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Vaccine adjuvants: mechanisms and platforms
Tingmei Zhao 1, Yulong Cai2, Yujie Jiang1, Xuemei He1, Yuquan Wei1, Yifan Yu1,3 and Xiaohe Tian 1,3✉

Adjuvants are indispensable components of vaccines. Despite being widely used in vaccines, their action mechanisms are not yet
clear. With a greater understanding of the mechanisms by which the innate immune response controls the antigen-specific
response, the adjuvants’ action mechanisms are beginning to be elucidated. Adjuvants can be categorized as immunostimulants
and delivery systems. Immunostimulants are danger signal molecules that lead to the maturation and activation of antigen-
presenting cells (APCs) by targeting Toll-like receptors (TLRs) and other pattern recognition receptors (PRRs) to promote the
production of antigen signals and co-stimulatory signals, which in turn enhance the adaptive immune responses. On the other
hand, delivery systems are carrier materials that facilitate antigen presentation by prolonging the bioavailability of the loaded
antigens, as well as targeting antigens to lymph nodes or APCs. The adjuvants’ action mechanisms are systematically summarized
at the beginning of this review. This is followed by an introduction of the mechanisms, properties, and progress of classical vaccine
adjuvants. Furthermore, since some of the adjuvants under investigation exhibit greater immune activation potency than classical
adjuvants, which could compensate for the deficiencies of classical adjuvants, a summary of the adjuvant platforms under
investigation is subsequently presented. Notably, we highlight the different action mechanisms and immunological properties of
these adjuvant platforms, which will provide a wide range of options for the rational design of different vaccines. On this basis, this
review points out the development prospects of vaccine adjuvants and the problems that should be paid attention to in the future.

Signal Transduction and Targeted Therapy           (2023) 8:283 ; https://doi.org/10.1038/s41392-023-01557-7

INTRODUCTION
Adjuvants are defined as various components that enhance the
immunogenicity of vaccines when administered in conjunction
with vaccine antigens (Fig. 1).1 Adjuvants can range from synthetic
small molecule compounds to complex natural extracts and
particulate materials.2 The first evidence of adjuvants appeared in
1926, when Alexander Glenny found that mixing aluminum salts
with antigens and injecting them into guinea pigs induced more
antibodies than administering antigens alone (Fig. 2).3 Subse-
quently, in the 1940s, Freund and his colleagues developed water-
in-oil emulsions, which led to the creation of Freund’s adjuvants.4,5

However, Freund’s adjuvant is not licensed for use in human
vaccines because of its toxicity to humans. Similar to Freund’s
adjuvants, the use of bacterial lipopolysaccharide (LPS) adjuvants
in human vaccines has been limited due to their local and
systemic side effects. In fact, from the 1920s through the 1990s,
only aluminum adjuvants were licensed, despite efforts to develop
new adjuvants for human vaccines. It was not until 1997 that the
oil-in-water emulsion MF59 was licensed in Europe as an adjuvant
for influenza vaccines. In the following 20 years, four other
adjuvants (AS04, AS03, AS01, and CpG ODN 1018) were licensed
for use in vaccines, which changed the monotony of adjuvants for
human vaccines.6 In addition, many other different classes of
compounds had been evaluated as adjuvants during this time,
including mineral salts, microbial products, emulsions, saponins,
synthetic small molecule agonists, polymers, nanoparticles, and

liposomes.7 They have shown to enhance the strength, breadth,
and persistence of immune responses in preclinical and clinical
studies.8

Although adjuvants have long been widely used in vaccines, the
mechanisms by which they enhance immune responses have not
been well characterized. It was not until the revelation of the
mechanism by which the innate immune response controls the
adaptive immune response that scientists began to understand
the action mechanisms of adjuvants.9 Adjuvants guide and
enhance specific adaptive immune responses by targeting innate
immune cells and activating pattern recognition receptors (PRRs)
signaling pathways.10 Subsequently, it was discovered that some
delivery materials can also act as adjuvants by enhancing adaptive
immune responses through mimicking the size or spatial structure
of natural pathogens to facilitate antigen uptake and presentation
by antigen-presenting cells (APCs).11

Despite the above advances in the development of adjuvants,
there is little systematic generalization and summary of the action
mechanisms of adjuvants due to their broad definitions and
complex mechanisms. Moreover, due to the lack of systematic and
in-depth understanding of the mechanisms, characteristics,
immune effectiveness, and application scenarios of the current
adjuvant platforms, it is difficult to match and design appropriate
adjuvants for specific vaccines. This has led current vaccines
gradually showing shortcomings in their use, such as the inability
to provide long-term protective immunity, weak immunity in
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elderly populations, and the inability to provide effective cellular
immunity.12,13 Therefore, in order to solve these problems, this
review attempts to summarize the mechanisms of adjuvants
firstly. Then, the mechanisms, characteristics and application
progress of the classical adjuvant platforms and the adjuvant
platforms under investigation with potential development value,
are summarized and described. In the final part of this paper,
some possible future directions of adjuvants are discussed. This
review is expected to provide an effective reference for further
research on the mechanisms of adjuvants, rational use of existing
adjuvants, and design and development of new adjuvants.

THE MECHANISMS OF ADJUVANTS
Adjuvants have been widely used in vaccines to promote the
success of vaccination. Adjuvants enhance the adaptive immunity
of vaccines by activating innate immune cells.10 The core concept
is that adjuvants promote the generation of antigen presentation
signals (signal 1) and co-stimulatory signals (signal 2) by activating
APCs (Fig. 3). The antigen presentation signals are the antigen
peptides-major histocompatibility complexes (MHC) that are
presented on the surface of APCs after antigens have been taken
up and processed. Co-stimulatory signals include co-stimulatory
molecules (e.g., CD40, CD80, CD86) expressed on the surface of
APCs and secreted inflammatory cytokines (e.g., IL-6, IL-10, IL-12,
and TNF-α). The production of these two signals can strongly

induce the activation of naive T cells, leading to an enhanced
adaptive immune response.14,15 Immunostimulants, such as
pathogen-associated molecular patterns (PAMPs), damage-
associated molecular patterns (DAMPs), and chemically synthe-
sized small molecule agonists of TLRs, can lead to signal 1 and
signal 2 production by APCs. Delivery systems, such as lipid
nanoparticles (LNPs), poly(lactide-co-glycolide) (PLGA), and caged
protein nanoparticles, play a role by facilitating the presentation of
antigens on MHC molecules (signal 1). Notably, some studies have
shown that many nanoparticle delivery systems can directly target
B cells to induce an optimally effective antibody response.1,7,11 In
the following, we describe in detail the specific mechanisms by
which immunostimulants and delivery systems exert their
adjuvant efficacy.

