection, (3)

Fig. 4 The association of long noncoding RNAs in mTOR signaling. The lncRNAs act as a sponge for miRNA that controls the expression of the
upstream or downstream protein coding gene involved in the mTOR signaling cascade. DLEU1 and HAGLROS can directly bind with mTOR
whereas FA2H-2 and NBR2 lncRNA regulate mTOR signaling through AMPK. LINC-ROR, CRNDE, DANCR, and LINC01133, regulate mTORC2-
mediated signaling. HULC, ZNNT1 activate elF4E, H19 inhibit 4E-BP1, and CRNDE, DLEU1, TUG1, UCA1, and MALAT1 activate P70S6K1 to
modulate mTOR signaling. Created with BioRender.com
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evolution of new clones, (4) intrinsic resistance to cell death, (5)
complexity and crosstalk among signaling pathways, and adapta-
tion to other survival pathways. The mTOR inhibition revealed
promising anticancer efficacy in preclinical models. On the
contrary, resistance against mTOR inhibitors has been noticed in
several tumors. Efflux of the chemotherapeutic drugs by ABC
transporters is one of the essential molecular mechanisms of drug
resistance and poor outcomes of treatment. The overexpression of
ABC transporters has been noticed in a variety of cancer cell lines
treated with mTOR inhibitors. The mTOR inhibitors including
AZD8055 and rapamycin were confirmed as a substrate of
ABCB1.143 NVP-BEZ235 and AZD8055 were found to be trans-
ported through ABCG2.143 The Abcb1 and Abcg2 knockout mice
showed enhanced penetration of rapamycin, AZD8055, and NVP-
BEZ235 in the brain compared to wild-type mice.143 The
overexpression of the ABCB1 was associated with resistance to
everolimus in luminal breast cancer cells.144 NVP-BEZ235 was used
in combination with sunitinib against metastatic castration-
resistant prostate (mCRPC) cancer and resulted in a synergistic
antitumor effect.145 The resistance against PF-4989216 PI3K/mTOR
inhibitor was observed in lung carcinoma through ABCG2
upregulation. The resistance against PF-4989216 was reversed
by inhibition ABCG2.146 This was reported that LY3023414 acts as
a substrate for both ABCG2 and ABCB1 transporters. The
overexpression of ABCG2 and ABCB1 was shown to suppress the
intracellular uptake of LY3023414 leading to resistance in cancer
cells.147 To understand the mechanism of mTOR inhibitors
resistance in human cancers, a resistance screen was performed
in MCF-7 breast cancer cells and discovered somatic mutations
A2034V and F2108L in the FRB-FKBP12 domain of the mTOR to
acquire resistance against rapamycin. Also, the M2327I somatic
mutation in the kinase domain of the mTOR was observed in the
case of an ATP-competitive inhibitor AZD8055.148 Importantly, the
clinical relevance of somatic mutations has been supported when
the F2108L mutation was conferred in the patient who relapsed
after the treatment of everolimus in anaplastic thyroid carci-
noma.149 The mutant tumor cells showed sensitivity to mTOR
kinase inhibition. Somatic mutations in the kinase domain
including M2327I have been noticed in the drug-naive patients.86

ROLE OF THE MTOR SIGNALING IN AUTOPHAGY
Autophagy is one of the important processes which are critical for
cellular digestion to remove damaged organelles and macro-
molecules.150,151 Apart from this, autophagy is critical in main-
taining cellular equilibrium by providing energy and building
blocks under stress conditions.150,151 Autophagy was reported
when the electron microscope revealed the structure of vesicles
has amorphous materials and cytoplasmic organelles in the
kidneys of newborn murine.151–153 Later, studies have demon-
strated that the deprivation of amino acid can robustly enhance
the process of autophagy perfused livers of rats and mammalian
cells.151,152 Also, several groups have reported that amino acids
are one of the important regulators of the mTORC1 cascade.
Under nutrient and growth factor-deprived conditions, mTORC1
activity was reported to be suppressed, indicating that there is an
inverse relation between autophagy and activation of
mTORC1.154,155 The induction of autophagy through inhibition
of mTORC1 has been well studied in yeast and drosophila
models.6 Interestingly, the molecular basis of mTORC1 to regulate
autophagy in mammalian cells is quite recent and emerging.
mTOR controls autophagy through the regulation of a protein
complex composed of UNC-5-like autophagy-activating kinase 1
(ULK1), autophagy-related gene 13 (ATG13), and focal adhesion
kinase family-interacting protein of 200 kDa (FIP200). Studies have
revealed that mTORC1 can inhibit the ULK complex through the
phosphorylation of ATG13 and ULK1/2 (Fig. 5). Silencing of
mTORC1 was found to be associated with enhanced activity of

ULK1/2 kinase leading to phosphorylation ATG13 and FIP200, the
important components of ULK1/2 kinase complex.156 The mTORC1
was found to phosphorylate ULK1 at Ser-758 which in turn blocks
the interaction with AMPK halting ULK1 activation.157 Moreover,
mTORC1 was reported to decrease the stability of the ULK1
through phosphorylation of autophagy/beclin 1 regulator 1
(AMBRA1).158,159 The mTORC1 and AMPK control the activity of
the VPS34 complex which is needed for the generation of the
autophagosome.159 The ATG14L-associated VPS34 complex has
been noticed to play a crucial role in the regulation of
autophagy.160 Under nutrient stress conditions, AMPK stimulates
the autophagy VPS34 complex through phosphorylation of Beclin
1 while suppressing the non-autophagy VPS34 complex via
Thr163/Ser165 phosphorylation in VPS34. On the other hand,
mTORC1 leads to the phosphorylation of ATG14L in the VPS34
complex to suppress lipid kinase activity of VPS34, suggesting
another mechanism for autophagy inhibition through mTORC1.161

Moreover, the precise role of autophagy in human malignancies is
still not clear because activation or suppression of autophagy was
found to be tumorigenic or anti-tumorigenic. Emerging pieces of
evidence have shown that activated autophagy can suppress the
process of cancer progression, especially in precancerous lesions.
However, several studies indicated that autophagy acts to
promote tumor survival and growth in advanced cancers.162,163

Therefore, the inhibition of autophagy can be employed as a
therapeutic approach. Under stress conditions, autophagy sup-
ports the growth and survival of tumors, especially in poorly
vascularized tumors. Dysregulated autophagy has emerged as an
adaptive mechanism for the initiation and progression of human
cancers through the accumulation of DNA damage, macromole-
cules, organelles like mitochondria, oxidative stress, chromatin
instability.164,165 In addition, stress-induced autophagy has been
noticed with enhanced stemness and drug resistance in human
cancers.164,166

THE IMPORTANCE OF MTOR SIGNALING IN THE AGING
PROCESSES
Several studies have observed that mTOR signaling is involved in
the key processes associated with aging in a variety of living
organisms, such as worms, yeast, flies, and mammals. Initial
studies on the Caenorhabditis elegans (C. elegans) have noticed
that suppressed expression of the mTOR homolog known as
ceTOR or let-363 as well as Raptor known as daf-15 was associated
with an increased life span of almost more than double.167 The
mutations in the CeTOR and raptor were reported with dauer-like
larval arrest and suggested that CeTOR is important for the
regulation of dauer diapause. The let-363 and daf-15 mutants
displayed a marked shift in the metabolism that resulted in fat
accumulation and an extended adult life span.168 Later on, other
genetic screening studies also noticed that reduced mTOR
signaling enhanced the life span of the drosophila, yeast, and
murine models.169–171 Altogether, these studies have proved that
extended life span was highly dependent on nutritional condition
(glucose, fat, and protein metabolism) and a close association with
the mTOR pathway. Interestingly, rapamycin, a pharmacological
mTOR inhibitor has been proven to increase the life span in
different model organisms.172–174 This is well-established that
mTORC1 has a major role in nutrients and insulin sensing.
Therefore, the benefits of a calorie-restricted diet on life span are
because of the reduced mTORC1 signaling. This was confirmed
when a calorie-restricted diet did not extend the life span upon
inhibition of mTOR signaling in C. elegans, Drosophila, and
yeast.170,175 There are several thoughts regarding the role of
mTOR signaling in aging processes in mammalian systems. The
repression of the mRNA translation during mTORC1 inhibition was
correlated with slower aging by reducing oxidative and proteo-
toxic stress. This observation was the consistent loss of S6K1 that
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extends the life span, and resistance to age-related diseases like
compromised immunity, motor dysfunction, and loss of insulin
sensitivity in mammals.176 Also, the loss of S6K1-induced gene
expression was similar to a calorie-restricted diet or pharmacolo-
gical activation of AMPK.176 RNA polymerase III (POL III) was
reported to play a critical role in nutrient signaling, and anabolic
activities to accelerate aging by mTORC1.177 There is another
possibility that the depletion of mTORC1 could modulate aging via
autophagy. Moreover, this was thought that the attenuation of
adult stem cells could be central in maintaining aging processes.
Rapamycin treatment was found to increase the self-renewal
ability of hematopoietic stem cells and the life span of old age
mice.178,179 Other studies revealed that mTORC1 and SLC7A5
regulate the self-renewal of intestinal stem cell self-renewal and
Paneth cell function in maintaining intestinal niche and physiol-
ogy.180,181 The depletion of foxo was found to restore stem cell
aging in germline stem cells of drosophila.182 Interestingly, the
phase IIa clinical trials were conducted on 264 volunteers with an
age of ≥65 years of age at 12 clinical sites to evaluate the safety,
and efficacy of mTOR inhibitors to boost immune responses.183,184

The low dosages of everolimus markedly decreased the rate of
infections and enhanced the vaccination response against
influenza with increased antiviral immunity.184 Based on these
data, alternative rapamycin dosage regimens were proposed for
better longevity with minimal side effects.185 Altogether, mTOR
inhibition can increase life expectancy and help delay the onset of
age-associated diseases. However, the duration of the treatment

should be decided carefully as it can produce severe side effects
like immunosuppression and glucose intolerance.

MTOR SIGNALING IN NEUROLOGICAL PROCESSES, BRAIN
DEVELOPMENT, AND NEUROLOGICAL DISEASES
The emerging research studies displayed that mTOR signaling is
one of the important regulators of neurological processes like
neural stem cells, neural development, synaptic plasticity, circuit
formation, learning, and memory.186 Ablation of Rictor or Raptor in
neurons was found to decrease the neuron size and early
death.187 The depletion of Rictor or Raptor was shown to have a
differential impact on the differentiation of the oligodendrocyte
and myelination of the central nervous system. These data
revealed the importance of mTORC1 and mTORC2 during brain
development.187 On the contrary, the hyperactivation of the
mTORC1 pathway was observed in the brain and well-
documented in human patients with TSC. These patients have
been shown with several neurological disorders such as autism,
intellectual disability, epilepsy, anxiety, sleep disturbances, and
brain tumors.188,189 TSC has been characterized as an autosomal
disorder caused by the loss of either TSC1 or TSC2. Moreover, the
hyperactivation of mTORC1 because of the Tsc1 or Tsc2 loss in the
neural cells in the murine models displayed severe epileptic
seizures. The rapamycin treatment was effective in reducing
epileptic seizures in these mice.190 The mutations in components
of the KICSTOR and GATOR1 complexes were associated with