The mechanisms of immunostimulants
Based on the mechanisms of action, adjuvants can be classified as
immunostimulants and delivery systems. Immunostimulants are
danger signal molecules that lead to the maturation and
activation of APCs by targeting specific receptors on APCs cells.
Specifically, immunostimulants act as PAMPs, DAMPs or their
mimics, which can interact with PRRs on APCs to trigger an innate
immune response and lead to the activation and maturation of
APCs. Mature APCs terminate their phagocytic antigen activity and
enhance their ability to present antigens and express high levels
of co-stimulatory signals and cytokines.16 This leads to the

Fig. 1 Adjuvants enhance the immunogenicity of vaccines. a Vaccines without adjuvants induce modest production of T helper-polarizing
cytokines, antibodies, and activated T cells. b In contrast, vaccines with adjuvants promote the maturation of more APCs, increase the
interaction between APCs and T cells, promote the production of greater numbers and more types of T helper-polarizing cytokines,
multifunctional T cells, and antibodies, leading to broad and durable immunity, as well as dose and antigen savings. This figure was created
with BioRender (https://biorender.com/)
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initiation and enhancement of the adaptive immune responses.
Furthermore, it is noteworthy that different types of immunosti-
mulants will signal through different PRRs and lead to different
cytokines secretion, which is a major determinant of the adaptive
immune responses (Fig. 4).17,18

Targeting TLRs pathway. Initially, it is found that immunostimu-
lants exert their effects by interacting with TLRs on APCs (Fig. 4).19

Agonists of TLRs as adjuvants have shown promising results by
activating TLRs that lead to enhanced antigen presentation,
upregulation of co-stimulatory signals and cytokine expression,
and ultimately to enhanced adaptive immune responses.20–23

Notably, different types of immunostimulants mediate different
adaptive immune responses by signaling with different TLRs.24

Overall, since TLR1, TLR2, TLR4, TLR5, and TLR6 are expressed on
the cell surface, they mainly recognize microbial membrane
components such as lipids, lipoproteins, and proteins. Thus,
activation of TLRs on the surface of APCs by the corresponding
immunostimulants usually leads to the production of pro-
inflammatory cytokines such as IL-1β, TNF-α, and IL-6, and
ultimately leads to the production of Th1 or Th2 type immune
responses.19,25 TLR3, TLR7, TLR8, and TLR9 are intracellular TLRs
that are expressed in intracellular vesicles and react with nucleic
acids.26 Activation of these intracellular TLRs by the corresponding
types of immunostimulants usually leads to the production of type
I interferons.27 Type I interferons can promote the differentiation
of Th1 cells and regulate their function. In addition, type I
interferons promote antigen cross-presentation to CD8+ T cells via
conventional dendritic cells (DCs) and may directly stimulate the
proliferation of CD8+ T cells.28 The specific mechanisms by which
immunostimulants act through TLRs are as follows, (1) immunos-
timulants bound to TLR2 heterodimers (TLR2/1 or TLR2/6) initiate
signaling through the myeloid differentiation primary response 88
(MyD88) pathway and activate NF-κB, thereby inducing the
production of pro-inflammatory cytokines such as IL12. IL-12 is
involved in the differentiation of naive T cells to Th1 cells.29,30 In

addition, immunostimulants targeting TLR2 also lead to enhanced
extracellular signal-regulated kinase 1/2 (ERK1/2) signaling, result-
ing in enhanced expression of c-Fos protein, which will suppress
IL-12 expression and enhance IL-10 expression. This drives naive
T cells to polarize into Th2-type cells.25 Thus, immunostimulants
targeting TLR2 mainly induce Th2-type adaptive immune
responses. (2) Immunostimulants bound to TLR3 initiate signaling
through the toll/interleukin-1 receptor domain-containing adapter
inducing interferon-β (TRIF) pathway, activating interferon reg-
ulatory factor 3 (IRF3) and stimulating APCs to produce type I
interferons. This ultimately leads to Th1-type responses and
cytotoxic T lymphocytes (CTLs) production. (3) Immunostimulants
bound to TLR4 and TLR5 initiate signaling via the MyD88 pathway
to activate NF-κB, which induces pro-inflammatory cytokine
secretion and drives naive T cells to Th1-type cell polarization. In
addition, it is noteworthy that immunostimulants triggering
adaptive immunity via TLR4 can also signal through TRIF, leading
to the activation of IRF3, resulting in the production of small
amounts of type I interferons.31 (4) Immunostimulants targeting
TLR7/8/9 located in the endosome activate NF-κB and interferon
regulatory factor 7 (IRF7) via the MyD88 pathway, trigger the
production of pro-inflammatory cytokines and type I interferons
by APCs, and induce strong Th1 and CTLs responses.

Targeting cGAS-STING pathway. With the revelation of the unique
role of the cyclic guanosine monophosphate-adenosine mono-
phosphate synthase-stimulator of interferon genes (cGAS-STING)
pathway in coordinating innate and adaptive immunity, there has
been a growing interest in scientists trying to target agonists of
the cGAS-STING pathway as vaccine adjuvants.32 cGAS is a
cytoplasmic DNA receptor that can be activated by double-
stranded DNA. cGAS, when activated, loops cytoplasmic adeno-
sine monophosphate and guanosine monophosphate into cyclic
guanosine monophosphate-adenosine monophosphate
(cGAMP).33 Subsequently, cGAMP locks into the v-shaped binding
pocket of the STING dimer, causing conformational changes,

Fig. 2 Timeline of major events in the research history of vaccine adjuvants. This figure was created with BioRender (https://biorender.com/)
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aggregation, and activation of STING. After that, NF-κB and IRF3
will be activated, which in turn promotes the production of pro-
inflammatory cytokines and type I interferons.34 Type I interferons
such as IFN-α/β can induce the maturation of APCs, upregulate co-
stimulatory signals and enhance their ability to present or cross-
present antigens.35 Thus, immunostimulants targeting the cGAS-
STING pathway not only polarize naive T cells into Th1-type cells,
but also promote the production of CTLs (Fig. 4). Immunostimu-
lants targeting cGAS-STING include nucleotide small molecule
agonists and non-nucleotide small molecule agonists. Among
them, nucleotide small molecule agonists are usually natural
ligand molecules based on cyclic dinucleotides (CDNs), such as
cyclic dimeric guanosine monophosphate (c-di-GMP), cyclic
dimeric adenosine monophosphate (c-di-AMP), 2’,3’-cGAMP and
3’,3’-cGAMP.32 And examples of non-nucleotide small molecule
agonists are DMXAA and CF501.36,37 In addition, it is noteworthy
that mitochondrial DNA (mtDNA) in the cytoplasm can also be
sensed by cGAS, thus activating the STING pathway.38

Targeting CLRs pathway. C-type lectin receptors (CLRs) are a
superfamily including Dectin-1, Dectin-2, MINCLE, DC-SIGN,
CD206, CD205, and so forth. CLRs are mostly localized on cell
membranes and function as antigen receptors involved in
capturing and presenting antigens.39,40 Immunostimulants with
a carbohydrate structure generally activate CLRs, which subse-
quently induce APCs to initiate the internalization, processing and
presentation of antigens to enhance the development of adaptive
immune responses.41,42 In addition, some immunostimulants can
activate CLRs, which trigger different signaling pathways, induce
the expression of specific cytokines, and thus control the

polarization direction of naive T cells.43 For example, the activation
of Dectin-1 by β-glucan leads to the phosphorylation of Syk
kinase, which in turn activates NF-κB, leading to the manufacture
of the pro-inflammatory cytokines IL12, IL-1β, IL6, and IL23,
thereby inducing the differentiation of naive T cells into Th1 and
Th17 cells (Fig. 4).44 Type 1 Th cells induce a strong CTLs response
as well as drive the conversion of immunoglobulins in B cells to
IgG2a. Th17 effector cells are characterized by the production of
IL-17, IL-17F, and IL-22 and trigger a massive inflammatory
response by recruiting neutrophils.45 Activation of Dectin-2 and
MINCLE and DC-SIGN by immunostimulants can also lead to NF-κB
activation and pro-inflammatory cytokine production. However,
since Dectin-2 and MINCLE do not possess immunoreceptor
tyrosine-based activation motifs (ITAMs), it is necessary for them
to bind to FcRγ, which carries ITAM, for signal transduction to
occur.46 Notably, stimulation of DEC-205 and CD206 by poly-
saccharide ligands is usually biased toward inducing enhanced
phagocytosis and antigen presentation, but not intracellular signal
transduction.