Fig. 5 Key events involved in mTOR-mediated autophagy. The mTORC1 suppressed the ULK1 complex activity via phosphorylation of ULK1/
ATG13. The mTORC1 can help in the translocation of TFEB in the nuclear compartment to regulate the process of autophagy. The mTORC1 has
an important role in the induction of autophagy, nucleation, phagosome elongation, autolysosome formation, and finally degradation
through lysosomes. Created with BioRender.com
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epilepsy in humans. Recently, the retrospective analysis of TSC
patients treated with everolimus or sirolimus under the age of 2
years has reported promising benefits on epilepsy.191 This study
for the basis for the testing of mTOR inhibition in a large cohort of
patients with TSC. The mTORC1 activation in tissue stems
promoted mRNA translation near synapses which required
neuronal circuit formation. Further, inhibition of mTOR signaling
was found to block the ketamine-induced synaptogenesis and
behavioral responses.192 The mTORC1-mediated autophagy was
found to be strongly correlated with the pathogenesis of
neurodegenerative disorders like Alzheimer’s disease (AD), and
Parkinson’s disease (PD). The rapamycin treatment was found to
inhibit the progression of AD and increase the life span in the
diseased model of AD.193 Rapamycin is used in clinical settings
and has shown promising effectiveness against AD and emerged
as a potential therapeutics.194 Dactolisib treatment was shown to
protect the AD in a transgenic murine Alzheimer model.195 In the
future, next-generation mTOR inhibitors can be designed and
tested in AD and PD mice models for better drugs.

ROLE OF MTOR SIGNALING IN MAINTAINING THE IMMUNE
RESPONSE
Recent reports have uncovered a significant regulatory function of
the mTOR pathway not only in cancer but also in the
differentiation, activation, and functional characteristics of
immune cells.196 Tumors can evade the immune system by
dampening its ability to detect and eliminate cancer cells.197

Recent research has focused on tumor immunotherapy as a
promising approach to tackle this challenge. Multiple studies
indicate that the mTOR pathway, which is frequently overactive in
tumors, plays a role in controlling the development and
effectiveness of immune cells.5 Moreover, mTOR signaling plays
a vital role in enabling T cells to perceive and merge immune
signals originating from dendritic cells (DCs).198 These signals have
been found to involve cytokines, co-stimulatory molecules, and
antigenic signals as well as environmental cues derived nutrients,
growth, and immunoregulatory factors.198 T cells rely on mTOR
signaling to sense and integrate this comprehensive array of
immune and environmental inputs. Studies have identified that
TSC1 acts as most crucial for maintaining the naive T-cell
quiescence and survival to maintain immune homeostasis.199,200

The T cells that were deficient for PTEN were reported to
upregulate mTORC1 activity to maintain their quiescence before
tumorigenesis indicating the importance of mTORC1 on T-cell
homeostasis.201 Other studies have displayed that phosphoryla-
tion of liver kinase B1 or STK11 phosphorylates stimulates AMPK
under energy deprivation. Further, deletion of Lkb1 in T cells
caused massive T-cell apoptosis while compromising thymic
selection, altered metabolism, and proliferation of T cells.202,203

The stimulation of T- and B-cell receptors as well as other cytokine
receptors, such as the IL-2 receptor, causes mTOR to become
active in the adaptive immune system. In cytokine-stimulated
T cells, mTOR regulates the transition from the G1 to the S phase
of the cell cycle.204,205 In addition, once T cells are activated by IL-
12, mTOR may drive the development of Th1 cells by stimulating
the production of IFN-ϒ.206 Further, studies have reported that the
antigen recognition by naive T cells leads to the mTOR activation,
which guides the differentiation of CD4+ T cells into the T-helper
cell effector lineages. Also, mTOR was shown to regulate the
effector fate of CD8+ T cells during tumor immunity and
infections.207 Interestingly, several studies have primarily focused
on mTOR inhibitor rapamycin’s ability to hinder T-cell proliferation
and IL-2 production and induce anergy (a cellular state when the
lymphocytes fail to respond upon stimulation), even in adequately
stimulated T cells.196,198,205 Upon T-cell receptor (TCR) stimulation,
both mTORC1 and mTORC2 are activated. The mTORC1 was found
to influence the effector responses of T cell (CD8+) whereas