Targeting other PRRs. In later studies, scientists found that
immunostimulants could also activate a number of other PRRs,
such as nucleotide-binding oligomerization domain 1 (NOD1),
nucleotide-binding oligomerization domain 2 (NOD2), NOD-like
receptor thermal protein domain associated protein 3 (NLRP3),
retinoic acid-induced gene I (RIG-I), and melanoma differentiation-
associated gene 5 (MDA5) (Fig. 4). NOD1, NOD2, and NLRP3 are
members of the nucleotide-binding oligomerization domain-like
receptors (NLRs) family.47 Activation of them by adjuvants will lead
to upregulation of MHC II by APCs and contribute to enhanced

Fig. 3 The core of the action mechanisms of adjuvants. Adjuvants are classified as immunostimulants and delivery systems.
Immunostimulants such as PAMPs, DAMPs, and chemically synthesized small molecule agonists, provide danger signals (signal 0) to activate
PRRs on APCs, thereby enhancing antigen presentation on MHC molecules (signal 1). In addition, activation of PRRs leads to upregulation of
cytokines and co-stimulatory molecules expression, which results in enhanced co-stimulatory signaling (signal 2). Delivery systems such as
LNPs, PLGA, and self-loaded protein nanoparticles, act by facilitating the presentation of antigens on MHC molecules (signal 1). This figure was
created with BioRender (https://biorender.com/)
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antigen presentation.23,48 In addition, activation of these NLRs will
lead to the production of pro-inflammatory cytokines such as IL-
1β and IL-18, driving naive T cells to bias polarization into Th2 type
cells.48 Muramyl dipeptide (MDP) or complete Freund’s adjuvant
(CFA) can activate NOD1 and NOD2 and subsequently stimulate
NF-κB transcriptional activation to produce IL1, IL18, and IL33
precursors.23 Subsequently, in the presence of the activated
NLRP3 inflammasome complex, caspase1 cleaves these factors to
their active forms.49 The NLRP3 inflammasome complex consists
of NLRP3 protein, apoptosis-associated speck-like protein (ASC),
cardinal and caspase1 proteins.50 Overall, activation of NOD1,
NOD2, and NLRP3 will result in the generation of a predominantly
Th2 type of immune response. RIG-I and MDA5 are members of
the retinoic acid-inducible gene I-like receptors (RLRs) family,
which mainly recognize RNA.51 Most TLR3 agonists, such as poly-
I:C, also activate MDA5 in the APCs. Activation of RIG-I and MDA5
leads to activation of IRF3 and IRF7, which in turn induces type I
interferons expression.52 Thus, immunostimulants targeting these

two receptors are ultimately biased towards leading to the
production of Th1 cells and CTLs.53

The mechanisms of delivery systems
Delivery systems are defined as carrier materials that load antigens
and increase the uptake and presentation of antigens by APCs. In
other words, the primary function of the delivery system is to
facilitate antigen presentation. The antigen presentation process
involves the recognition, uptake, and internalization of antigens
by APCs, followed by loading and presentation on the surface of
APCs by the MHC.54 The delivery systems can increase the antigen
signals to be presented on the surface of APCs in one or
more ways.

Prolonging the bioavailability of antigens. The delivery systems
achieve prolonging antigens bioavailability by (1) allowing a
sustained release of antigens, (2) forming immune niches, and (3)
providing cargo protection for antigens (Fig. 5). The prolonged

Fig. 4 The simplified diagram of immunostimulants regulating adaptive immune responses by activating PRRs. Different types of
immunostimulants send signals through different PRRs, leading to different cytokines secretion, thereby inducing different adaptive immune
responses. Immunostimulants induce and modulate adaptive immune responses by targeting and activating a TLRs; b cGAS-STING; c CLRs;
d Other PRRs. This figure was created with BioRender (https://biorender.com/)
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antigens bioavailability will ensure that there are sufficient
antigens available to the APCs. Accordingly, this will lead to more
MHC-antigen peptides signal production.
Delivery systems can prolong the bioavailability of antigens in

the immune system by sustainably releasing antigens.55 For
example, one of the action mechanisms of nanoemulsion delivery
systems (e.g., MF59, AS03) has been thought to be sustained
antigen release.56 Recently, some delivery systems under inves-
tigation have also been found to have the ability to slowly release
antigens such as injectable hydrogels.57 The injectable hydrogel
allows the APCs to continuously present the antigen through slow
release, which facilitates the germinal center B cells to undergo
multiple rounds of affinity selection, ultimately leading to the
production of larger quantities and high-affinity antibodies.58–60

Notably, the sustained release time of the vaccine components in
the hydrogel can be controlled by adjusting the size of the
hydrogel grid, thus tuning the release time window.61 In addition,
solid polymer particles made of biodegradable PLGA or poly-
anhydride polymers can be used to encapsulate antigens and
slowly release subunit antigens over a period of days to
months.62,63 We also noticed that self-assembled scaffolds with
macroporous structures also have the ability to slowly release
antigens.64 Not only that, self-assembled scaffolds can release
inflammatory signals and enhance serum antibody levels and CTLs
levels by loading immunostimulants in addition to antigens.65 In

summary, the use of sustained-release techniques to extend the
exposure time and bioavailability of antigens and adjuvants in the
immune systems can improve the potency, durability, and quality
of adaptive immune responses.
In addition, some delivery systems can achieve higher immune

activation by forming an antigen depot/immune niche at the
injection site. Delivery systems that function in this way not only
prolong the retention time of antigens in the immune system, but
also recruit more immune cells to infiltrate the injection site, which
will increase the uptake of antigens and provide local inflammatory
cues to activate the subsequent adaptive immune responses.66

Delivery systems that generate an inflammatory immune niche
have been shown to significantly prolong the bioavailability of
antigens, increase the uptake of antigens, recruit immune cells, and
enhance the antibody titers and cellular immune responses.65,67–70

The infiltration of innate immune cells into the injection site allows
niche-forming delivery materials to have a greater immune
activation capacity than delivery materials prepared by
sustained-release techniques alone.71 In order to infiltrate immune
cells into the delivery system, some cytokines can be incorporated
into the delivery system and released slowly, thereby increasing
cell migration. The most commonly used cytokine is granulocyte-
macrophage colony-stimulating factor (GM-CSF). Recently, Sun et
al. developed an injectable poly(caprolactone)-poly(ethylene gly-
col)-poly(caprolactone) thermosensitive hydrogel encapsulating

Fig. 5 The diagram of the action mechanisms of the delivery systems. Delivery systems promote enhanced antigen presentation or antigen
cross-presentation to enhance adaptive immune responses by a prolonging the bioavailability of antigens; b targeting antigens to APCs;
c trafficking antigens directly to lymph nodes; and d promoting endosomal escape. This figure was created with BioRender (https://
biorender.com/)
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GM-CSF and ovalbumin, which increased DCs recruitment at the
injection site and improved the efficiency of antigens uptake.67

Besides, encapsulating some immunostimulants such as TLR
agonists can also promote the recruitment and infiltration of
innate immune cells.72 In addition, studies have found that some
self-adjuvant delivery materials can also promote immune cell
infiltration. For example, the mesoporous silica rod is a self-
adjuvant delivery material that can activate the NLRP3 innate
immune pathway. When injected into mice, it increases innate
immune cell infiltration to the injection site and enhances immune
responses.73

Moreover, delivery systems can also prolong the bioavailability
of antigens by protecting them (especially DNA and mRNA) from
breakdown by enzymes in the body thus maintaining their
bioactivity. For example, mRNA antigens are susceptible to
degradation by RNA enzymes in extracellular serum. Therefore,
they need to be encapsulated in a sealed carrier to avoid
enzymatic hydrolysis and ensure the smooth delivery of mRNA to
the target cells. LNPs are a kind of proven effective mRNA delivery
system, and one of their basic functions is to encapsulate mRNA
and protect it from degradation RNA enzymes.74–76

Notably, since an adjuvant has multiple mechanisms, prolong-
ing the bioavailability of antigens is only one of the mechanisms,
and how much it accounts for all the action mechanisms of an
adjuvant needs to be carefully studied. For example, the
sustained-release of antigens through the formation of an
“antigen depot” to prolong the retention and bioavailability of
antigens is traditionally considered a key mechanism of action for
aluminum adjuvants.77 However, with the deepening of studies,
some researchers found that removing the “antigen depot” after
aluminum adjuvant administration did not significantly reduce the
production of antigen-specific T and B cell responses.78 This
implies that the mechanism of forming an antigen depot to retain
antigens may not be the key action mechanism of aluminum
adjuvants and that the action mechanisms of adjuvants should be
fully and accurately understood for more rational use of adjuvants
and development novel adjuvants.

APCs targeting. Delivery systems can target APCs by following
two approaches and enable the effective uptake of antigens by
APCs (Fig. 5). Increased antigen uptake, in turn, increases the
amounts of MHC-antigen peptides presented on the APCs surface,
leading to a stronger adaptive immune response.
The first approach is that delivery systems can facilitate antigens

uptake by APCs by mimicking the size dimensions and spatial
structure of pathogens. Since viruses and bacteria are nano to
micron-sized particles, the immune system has evolved to
recognize and respond to particulate antigens. Microscale or
nanoscale materials have been used to deliver antigens, increas-
ing the sizes of the antigens and thus improving the uptake by
APCs to some extent.79 For example, encapsulation of antigens
with a liposomal nanoparticle improves recognition and endocy-
tosis of antigens by APCs compared to soluble antigens, leading to
increased antigen presentation and induction of higher magni-
tude and higher affinity antibodies.80 Another example is that a
novel hydrogel microparticle delivery system loaded with the
H5N1 influenza antigen can improve humoral responses and
enhance T-cell activation.81 One of the reasons for this is that
hydrogel microparticles increase the size of the antigen which in
turn improves the recognition and uptake of the antigen by APCs.
Moreover, highly ordered and repetitive spatial structures are
inherent to pathogens, and the immune systems have evolved to
recognize and respond to such structures with great sensitivity.82

Self-assembled protein nanoparticles and other polyvalent particle
delivery systems display multivalent antigens to APCs by
mimicking the highly ordered and repetitive spatial structure of
pathogens, increasing the probability of antigen uptake by
APCs.83–86 It was found that these delivery systems elicit strong

humoral and cellular immune responses even in the absence of
supplementation with other immunostimulants.87–89 Notably, the
highly ordered and repetitive spatial structure of the delivery
systems is highly conducive to the co-aggregation of B cell
receptors (BCRs), which can lead to strong activation of B cells and
ultimately to the production of high-affinity antibodies and
memory B cells.87,90

In addition, delivery systems promote more efficient antigen
uptake by directly targeting specific receptors (e.g., Fc receptors,
CLRs) on APCs. Numerous studies have shown that delivery
systems targeting immunogens to Fc receptors on APCs can
selectively enhance antigen uptake and cellular immunity in vitro
and in vivo.91–94 In addition, CLRs are a class of PRRs that are
specifically expressed on a subgroup of DCs. Members of this
family include DEC-205, DC-SIGN, and mannose receptors, among
others. The use of CLRs ligands (usually carbohydrates) to modify
the delivery system will result in more direct targeting of antigens
to specific DCs, thus enhancing antigen uptake.95 For example,
mannose-modified polymers for delivery of melanoma antigenic
peptides strongly induce prophylactic and therapeutic antitumor
immune responses in melanoma models.96 Another example,
CDX-1401 is a vaccine consisting of a DEC-205-specific mono-
clonal antibody fused to the full-length tumor antigen NY-ESO-1.
Studies have shown that this vaccine enhances antitumor effects
by specifically targeting DCs via the DEC-205 receptor, leading to
increased antigen uptake and presentation.97 It has also shown
promising clinical value when combined with other drugs
(NCT02129075).
Considering that different subpopulations of DCs associated

with lymph nodes may have different functions in inducing
different types of T cell responses,98 the targeted immune cell
populations of delivery systems (especially nanoparticles) are a
key consideration in the development of vaccine delivery systems.
From the above description of APCs targeting, it can be seen that
the surface of the nanoparticle delivery systems can be specifically
modified to target specific cell populations actively. Firstly,
nanoparticles can be modified with functionalized ligands to
target specific cell populations. For example, by coupling an
antibody against CD169 to the surface of nanoparticles, the
nanoparticles can be targeted to subcapsular sinus macro-
phages.99 By coupling the CLEC9A antibody with nanoparticles,
the nanoparticles can preferentially target conventional type 1
DCs (cDC1).100,101 Secondly, adjusting the sizes of nanoparticles is
also a strategy to target specific cell populations. When
nanoparticles are designed to remain at 50–100 nm, they will
preferentially target follicular dendritic cells (FDCs) and be
retained in the FDCs.102,103 This is important for the generation
of high-affinity and durable antibody immune responses.104

Furthermore, increasing the antigenic valence of nanoparticles
and glycosylation modification of nanoparticles will also allow the
nanoparticles to preferentially target FDCs.84 In addition, nano-
particles can be designed for displaying multivalent antigen
proteins to target and activate B cells.90 In summary, these
approaches allow nanoparticles to actively target different cell
populations.

Lymph node trafficking. A large number of innate immune cells
and lymphocytes accumulate in the lymph nodes, which are the
site of the initial immune responses.105 Thus, lymph nodes are key
targets for delivery systems. Some delivery systems can facilitate
antigen trafficking to the lymph nodes directly, thereby increasing
the chances of antigens encountering APCs in the lymph nodes,
resulting in more antigens uptake and presentation by APCs and
an increase in antigen presentation signals. Delivery systems
traffic antigens to lymph nodes directly in two ways (Fig. 5).
In the first approach, the delivery systems are transported

directly to the lymph nodes by passive diffusion. Delivery systems
with suitable dimensions and surface properties (such as charge

Vaccine adjuvants: mechanisms and platforms
Zhao et al.

7

Signal Transduction and Targeted Therapy           (2023) 8:283 



and hydrophobicity) can enter the afferent lymphatics by passive
diffusion and subsequently enter the lymph nodes.11 Studies have
shown that the optimal size is between 5 to 100 nm.106 If the size
of the delivery system is too small, it tends to enter the capillaries.
Whereas if the size of the delivery vehicle adjuvant is too large, it
may not pass through the gap between the endothelial cells of
the afferent lymphatic vessels and thus cannot enter the afferent
lymphatic vessels. Besides, in this approach, the delivery system is
optimally charged to carry a net negative charge, rather than a net
positive charge, since the interstitial matrix of the afferent
lymphatic vessels is composed mainly of collagen fibers and
negatively charged glycosaminoglycans.107 In addition, the
hydrophilicity of the delivery systems affects their efficiency in
transporting vaccines between afferent lymphatic vessels.108 For
example, the increased hydrophilicity of PEG-modified 50 nm
polymers resulted in more particle accumulation in the lymph
nodes of rats after subcutaneous injection compared to non-PEG-
modified particles.109

The second approach is known as albumin-hitchhiking. Since
endogenous albumins circulate in the lymphatic system, antigens
can be transported to the lymph nodes getting a ride of albumin
train if they are able to bind to endogenous albumins.110,111