mTORC2 activity was associated with metabolic reprogramming to
generate memory T cell (CD8+).208 The extent of mTOR activation
is directly linked to the duration of the interaction between T cells
and DCs, as well as the amount of the corresponding antigen
(Fig. 6). In addition, co-stimulatory signals exert a significant
influence on mTOR activity. CD28-mediated co-stimulation, a well-
known activating signal for the PI3K–AKT pathway, enhances the
mTOR activity induced by TCR stimulation. This synergistic effect
facilitates effective T-cell activation by upregulating mTOR
function. The role of mTOR signaling in B-cell development,
differentiation, and function is less studied than in T-cell
development. The mTOR hypomorph mouse model was gener-
ated by neo-insertion which partially disrupts mTOR transcription.
This murine model displayed a partial block of large pre-B to small
pre-B stages of B-cell development and compromised proliferation
in response to B-cell mitogenic signals. B-cell receptor (BCR) and
CD40 signaling were more highly compromised than TLR
signaling.209,210 This resulted in the alteration in the splenic
populations, production of antibodies, and migration towards
chemokines.209 The deficiency of SIN1 resulted in the increased
expression of IL-7 receptor (il7r), rag1, and rag2 which is
responsible for increased V(D)J recombinase activity and survival
of the pro-B-cell. This study showed that Akt2 mediates the Sin1-
mTORC2-dependent inhibition of il7r and rag gene expression
which in turn control the phosphorylation of FoxO1 during B-cell
development. Interestingly, mTOR inhibition using rapamycin
enhanced rag expression and V(D)J recombination in B cells. This
study indicated Sin1/mTORC2-Akt2/FoxO1 axis is critical in B
cells.211 Rictorfl/flMx1-Cre mice displayed an increase in the
population of pro-B, pre-B, and immature B cells with a significant
decrease in mature B cells.212 The deficiency of Rictor in B cell
resulted in the upregulation of IL-7R, RAG1, and decreased
phosphorylation of Foxo1.212In the absence of T-cell antigens,
the mTOR signaling can regulate antigen titration which regulates
B-cell activation. Also, the activation of mTOR signaling by BCR
stimulation and repression of the mTOR pathway by Fc receptor
signaling exhibited the crucial role of mTOR in regulating
B-cell functions.213 Raptor was specifically deleted in the murine
B cell by crossing Raptorfl/fl mice with Mb1-Cre transgenic mice.
Raptorfl/flMb1-Cre model demonstrated the block in the early pre-
B-cell stage with the loss of immature and mature peripheral B
cells. Raptor-deficient pre-B cells were found to have reduced
survival, proliferation, oxidative, and glycolytic metabolic capa-
city.214 Interestingly, the treatment of these mice with Rapamycin
recapitulated the early block during B-cell development, and loss
of immature B cells with the accumulation of pre-B cells.214

Recently, transcriptomic analysis of the B cells displayed that
follicular B cells upregulate a network of unfolded protein
response genes before the secretion of antibodies. The transcrip-
tion of unfolded protein response genes needs Raptor and
mTORC1 kinase adapter. This study suggested that B cells exploit
mTORC1 for subsequent plasma cell function and prior antibody
production without Xbp1 activity.215

Growth factors, TLR ligands, cytokines, and other extracellular
signals can all activate the mTORC1-mTORC2 network in innate
immune cells.216 Studies have demonstrated that mTOR signaling
also plays a crucial role in the differentiation and function of
dendritic cells (DCs) and natural killer (NK) cells.217 DCs possess
strong antigen presentation abilities, and NK cells are important
immune cells involved in tumor surveillance.218–220 Previous studies
have reported that both mTORC1 and mTORC2 exert distinct effects
on NK cell function.221 While mTORC2 negatively regulates NK cell
function by inhibiting the STAT5/SLC7A5 axis, mTORC1 positively
regulates mTORC2 activity, thereby promoting the CD122-mediated
interleukin-15 signaling pathway.222 The cytokine interleukin-15 (IL-
15) induces mTOR activity in NK cells in both humans and mice.
Additionally, recent studies have linked DCs to the mTOR signaling
pathway. Inhibition of mTOR in DCs has been shown to improve
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their antigen presentation capabilities and enhance the activation
of cytotoxic CD8+ T lymphocytes, resulting in increased antitumor
activity.223,224 Therefore, mTOR inhibitors hold promise for enhan-
cing the efficacy of tumor immunotherapy and autologous DC-
based vaccination by extending the life span of DCs and improving
their antigen-processing abilities.
Macrophages, specifically the M1 and M2 subtypes, play critical

roles in tumor development and progression.225,226 M1 macro-
phages can kill tumor cells, while M2 macrophages promote
tumor growth, invasion, and metastasis.227 Dysregulation of the
mTOR pathway has been implicated in the polarization and
function of macrophages. For instance, decreased expression of
miR-30c, which inhibits mTOR activity, leads to the inhibition of
M1 macrophage differentiation and function, ultimately promot-
ing tumor growth and metastasis.5 These findings highlight the
intricate relationship between the mTOR pathway and macro-
phage polarization, shedding light on potential therapeutic
strategies to modulate immune responses in the tumor micro-
environment.196 Studies have shown that enhanced PI3K and
mTOR signaling in mouse macrophages leads to increased M2
macrophage markers and activation of the STAT6 pathway, which
promotes M2 polarization.228 Conversely, inhibiting mTORC1 in
human macrophages enhances M1 polarization. However, the role
of mTORC1 and mTORC2 can be complex, as the deletion of Tsc1,
a component of mTORC1, can promote both M1 and M2
polarization depending on different pathways.229 AKT, another

protein in the pathway, also has isoform-specific effects on
macrophage polarization. The PI3K–AKT–mTOR pathway is
involved in sensing these cues and affecting macrophage
polarization, although the mechanisms are not fully understood.
Taken together, mTOR inhibition has enormous potential for
vaccine development to boost immunity against human malig-
nancies and pathogens.

OPPORTUNITIES AND CHALLENGES OF MTOR SIGNALING IN
CANCER THERAPEUTIC TARGETING
Rapamycin is a natural macrocyclic lactone that is obtained from
the bacterium Streptomyces hygroscopicus.230,231 After the dis-
covery of rapamycin, researchers continued to explore the related
targets and signaling involved at the molecular and cellular
levels.230,232 The FKBP12 and FKBP51 expression was found to be
the rate-limiting factor that decides the rapamycin drug response
in cell lines and tissues.233 This led to the discovery and
development of various moieties including synthetic/semisyn-
thetic which were active against mTOR-induced oncogen-
esis.232,234,235 Sirolimus is another approved biochemical
functional form of rapamycin that displayed target-specific
inhibition.236 Sirolimus has been found to impair the molecular
interaction between mTOR and Raptor by targeting
mTORC1.234,237,238 Sirolimus is an oral drug that has high protein
binding, an elimination half-life of 57–63 h, high drug distribution