Currently, we know that albumin is a transporter protein for fatty
acid molecules, which can capture and bind some lipid
molecules.112 Using this mechanism, the researchers designed a
tumor peptide vaccine with lipophilic tails. Experimental results
showed that the vaccine bound albumins and accumulated
heavily in lymph nodes, leading to a 30-fold increase in T-cell
production and significantly enhanced anti-tumor efficacy after
injection in mice.113 Another example is 1,2-distearoyl-sn-glycero-
3-phosphoethanolamine (DSPE), which has been shown to bind
endogenous albumin efficiently with high affinity.114 Qin et al.
constructed a delivery system based on DSPE loaded with OVA
antigen peptide and poly-I:C, which allowed the vaccine
components to target lymph nodes directly and accumulate in
large numbers in lymph nodes, resulting in a strong CD8+ T cell
response in vivo, leading to a more effective treatment and
prolonged median survival in mice.115 In addition, endogenous
albumin can also bind to some dyes, such as Evans blue dye.116

Taking advantage of this feature, Zhu et al. used a derivative of the
clinically safe Evans blue to couple to the antigen and found that
the vaccine effectively bound to albumin and was delivered to the
lymph nodes with the return flow of albumin. The vaccine was
found to significantly inhibit the growth of primary or metastatic
tumors in mice through in vivo experiments.117

Promoting antigen cross-presentation. Antigen cross-presentation
is the process by which exogenous antigens are presented to
CD8+ T cells by MHC I molecules. This is an important step for
vaccination against viral infections vaccines and cancer vaccines.
However, under normal conditions, exogenous antigens are
mostly only internalized by APCs alone and presented by MHC II
molecules to CD4+ T cells, without any cross-presentation can
occur.118,119 Several delivery systems have been developed to
enable antigen cross-presentation by facilitating the escape of
antigens from the endosomal or lysosome, which are then loaded
by MHC I molecules, thus enabling antigen cross-presentation.
These delivery systems achieve this goal in three main ways (Fig.
5).
The first is the proton sponge effect. It occurs when some

cationic polymers or lipid delivery systems with protonable amine
groups are internalized by APCs and absorb a large number of
protons to buffer the acidic environment of the endosomal or
lysosome of APCs.120 This results in a large influx of chloride ions
and water flow from the cytoplasm into the endosomal or
lysosome, causing swelling and rupture of the endosome. This
process leads to the release of antigens into the cytoplasm,
facilitating cross-presentation of antigens by MHC I molecules. For

example, under endosomal acidic conditions, polyethyleneimine
(PEI) absorbs protons through its protonable amino groups,
leading to endosomal swelling and rupture.121 A study reported
that modification of aluminum hydroxide nanoparticles with PEI
significantly increased antigen cross-presentation.122 Today, other
polycationic polymers and cationic liposomes have also been
found to increase antigen cross-presentation through the proton
sponge effect.123–125

Secondly, some delivery systems destabilize endosomal/lysoso-
mal membranes by fusing or binding to them, thereby releasing
antigens into the cytoplasm.126 A cationic particulate alum via
pickering emulsion (PAPE) particle induced a 3-fold higher
number of IFN-γ+ T cells compared to the alum group when
used to deliver the SARS-CoV-2 RBD vaccine antigen.127 This
indicates that this particle has a powerful ability to activate cellular
immune responses. This is partly due to its ability to bind to the
endosomal/lysosomal membrane, which disrupts the stability of
the endosomal/lysosomal membrane, leading to the release of
antigens into the cytoplasm and their cross-presentation to CD8+

T cells.127

The third approach is photochemical internalization release
technique.128,129 This technique provides an emerging technology
to route endocytosed material to the cytosol, based on light-
induced disruption of endosomal membranes using photosensi-
tizers.130 Specifically, the photosensitizers are incorporated into
the delivery systems to deliver the antigens together, and
subsequently, the photosensitizers are excited to form singlet
oxygen after exposure to a specific light source, which causes lipid
peroxidation and destruction of endosomal membranes, resulting
in the release of antigens into the cytoplasm.131 In a study, Ji et al.
used arginine and phenylalanine-based polyester amides as raw
materials to prepare cationic nanoparticles, which were further
subsequently used to form electrostatic complexes with the
photosensitizer AlPcS2a and for delivery of antigens. When a light
source was applied at 660 nm, it significantly promoted antigen
escape from endosomes/lysosomes into the cytoplasm and
enhanced CD8+ T cell-mediated immune responses.132

CLASSICAL ADJUVANT PLATFORMS
Aluminum adjuvants, MF59, AS01, AS03, AS04, and CpG ODN 1018
are classical human vaccine adjuvants. They have been widely
approved for use in a wide variety of vaccines and serve to
increase vaccine antibody titers and enhance cellular immune
responses.1,133

Aluminum adjuvants
Aluminum adjuvants are the first adjuvants to be licensed for use
in human vaccines. The two commonly used aluminum-based
adjuvants in licensed vaccines are aluminum hydroxide and
aluminum phosphate. Aluminum adjuvants enhance the produc-
tion of IgG1 and IgE antibodies by promoting Th2 cell responses.
However, the mechanisms of action of aluminum adjuvants is
complex and there are still ongoing debates within the academic
community.134 There are currently two aspects that are well
recognized. The first is that aluminum adjuvants act as a delivery
system that binds closely to the antigens and sustainedly release
of antigens, thus prolonging the bioavailability of the antigen and
increasing antigen presentation.135 Secondly, aluminum adjuvants
can also be used as immunostimulants to induce the production
of DAMPs, thereby activating PRRs of innate immune pathways,
resulting in the production of cytokines such as IL-1β and Th2-
type immune responses.136,137 In recent years, several studies
have shown that host DNA or uric acid released from host cell
death induced by aluminum adjuvant at the injection site acts as
endogenous danger signals. These endogenous danger signals
can act as DAMPs to induce activation of innate immune
pathways.138–140 As for the PRR targeted by aluminum adjuvants,
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some scientists believe it is NLRP3, while some are skeptical (Fig.
6).136,141,142 However, this does not deter aluminum adjuvant from
becoming the adjuvant of choice for the vaccine industry due to
its widely recognized safety and reliability. Aluminum-containing
adjuvants are widely used for the prevention and treatment of
various diseases, including diphtheria, tetanus, meningitis, and
hepatitis B virus (HBV) vaccines, which have been approved by the
Food and Drug Administration (FDA).77 In addition, aluminum is
also a candidate adjuvant for vaccines in new clinical develop-
ment, such as the SARS-CoV-2 vaccine.143,144 However, aluminum
adjuvants also have some disadvantages, including difficulties in
inducing a strong cellular immune response and the possibility of
adverse reactions (erythema, allergic reactions). For these reasons,
aluminum adjuvants can be made more effective by improving
their formulation or by preparing them as nanoaluminum
adjuvants.127,145–148

Emulsion adjuvants
MF59 and AS03 are both classic oil-in-water emulsion adjuvants.
MF59 is composed of squalene, Tween 80 and Span 85.149 MF59
was licensed as an adjuvant for influenza vaccine in 1997,
becoming the first non-aluminum adjuvant approved for use in
human vaccines. MF59 emulsion has a dual function of antigen
delivery and immune stimulation. MF59 can be used as an
emulsion delivery system that, when co-delivered with antigen, it
can prolongate antigen interaction with the immune system and
increase antigen presentation by slowly releasing antigens in the
lymph nodes.150,151 This results in more antigenic signals being
presented on the surface of APCs, and therefore, the body
produces a stronger specific immune response against the
antigens.152 In addition, MF59 also acts as an immunostimulant.
MF59 can target specific PRRs and activate innate immune cells by
inducing the production of endogenous danger signals.153 The

administration of MF59 in muscle activates innate immune cells
such as macrophages and DCs, and promotes the production of
chemokines such as CC-chemokine ligand 2 (CCL2), CCL4, CCL5,
and CXC-chemokine ligand 8 (CXCL8). These chemokines, in turn,
recruit more innate immune cells to the injection site to further
amplify the immune responses, and promote the migration of
these recruited innate immune cells to the draining lymph nodes
to activate B and T cells.1,154 However, it is worth noting that the
exact target PRR of MF59 is still unclear, except that MF59 may
function through the NLRP3-independent ASC activation pathway
and the TLR-independent MyD88 activation pathway (Fig. 6).155,156

In short, vaccination with MF59 adjuvant leads to a Th2-biased
immune response and a weak induction of a Th1 response in the
body.56,157 At present, MF59 has been widely used in a variety of
human vaccines and has shown good safety and efficacy.157–163

AS03 is another oil-in-water emulsion adjuvant, which consists
of alpha-tocopherol, squalence, and Tween 80. The adjuvant
effects of AS03 and MF59 are similar. Firstly, it has the function as
an antigen delivery system to enhance the presentation of antigen
signals on the surface of APCs through slow release. Secondly,
AS03 also has immunostimulatory effects because it also contains
squalene. And like MF59, AS03 exerts immunostimulatory effects
through the NLRP3-independent ASC activation pathway and the
TLR-independent MyD88 activation pathway (Fig. 6).1 In addition,
AS03 has an alpha-tocopherol as an additional immunostimulant
component. Studies have shown that alpha-tocopherol is involved
in regulating the expression of certain chemokines and cytokines,
such as CCL2, CCL3, interleukin 6, and CXCL1, which enhance
antigens uptake by APCs and increase the number of innate
immune cells recruited to drainage lymph nodes.164 Like MF59, in
general, AS03 also mainly induces a Th2-biased immune response,
with a weak induction of Th1 response.56 AS03 was licensed by
the European Union for use in influenza vaccines (Pandemrix, TM,

Fig. 6 Simplified diagram of the major signaling pathways of classical adjuvants. This figure was created with BioRender (https://
biorender.com/)
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GSK) during the 2009 H1N1 pandemic. Subsequently, in 2013,
AS03 was licensed by the U.S. FDA for use in the H5N1 avian
influenza vaccine and showed satisfactory safety, reactogenicity,
and immunogenicity.165 AS03 is mainly used in a variety of
influenza vaccines to increase the titer and persistence of
antibodies.166,167 Recently, AS03 has also shown good clinical
benefit in the development of the COVID-19 vaccine
(NCT04450004, NCT04405908).168

TLR agonist molecule-based adjuvants
AS04 and CpG ODN 1018 are both classical TLR agonist molecule-
based adjuvants. AS04 is prepared by aluminum adsorption of
TLR4 agonist molecule. Since AS04 contains the aluminum
adjuvant, it also has the function of immune stimulation and
delivery antigens. However, the immunostimulatory function of
AS04 is stronger than that of aluminum adjuvant. This is because
AS04 contains a more potent immunostimulatory molecule called
monophosphoryl lipid A (MPLA). MPLA, a low-toxicity derivative
isolated from LPS, can specifically activate the TLR4 on APCs,
leading to the activation of NK-κB and the expression of pro-
inflammatory cytokines, resulting in a stronger Th1 cell response
(Fig. 6).169 In addition, when the vaccine supplemented with AS04
was compared with the vaccine supplemented with aluminum
adjuvant only, it was found that the vaccine supplemented with
AS04 induced higher levels of antibodies. This proves that TLR4
agonist MPLA plays an important role in AS04.170–172 Overall, AS04
produces a stronger antibody response and Th1 cell response
than aluminum adjuvants, and induces a more balanced Th1/Th2
immune response.173 AS04 is currently approved primarily for use
in human papillomavirus (HPV) vaccine (Cervarix) and HBV
vaccines (Fendrix) to increase antibody production and activation
of antigen-specific T cells.165,174

CpG ODN 1018 is a synthetic single-stranded DNA molecule,
which has been extensively studied as a TLR agonist.19 CpG ODN
1018 specifically activates TLR9, leading to the activation of TRF7,
which in turn leads to the production of pro-inflammatory
cytokines and type I interferons, ultimately leading to a strong
Th1-type cellular response and cytotoxic T cell production.175 This
results in its ability to produce a better cellular immune response
than aluminum adjuvants.176 CpG ODN 1018 was initially
approved for use in the HBV vaccines.177 CpG ODN 1018 is
currently being evaluated in clinical trials as a potential vaccine
adjuvant for the COVID-19 vaccines (NCT04450004,
NCT04405908). Recently, a CpG ODN 1018-adjuvanted COVID-19
vaccine, named SCB-2019, has been evaluated for emergency
use.178

Particulate adjuvant system
AS01 is a classical particulate adjuvant system, which is a
liposomal adjuvant containing the immunostimulant MPLA and
an active ingredient called QS-21 extracted from the bark of
Quillaja Saponaria (QS).179 AS01 has the dual function of antigen
presenting and immune stimulator.180 The antigen presentation
function of AS01 is performed by liposomes. Liposome is a hollow
phospholipid bilayer artificial membrane that can be used for
encapsulation and delivery of antigens. Liposomes can protect
antigens from degradation and prolong their bioavailability,
resulting in APCs being able to capture more antigen signals.180

The immunostimulatory function of AS01 is contributed by MPLA
and QS-21. MPLA activates the innate immune system through
TLR4 leading to an increase in Th1-type responses.180 QS-21
activates NLRP3 in APCs and subsequently activates caspase 1 to
promote the production of active forms of cytokines IL1β, IL18,
and IL33 (Fig. 6).181 In addition, QS-21 has also been found to
promote endosomal escape and promote cross-presentation.182

Overall, these two immunostimulant components work synergis-
tically to cause AS01 to induce a Th1-predominant immune
response and promote the generation of CTLs.183 AS01 is part of

licensed malaria and zoster vaccines that promotes antigen-
specific antibody production and enhance the cellular immune
responses.6 Recently, AS01 has also been applied to the
development of a novel peptide vaccine against tuberculosis
(M72/AS01E) and has shown promise for safety, efficacy, and
prevention of tuberculosis in healthy adults (NCT01755598,
NCT01755598).184–186

In summary, adjuvants are an essential component of vaccines.
Classical adjuvants provide a relatively translatable platform for
the development of other new vaccines. These adjuvants can be
preferentially selected for clinical trials for new vaccines in order to
obtain rapid marketing approval. However, these adjuvants have
also revealed some problems. For example, they have a weak
ability to enhance vaccine immunity, do not provide long-term
protective immunity, and are less effective in older popula-
tions.12,13 Furthermore, most of these approved adjuvants are only
capable of inducing antibody responses and have weak ability to
induce CD8+ T cell-mediated cellular immunity, which is critical for
vaccines against viral infectious diseases and cancer vaccines. Last
but not least, the action mechanisms of most of the licensed
adjuvants remain largely unclear, which may lead to inappropriate
use of these adjuvants and uncontrollable side effects. Therefore,
novel adjuvants are needed to remedy these problems.

ADJUVANT PLATFORMS UNDER INVESTIGATION
Due to the prominent role of adjuvants in vaccines, adjuvant
science has gone through rapid development in recent years.
Some of the immunostimulants and delivery systems under
investigation show good adjuvant efficacy. Next, we will
summarize and describe them.

Immunostimulant platforms under investigation
In recent years, with the intensive study of adjuvants, some of the
immunostimulants under investigation have shown good adju-
vant efficacy. In this section, we will summarize and describe the
mechanisms of action, properties, and application progress of
these immunostimulants under investigation.