Fig. 6 The mTOR signaling is crucial for modulating the key immune responses. The activated dendritic cells can present the antigen through
T-cell receptors that initiate activation, proliferation, and differentiation of invariant natural killer T cells, CD4+, and CD8+ T cells through
stimulation of mTOR. The higher levels of mTOR determine the metabolic active state while lower levels of mTOR define the quiescent state of
the T- and B cells. The absence of mTOR signaling during differentiation of naive CD4+ T cells generates T-regulatory cell and T-follicular
helper cell. The high mTOR activity during activation of naive CD4+ T cells supports the expression of the crucial transcription factors needed
for their differentiation into Th1, Th2, and Th17 cells. T-follicular helper cells activate the germinal center to generate antibodies. Created with
BioRender.com
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to the circulation, and is metabolized by the hepatic enzymes like
CYP3A4, CYP3A5, and excretion through p-glycoprotein.239

Sirolimus was approved by FDA for organ transplantation as an
immunosuppressive agent in the year 2009. Interestingly,
therapeutic drug monitoring was found to be a critical aspect
during sirolimus treatment.240 Siromimus received FDA approval
in the year 2015 for lymphangioleiomyomatosis based on the
efficacy reported in clinical trials (ClinicalTrials.gov number,
NCT00457808, and NCT00414648).241,242 Nab-sirolimus (albumin-
bound nanoparticles-based sirolimus formulation) displayed a
strong antitumor effect in cases with perivascular epithelioid cell
tumors (PEComa). Nab-sirolimus was finally approved by FDA after
the success of the AMPECT phase-II trials against metastatic or
unresectable PEComa in 2021.243 Recently, Nab-sirolimus is going
through a clinical trial in solid tumors with genetic mutations in
TSC1 and TSC2.244The poor bioavailability of the drug led
researchers to focus mainly on improving its pharmacokinetics
and stability without disturbing its pharmacodynamic profile.245

Two sides are obligatory to interact with FKBP12 and mTOR
providing few options for structural modifications. Synthetic
analogs or derivatives thus designed, synthesized, and biologically
evaluated by replacing the hydrogen of –OH (C-40) with different
moieties led to the development of several newer analogs.246

These analogs have been named Rapalogs with improved
pharmacokinetics and stability without disturbing their pharma-
codynamic profile. Temsirolimus (a rapalog) was designed by
replacing H of the hydroxyl group (C-40) with di-hydroxyl methyl
propionic acid ester and was finally authorized by the FDA for the
treatment of the patients with metastatic RCC in the year 2007
due to very high bioavailability, specificity, long half-life, good
excretion through fecal and urine.247–250 Temsirolimus is well-
characterized pharmacological derivative of sirolimus. Temsiroli-
mus was reported to interact with FKBP12 that resulted in the
formation of a strong trimolecular complex with mTOR. Temsir-
olimus was found to be equivalent to sirolimus in terms of its
inhibitory activity against mTOR kinase both in the cellular and
cell-free systems.251 Temsirolimus was noticed with remarkable
antitumor potential in human preclinical and clinical trials for
cancers as a single agent (monotherapy) or in combination with
other chemotherapeutic agents in refractory/relapsed acute
lymphocytic leukemia, cervix, endometrial and ovarian can-
cers.252–256 Everolimus was designed as an immunosuppressive
drug by replacing H of the hydroxyl group (C-40) with a
hydroxylethyl group.257 Everolimus is an orally administered drug
that possesses high protein binding, and a good half-life, is
metabolized mainly through CYP3A enzyme, has good blood-
brain penetration, and is eliminated by feces and urine. This has
been observed that both temsirolimus and everolimus demon-
strated anticancer activity in murine models.9 Importantly, these
are commonly used chemotherapeutic agents for treating
advanced-stage RCC in the clinic. Everolimus is used for patients
with advanced breast carcinoma or neuroendocrine pancreatic
carcinoma.258–260 The combination of exemestane to everolimus
markedly enhanced the progression-free survival in HR(+) breast
carcinoma and reduced recurrence in breast cancer trials of oral
EveROlimus-2 (ClinicalTrials.gov; NCT00863655). The combination
of everolimus with sunitinib/AZD2014 was not tolerated in the
cases with metastatic RCC during clinical trials suggesting that the
combination of two parallel signalings should be thought care-
fully.261–263 The everolimus was found to be effective in clinical
phase-II trials in patients with advanced thyroid carcinoma with
low toxicity and further trials are needed using combination
therapy.264 Recently, everolimus was used combined with T-DM1
which resulted in marked antitumor efficacy in HER2-positive
breast cancer, suggesting the importance of mTOR-dependent
lysosomal processing of T-DM1.265 Everolimus and letrozole were
correlated with a promising progression-free survival till 12 weeks
of ER+ relapsed high-grade ovarian carcinoma in phase-II clinical

trials.266 Everolimus was used in combination with rituximab and
reported complete responses in patients with relapsed diffuse
large B-cell lymphoma (DLBCL) under NCT00869999 (Clinical-
Trials.gov).267 Everolimus treatment has been found to reduce the
size of subependymal giant-cell astrocytomas and the frequency
of seizures (ClinicalTrials.gov, NCT00411619) in these patients.268