Synthetic double-stranded RNAs (dsRNAs). Synthetic double-
stranded RNAs (dsRNAs) can target and activate TLR3 and MDA5
on APCs, leading to the production of pro-inflammatory cytokines
such as IL-12 and type I interferons, and promoting the production
of strong Th1-biased immune responses and CTLs. Poly-I:C and its
modified variant Poly-ICLC are the most studied synthetic dsRNA
immunostimulants.187–189 In vitro, poly-I:C and poly-ICLC induce
maturation of human peripheral blood monocyte-derived DCs,
leading to secretion of IFN-β and the pro-inflammatory cytokines
IL-6 and IL-12, resulting in cross-presentation of exogenous
antigens with CD8+ T cells and triggering a Th1-polarized immune
response.190,191 Both preclinical and clinical studies have shown
that poly-I:C and poly-ICLC are promising adjuvants that enhance
antibody production and CD8+ T cell immune responses.192,193 A
test in humans showed that combining poly-ICLC with a DC-
targeted vaccine induced an innate immune response similar to
that of a live virus vaccine, further emphasizing the effectiveness
of poly-I:C/poly-ICLC as vaccine adjuvants.194 In addition, we note
that poly-I:C and poly-ICLC are used clinically in peptide vaccines,
DC vaccines, and whole cell vaccines, and are primarily indicated
for a wide variety of cancer vaccines (Table 1). The addition of
poly-I:C or poly-ICLC to cancer vaccines enhances vaccine-induced
anti-tumor T cell and NK cell responses, thereby contributing to
tumor regression or eradication.195 However, it is worth noting
that poly-I:C/poly-ICLC may have side effects such as dose-
dependent systemic fever and coagulation abnormalities, in
addition to its function of triggering a powerful immune
response.196–198 Therefore, a rational delivery system should be
considered to protect it from degradation and to target more
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poly-I:C/poly-ICLC to APCs, in order to ensure the lowest possible
dose to activate APCs and reduce side effects.16

GLA and derivatives. Glucopyranosyl lipid A (GLA) is a synthetic
LPS mimic that is an alternative to MPLA. GLA can induce Th1-type
immune responses in vivo by activating TLR4 on the APCs.199 To
enhance the immune effect of GLA, it is usually prepared as a
formulation for use. GLA is commonly prepared as glucopyranosyl
lipid A-aqueous nanosuspension (GLA-AF), glucopyranosyl lipid
A-stable emulsion (GLA-SE), glucopyranosyl lipid A-liposome (GLA-
LS) and glucopyranosyl lipid A-aluminum hydroxide (GLA-
alum).169 Among them, GLA-SE is the most studied in preclinical
and clinical studies. When Clegg et al. used GLA-SE as an adjuvant
for the H5N1 subunit vaccine, they found that it induced the
production of antigen-specific T1-type CD4+ T cells and higher
titers of Th1-type antibodies, and protected mice and ferrets from
H5N1 virus challenge.200 In non-human primates, GLA-SE induces
more Th1-type cytokines when used as an influenza vaccine
adjuvant and induces the production of neutralizing antibodies
against multiple influenza virus variants, greatly improving the
protective immune effect of the vaccine.201 In addition to
improved humoral immune responses to the vaccines, in a phase
II clinical trial, when used GLA-SE as an adjuvant for the H5N1
influenza vaccine, showed a dose saving effect, which is
particularly beneficial in pandemic influenza situations
(NCT01991561).202 In several clinical trials, when GLA-SE was used
as an adjuvant for TB vaccine and tested against ID93
recombinant protein, the vaccine was found to induce high titer
antigen-specific antibody production and CD4+ T responses,
demonstrating good safety and immunogenicity in vaccinated
populations (NCT01599897, NCT02465216, NCT02508376,
NCT01927159).203,204 In addition, GLA-SE has been clinically
evaluated as a vaccine adjuvant in malaria vaccines, tumor
vaccines, HIV vaccines, visceral leishmaniasis vaccines, and
schistosomiasis vaccines (Table 1). These clinical trials seem to
suggest that GLA-SE is an effective and safe vaccine adjuvant with
potential as a next-generation vaccine adjuvant. GLA-AF is another
well-studied product of the GLA family. GLA-AF has also been
evaluated in preclinical and clinical tests as an adjuvant candidate
for several vaccines (NCT01717950, NCT01922284).205,206

Imidazoquinolines. Imidazoquinolines are able to activate TLR 7/
8, leading to activation of NF-κB and IRF7, promoting the
production of pro-inflammatory cytokines and type I interferons,
which will lead to strong Th1 cell and CTLs production.207

Imiquimod (R837), resiquimod (R848), and 3M-052 (also known as
telratolimod) are the most studied imidazoquinolines as adju-
vants in preclinical and clinical settings (Table 1). Substantial
evidence suggests that R837 exhibits strong adjuvant action in
melanoma, HPV, breast cancer, and T-cell lymphoma vac-
cines.208–211 Viral vaccines and tumor vaccines coupled with
R848 have shown to induce stronger humoral responses and
CD8+ T cell immune responses.212,213

3M-052 is an imidazoquinoline compound with a structure
similar to that of R848. The 18-C fatty acyl chain of 3M-052 confers
enhanced hydrophobicity to the compound, thereby improving
bioavailability at the immune site and reducing the probability of
systemic transmission.214 In addition, this lipidation makes it easier
to incorporate 3M-052 into lipid-based formulations, such as
emulsions or liposomes. HIV vaccines formulated with 3M-052
encapsulated in PLGA nanoparticles or alum have been shown to
induce high and sustained levels of antibody responses and T-cell
responses.215–218 An HIV vaccine based on alum-3M-052 adjuvant
has been studied in a human phase 1 clinical trial (Table 1,
NCT04915768). In addition, 3M-052 is also used in an inactivated
SARS-CoV-2 vaccine. Interim results from a phase 3 trial in India
showed an overall estimated vaccine efficacy of 77.8%, which
indicated the vaccine was well tolerated (Table 1, NCT04641481)

(COVAXIN, BBV152).219 COVAXIN is currently approved by the
World Health Organization (WHO) for emergency use.
The use of these imidazoquinolines as vaccine adjuvants

enhances immune efficacy, but suffers from several shortcomings.
Specifically, they often diffuse systemically from the injection site,
thereby moving away from the antigens, reducing efficacy, and
inducing systemic side effects.207 Therefore, these imidazoquino-
lines need to be coupled with synthetic polymeric scaffolds,
nanogels, lipid-based nanoparticles or other delivery materials to
enhance their immune effects and reduce their side effects.220

CPG ODNs. CPG ODNs are synthetic single-stranded DNA
molecules, which have been extensively studied as TLR9
agonists.221 Among them, the most commonly used as vaccine
adjuvants are CpG ODN 1018, CpG ODN 7909, and IC31. They can
lead to transcriptional activation of TRF7, which in turn leads to
the production of cytokine IL-12 and type I interferons, ultimately
inducing a strong Th1-type cell response and CTLs production.
CpG ODN 1018 is the most studied CPG ODNs in preclinical and
clinical trials, and it has been described in the previous section.
In addition to CpG ODN 1018, CpG ODN 7909 is the most

studied CpG ODN. When CPG ODN 7909 is added to the HBV
vaccine, CPG ODN 7909 induces a more significant and rapid
HBsAg-specific humoral response in healthy populations.222 CPG
ODN 7909 can also improve the response rate of HIV-positive
patients to vaccination, demonstrating the promising potential of
vaccines formulated with CPG ODN 7909 to improve vaccine
response rates in immunocompromised individuals.223,224 A
randomized, double-blind controlled trial tested the immunosti-
mulatory effects of CPG ODN 7909 as an adjuvant for the HBV
vaccine (Engerix-B). The results of the trial showed that the
addition of CPG ODN 7909 achieved rapid, higher and sustained
seroprotection and increased HBV-specific Th responses com-
pared to Engerix-B alone.225 In addition to its use with HBV, CPG
ODN 7909 is also used in malaria vaccines. A phase I clinical trial of
BSAM2, a protein-based malaria vaccine, showed a dose-sparing
effect of adding CpG ODN 7909 (Table 1, NCT00889616).226 This
feature is particularly valuable in resource-poor environments.
IC31 is another agonist of TLR9, which contains both CPG ODN