Everolimus has reported promising anticancer efficacy in patients
with pancreatic neuroendocrine tumors during clinical trials
(RADIANT-3, NCT00510068) and received FDA approval.269 Ever-
olimus was given approval by the FDA in the year 2016 for clinical
use in patients with neuroendocrine tumors of the gastrointestinal
tract or lung origin.270 Ridaforolimus is the FDA-approved small
molecule inhibitor of mTOR(C-40 phosphine oxide substituted
formulation of rapamycin) which is available orally or intrave-
nously for the treatment of human soft tissue and bone sarcoma
in phase-II clinical trials (ClinicalTrials.gov; NCT00093080) and
results showed remarkable efficacy and safety.271–273 The results
of the phase-III international randomized clinical trial of ridafor-
olimus (NCT00538239) displayed tumor regression in the patients
with metastatic sarcomas compared to the placebo control
group.272,274 Ridaforolimus displayed potent antitumor activity in
advanced endometrial cancer with significant side effects and
represent a viable therapeutic agent for PI3K/Akt/mTOR pathway
in trastuzumab-resistant and HER2-positive metastatic breast
carcinoma and hematological malignancies.273–277 The safety
and efficacy profiling of the vistusertib/ AZD2014 was evaluated
in a variety of preclinical and clinical studies against human
cancers.278,279 Further, the AZD8055 is another very specific and
highly potent dual mTORC1/2 inhibitor with superior anticancer
effect in a variety of human malignancies.280,281 In the case of
leukemia, the AZD8055 treatment displayed enhanced prolonged
survival of AML transplanted mice while suppressing the growth
of the leukemic cells with managed toxicity profile.282–284 These
rapalogs were also evaluated for their anticancer activity for the
treatment of advanced-stage cancers including liver, gastric,
endometrial, lung, and mantle cell lymphoma.7,9 Rapalogs have
been reported to block mTORC1 substrates selectively and
effectively. mTORC1 inhibition and S6K1-dependent pathway
inhibition by rapalogs were reported to result in feedback
activation of PI3K, Ras/MAPK, mTORC2, RTK’s, and AGC kinases.285

Feedback activation of these proteins and pathways was found to
compromise the mTORC1 inhibition in disease stabilization,
protein biosynthesis, and cell cycle contributing to the develop-
ment of resistance to rapalogs. O’Reilly et al. found that sirolimus
therapy augments AKT phosphorylation at Ser473 residue. The
phosphorylation of AKT was also prominent in tumors from
patients receiving everolimus as a part of treatment. On the
contrary, this has been observed that despite disrupting the S6K-
IRS-1-negative feedback loop, sirolimus therapy was potent in
preventing carcinogenesis. Also, the genetic variations of the
factors associated with the mTOR signaling pathway in cancer
cells contribute to de novo resistance to the drugs targeting
mTOR.286 A twist in the mTOR story has emerged with the finding
that mTORC2 can directly phosphorylate AKT and stimulate a
downstream signaling cascade. Unexpectedly, it was noticed that
rapamycin can inhibit AKT by disrupting mTORC2 assembly in a
few types of cells.287 These discoveries raise many questions
regarding the development and application of mTOR inhibitors. To
overcome these limitations new strategies were designed and
explored. These strategies included combination therapy which
includes rapalogs in combination with chemotherapeutic drugs
such as paclitaxel or carboplatin and the development of
inhibitors that can target both mTOR and PI3K.9,288–291 Pharma-
ceutical companies and academic laboratories have developed
numerous such inhibitors by exploiting the structure of the ATP
binding pocket of kinases and the small ATP-competitive
molecules. Because of sequence similarity among the PI3K and
mTOR, several PI3K inhibitors were found to inhibit mTOR
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activities. These were called dual PI3K/mTOR inhibitors289 and
displayed promising activity to overcome the negative feedback
associated with resistance of rapalogs. Because of the diverse
functions of different isoforms of PI3K, these dual inhibitors were
not well tolerated owing to potential toxicities. These drawbacks
fueled the development of inhibitors with higher mTOR specificity
than PI3K.292 Researchers then focused on designing such
inhibitors that inquest the development of a series of such
specific inhibitors. Preclinical and early clinical studies revealed
that TOR-KI inhibitors can stop the cell cycle in the G1 phase and
suppress the transcription of cyclin D1, which is mTORC1
dependent and activated by AKT.9,293 These inhibitors also inhibit
the activity of Akt and SGK1, which phosphorylate p27, leading to
better inhibition of cyclin-CDK2. By inhibiting the production of
HIF-2α, TOR-KI inhibitors prevent RTK accumulation and growth
factor independence, which is favored by HIF-1 and 2α leading to
autonomous growth.1,9 Irrespective of the good preclinical and
early clinical status of TOR-KI, it was observed by the researchers
that the TOR-KI treated cells attenuated mTORC2-mediated
phosphorylation of AKT at S473 residue but mTORC1 inhibition
can still promote the feedback activation of PDK1 and PI3K
derived AKT phosphorylation at T308. This suggested the modest
substrate dependency of AKT phosphorylation specifically at S473
residue.294 Although the TOR-KI efficiently inhibited the activity of
both TOR complexes but are still quite ineffective because of
various feedback loops contributing through upstream signaling
pathways as well as the wide range of clinically relevant mutations
in mTOR.295 Mutations increase the catalytic activity of mTORC1/2
and thereby reduce the effectiveness of such compounds towards
rapalogs, dual inhibitors as well as TOR-KI. To overcome these
resistance issues Rodrik-outmezguine and colleagues have gen-
erated rapamycin-resistant breast carcinoma cell lines that carry
two mutations in the mTOR FRB domain (mTOR A2034V and
mTOR F2108L).148 They also generated the AZD8055-resistant
colony that bears mutations in the hyperactive kinase domain. A
careful study of the molecular model of mTOR was done revealing
the juxtaposition of rapamycin and AZD8055 binding sites. The
knowledge of these binding sites has provided the basis for
designing new small molecules which finally resulted in a new
bivalent mTOR inhibitor.7,286 The molecules were designed by
linking rapalogs and TOR-KIs using an optimum-length cross-
linker. Preclinical studies were performed on murine xenografts of
MCF-7 cells bearing these mutations and have reported more
sensitivity to rapalink as compared with rapalog and TOR-Kis. This
was because of the rapalink(s) capability to inhibit both mTORC1/
2, whereas rapamycin and dual inhibitors were not able to block
the activities of both complexes effectively even at higher
concentrations.148 Rapalinks are third-generation mTOR inhibitors
with advanced structural features of first and second-generation
inhibitors that overcome several issues like efficacy, resistance,
and feedback activation because rapalink can efficiently bind with
the FRB domain of mTOR through binding to FKBP12 and kinase
domain of mTOR for its ATP-competitive inhibition simulta-
neously.296 Sapanisertib (MLN0128 or TAK-228), a selective
inhibitor of mTOR reported promising anticancer effects during
preclinical analysis. After preclinical evaluation, sapanisertib
entered phase-I/II clinical trials for mCRPC, breast carcinoma, lung
cancer, endometrial carcinoma, bladder carcinoma, sarcoma, and
non-Hodgkin B-cell lymphoma.297–304 MLN0128 treatment was
found to be very effective in suppressing the tumorogenesis of
different subtypes of sarcoma in both in vitro and xenograft
models.297 MLN0128 was effective in sensitizing the chemoresis-
tant primary effusion lymphoma.305 Studies have shown that
MLN0128 suppresses the growth of HCC tumors and sensitizes
them to sorafenib and cabozantinib.303,306,307 Interestingly,
MLN0128 was effective in sensitizing the everolimus-resistant
PIK3CA mutant colorectal and pancreatic neuroendocrine
tumors.308,309 Recently, the DICE trial revealed that TAK-228 along

with weekly paclitaxel chemotherapy resulted in significant
improvement and laid the foundation for a phase-III trial in
ovarian cancer.310 The CC-223 is an oral and potent mTOR kinase
inhibitor that was found to suppress the growth and tumorigen-
esis of HNSCC and HCC through mTORC1/2 in both in vitro and
murine model.311–314 The preclinical studies displayed that OSI-
027 is a selective and potent inhibitor of mTORC1/2 and reported
promising antitumor activity in several human cancers.315–318

Further, OSI-027 treatment was very effective in enhancing the
therapeutic potential of gemcitabine in pancreatic cancer cells
and xenograft model.319,320 The dual PI3K/mTOR inhibition has
emerged as a critical strategy to target mTOR signaling in human
malignancies.321 For instance, NVP-BEZ235 (dactolisib) was shown
to suppress the PI3K isoforms, mTOR, and ATR which resulted in
strong anticancer activity in both solid and blood cancers.322–324

Also, NVP-BEZ235 was displayed to cross the blood-brain barrier
and reported to sensitize the temozolomide resistance in brain
tumors.325 Strikingly, the combination of dactolisib with immune
checkpoint inhibition in primary and metastatic CRPC displayed
robust antitumor response by blocking MDSCs.326 The 17AAG
(HSP90 inhibitor) was used in combination with NVP-BEZ235 and
resulted in synergistic anticancer activity in melanoma by
targeting both MAPK and PI3K/AKT/mTOR signaling pathways.327

Similarly, paxalisib, apitolisib, voxtalisib, PQR309, XH00230381967,
omipalisib, and gedatolisib were validated as potent PI3K/mTOR
inhibitors with potent antitumor efficacy in many human
cancers.9,328–330 Paxalisib either as a monotherapy or in combina-
tion with ONC201 has entered the phase-II (NCT05009992) clinical
trial for the diffuse midline glioma.331–334 Apitolisib is an oral and
potent inhibitor of mTORC1/2 and class I PI3K. Many preclinical
studies have tested the activity of GDC-0980 in solid tumors
including lung, brain, endometrial, and gall bladder.335,336 Phase-I
clinical trials were conducted to evaluate the tolerability, safety,
and antitumor efficacy of GDC-0980 in solid tumors.337 Voxtalisib
was used at a concentration of 50mg BID and reported promising
anticancer activity in patients with refractory/relapsed follicular
lymphoma as well as limited efficacy in DLBCL, chronic myeloid
leukemia, and mental cell lymphoma during an open-label, phase
2 trial (ClinicalTrials.gov; NCT01403636) and solid tumors.328,338

The combinatorial effect of the voxtalisib with low intensity pulsed
ultrasound displayed to inhibit GBM tumorigenesis while suppres-
sing the PI3K/AKT/mTOR signaling in CSCs.339 Another study
showed the synergistic effect of the voxtalisib when used either
with temozolomide plus radiotherapy in glioma.340,341 PQR309
was developed as a dual PI3K/mTOR Inhibitor and was found to
have marked antitumor efficacy in lymphomas as a monotherapy
and in combination with venetoclax, lenalidomide, ibrutinib,
panobinostat, and rituximab.329 PQR309 has been reported with
promising efficacy against solid and blood cancers.279,342,343

LY3023414 (PI3K/mTOR and DNA-PK inhibitor) was reported with
anticancer activity alone and in combination with clinically
approved chemotherapeutic drugs in several cancers.344,345 Du
and colleagues have reported that omipalisib acts as a sensitizer
for DNA damage-induced apoptosis of Hela cells through
suppression of non-homologous end joining pathway (NHEJ).
Further, the combination of omipalisib and doxorubicin-induced
γH2AX in A549 cells. Omipalisib was found to inhibit DNA-PKcs
kinase activity in a dose-dependent fashion indicating the ability
of omipalisib to directly suppress DNA-PK (a core component in
the NHEJ pathway).346,347 Interestingly, the gedatolisib was found
to be potent to increase the efficacy of the radiotherapy HNSCC
and nasopharyngeal carcinoma indicating that gedatolisib may be
utilized as a sensitizer to radiotherapy.348,349 The phase-I study
using gedatolisib in combination with carboplatin and paclitaxel
revealed 80% response rate with acceptable tolerability clear cell
ovarian carcinoma.350 Recently, phase 1 and 1b studies used the
combination of gedatolisib plus cofetuzumab pelidotin and
revealed promising clinical anticancer response and tolerable
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toxicities in patients with metastatic TNBC, endometrial and other
advanced cancers.351–357 Metformin has been shown to activate
AMPK through repression of mitochondrial respiratory chain
complex I leading to an increase in the AMP/ATP ratio.358

Mechanistically, AMPK negatively regulates the activity of the
mTORC1. Wang and colleagues have reported that metformin
suppressed mTORC1/2 through the activation of AMPK in
myeloma cells. Moreover, metformin suppressed the tumor
formation in the mouse model of myeloma through the
overexpression of AMPK and downregulation of mTOR.359 In
addition, metformin was reported to silence mTORC1 through Rag
GTPases/REDD1 axis which is independent of AMPK signaling.
Metformin was reported to enhance autophagy through AMPK
stimulation and mTORC1 inhibition.359 Metformin treatment
displayed strong anticancer efficacy in human malignancies
including breast cancer through repression of mTORC1-
dependent protein synthesis.360 Recently, the application of
metformin in the context to autophagy has been manifested in
preclinical models against human cancers. Pharmacological
targeting of AKT/PI3K/mTOR axis has been summarized in Fig. 7
and Table 1.

CONCLUSION AND FUTURE PERSPECTIVES
The discovery of mTOR was one of the breakthroughs in
understanding the regulation associated with cellular growth,
remodeling of the cytoskeleton, cellular metabolism, immune
responses, and autophagy in human physiology and cellular
homeostasis. The mTOR signaling was noticed to modulate
multiple signaling networks to integrate growth factors, amino
acids, nutrients, sterols, and nucleotides. The emerging pieces of

evidence have displayed that mTOR activation plays a crucial role
in aging, age-related neurological disorders, diabetes, and human
malignancies. This has been noticed that inhibition of the mTORC1
signaling prolonged life expectancy while boosting immunity
which helps in preventing the onset of age-related, neurological
disorders, cancer, and several metabolic diseases in both
mammals and humans. Given the fact that mTORC1 is involved
in the aging processes, immunity, and other key physiological
activities, mTORC1-specific inhibitors can be developed that can
produce desirable results in clinical trials. Also, the duration of the
mTOR inhibitors should be optimized to prevent side effects like
immunosuppression and glucose intolerance. During the last
decade, extensive research studies have revealed that the mTOR
pathway is highly dysregulated in cancers due to hyperactivation
of oncogenic signaling cascades, hotspot mutations/amplifications
in the oncogenes, and the deletion or loss of function mutations in
tumor suppressor genes. Also, mTOR signaling cascade is well
known to influence gene transcription and translation to control
cellular proliferation, cytoskeleton, cellular migration, differentia-
tion, tumor metabolism, and immune responses in the tumor
microenvironment. Hence, targeting the mTOR pathway provided
an opportunity for the discovery of novel therapeutics against
human cancers and other diseases. In this direction, several efforts
have been taken which led to the discovery of the first-generation
mTOR inhibitors called Rapalogs. However, clinical efficacy of the
Rapalogs was correlated with a modest anticancer effect in
multiple trials on cancer patients. Several mTORC1 inhibitors
which include sirolimus, everolimus, temsirolimus, and ridafor-
olimus were approved through FDA for the management and
treatment of several types of human malignancies in clinics.
Hence, several groups and pharma companies have focused on

Fig. 7 Pharmacological targeting of the mTOR signaling cascade in human malignancies. The mTOR pathway can be targeted at different
levels in human malignancies using Rapalogs or mTOR inhibitors, PI3K small molecule inhibitors, dual mTOR/PI3K inhibitors, compounds
targeting AKT, and ATP-competitive inhibitors against mTOR. Created with BioRender.com
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the development of new combination therapeutic approaches
along with the designing, synthesis, and validation of dual
inhibitors (PI3K/mTOR) for effective and relapse-free therapy to
overcome resistance. Furthermore, the dual inhibitors targeting
PI3K/mTOR axis, inhibition of parallel pathways, and targeted/non-
targeted drug combinations were tested in preclinical and clinical
studies to figure out the best possibility for mTOR inhibition. The
results of these combinations were promising. Currently, the
development of third-generation mTOR inhibitors (Rapalink-1)
displayed promising results in clinical trials because of their ability
to inhibit the mutant kinase activity. During the past decade, the
libraries of potential mTOR inhibitors included a variety of
scaffolds like urea, quinolines, pyridines, and pyridopyrimidines.
Apart from these various small molecules have been designed,
manufactured, and assessed as mTOR inhibitors with promising
anticancer efficacy. In the future, we hope that the Identification of
novel and specific inhibitors of the mTOR pathway or mTOR-
associated pathways that can eradicate cancer cells, CSCs, drug
resistance, and autophagy either alone or in combination with
chemotherapeutic drugs and immunotherapeutic agents could be
of great importance for the treatment of human malignancies and
research purposes. Recently, Nab-sirolimus (the albumin-bound
nanoparticle of sirolimus) has been approved by the FDA for
clinical use against human cancer. Therefore, the nano-
formulation of the mTOR signaling pathway inhibitors should be
a priority for better efficacy and limited toxicity. Moreover,
preclinical and clinical studies are required to assess the safety,
efficacy, and molecular mechanism of the other chemotherapeutic
drugs, and immune therapies in combination with mTOR
inhibitors. This could lead to the invention of more effective and
less toxic treatment regimens that can improve the relapse-free
survival of cancer patients.
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