and a positively charged antimicrobial peptide component. It
signals cellular and humoral immune responses via a TLR9/
MyD88-dependent pathway. In addition, the stable complex
formed by the ionic and hydrophobic interactions between the
two components of IC31 can form an antigen reservoir at the
injection site, providing a slow release of antigen and prolonging
the bioavailability of antigen.227 IC31 can increase antigen
presentation by APCs and significantly improve the immune
effect of CPG ODN. Mouse-based studies have shown that IC31
contributes to the induction of potent antigen-specific CTLs and
strong antigen-specific humoral responses.228 IC31 has been
extensively evaluated in preclinical and clinical trials as a
candidate adjuvant for a variety of subunit vaccines
(NCT03512249, NCT02496897, NCT02075203).229–234 The results
indicate that IC31 is an effective vaccine adjuvant with potential
for clinical translation.

Cyclic dinucleotides (CDNs). CDNs can target and activate the
cGAS-STING pathway, leading to the activation of IRF3 and NF-κB,
inducing the production of type I interferons and proinflammatory
cytokines.235 The type I interferons selectively stimulates antigen
cross-presentation and mobilizes CD8 + T cells. As a result, CDNs
generate strong Th1-type cell responses and CTLs responses. The
CDNs include natural CDNs and synthetic CDNs. Natural CDNs
include 2’,3’-cGAMP, 3’,3’-cGAMP, c-di-GMP, and c-di-AMP, which
are second messengers of bacteria and mammals with strong
immunomodulatory functions.236 Adjuvants based on natural
CDNs have been evaluated in a variety of vaccines and have
shown promising results. For example, when 2’,3’-cGAMP is
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encapsulated in pulmonary surfactan-mimetic liposomes, it
enhances H1N1 influenza vaccine-induced humoral and CD8+ T
cell responses and induces long-term cross-protective immune
responses against heterotypic viruses in mice and ferrets.237

Junkins et al. encapsulated 3’3’-cGAMP in acid-sensitive acetal
dextran (Ace-DEX) polymer particles and administered them to
mice together with an influenza vaccine. The test results showed
60 to 600 times higher in antibody titers than those of the regular
alum vaccine group and caused no observable toxic effects.238 Lin
et al. encapsulated c-di-GMP in PLGA and externally coupled the
MERS vaccine antigen to form a nanovaccine. This vaccine not
only triggered effective neutralizing antibodies and antigen-
specific T-cell responses, but also preferentially targeted draining
lymph nodes, generating local immunity and reducing systemic
responses.239 When Ebensen used c-di-AMP as a mucosal adjuvant
for the H5N1 influenza vaccine, it was found to effectively induce
protective immunity against H5N1 influenza in mice.240 Phase I
clinical trial of c-di-AMP as HPV vaccine adjuvant is currently
underway (Table 1, NCT05208710).
Due to the short half-life and low uptake efficiency of natural

CDNs by APCs, some synthetic CDNs with chemical modifications
have emerged to enhance their immune effects, such as ADU-
S100, MK-1454, BMS-986301, SB-11285, IMSA-101. However, there
are no specific examples of the use of these synthetic CDNs as
vaccine adjuvants. It is worth noting that, since these synthetic
CDNs have shown the ability to significantly enhance the body’s
immune responses in preclinical and clinical trials, we believe that
the desire to use these synthetic CDNs as vaccine adjuvants will
soon be realized (NCT03172936, NCT03010176, NCT03010176,
NCT04096638, NCT04020185).241,242

Furthermore, it is noteworthy that with the advent of
nanotechnology, nanoparticle-based delivery systems such as
liposomes, emulsions, virus-like particles (VLPs) and biodegradable
polymers, have received significant attention. They can continu-
ously release the cargo and improve the bioavailability of the
cargo. Therefore, the use of nanoparticles to encapsulate CDNs
has been seen as a strategy to improve the utilization efficiency of
CDNs in vivo.237,243,244

Metabolic adjuvants. In recent years, some small molecule
modulators targeting metabolic pathways have been found to
be novel vaccine adjuvants. The mevalonate pathway is the core
metabolic pathway of various cellular processes, including
cholesterol biosynthesis and protein post-translational prenyla-
tion.245 Researchers have found that lipophilic statins and
rationally designed bisphosphonates can inhibit the formation of
the downstream metabolite geranylgeranyl pyrophosphate
(GGPP) by targeting the enzymes in the mevalonate pathway.246

This result leads to blocked geranylgeranylation of small GTPases
(e.g., Rab5) in APCs, which slows down the transport of antigens
from the endosomes to the lysosomes and prevents rapid
degradation of antigens.247 This prolongs antigen retention so
that antigen presentation is enhanced. These small-molecule
inhibitors targeting mevalonate pathways have shown adjuvant
effects in increasing antibody titers and enhancing cellular
immune responses in both mice and cynomolgus monkeys.246

In addition, recent studies have found that the mammalian target
of rapamycin (mTOR) complex, a central metabolic regulator, plays
an important role in regulating immune cells. First of all, mTOR
complex can regulate the secretion of type I interferons in
plasmacytoid DCs.248 Inhibition of mTOR complex will severely
reduce the interferon α produced. Moreover, the mTOR complex is
an essential regulator of effector T cell expansion and germinal
center B cell response production.249 In addition to mTOR, the
amino acid sensor general control nonderepressible 2 (GCN2) also
plays a role in regulating immune cells such as DCs. Studies have
shown that activation of GCN2 leads to enhanced autophagy of
DCs, which enhances the antigen presentation.250 These results

suggest that enzymes or regulators of cellular metabolic pathways
may be potential targets for the design and development of novel
adjuvants.

Manganese adjuvants and derivatives. Recently, Manganese (Mn)
and its derivatives have been found to have potential adjuvant
activity. They act as activators of cGAS, directly activating cGAS
and inducing a noncanonical catalytic synthesis of 2’3’-cGAMP.251

In this way, manganese activates the innate immune pathway of
cGAS-STING, induces the production of type I interferons,
enhances antigen presentation and cross-presentation, promotes
the production of antibodies and increases the production of
CD8+ T cell immune responses.252,253 It is reported that Mn2+

induced mouse bone marrow-derived dendritic cells to produce a
large amount of IFNβ and IFNα, and led to significant up-
regulation of costimulatory molecules (e.g., CD80 and CD86) and
chemokines (e.g., CCL2 and CCL3) in vitro experiments.254 This
suggests that Mn2+ has adjuvant activity to induce DCs
maturation and enhance antigen presentation. To further verify
its adjuvant activity, the researchers injected a solution containing
Mn2+ with the antigen into mice and found that it led to an
increase in antibody titers. To prevent Mn2+ from aggregating in
solution and losing adjuvant activity, researchers have developed
a series of Mn2+-based nanoadjuvants to stabilize the adjuvant
activity of Mn2+.254,255 For example, nanoscale manganese jelly
(MnJ), which not only has the ability to activate the cGAS-STING
pathway as an immunostimulant to induce the production of type
I interferons, but also serves as a delivery system to carry the
antigen, resulting in strong humoral and cellular responses.254–256

When administered intranasally, MnJ also acts as a mucosal
adjuvant to induce high levels of IgA antibodies. Wang et al.
developed another manganese adjuvant called MnARK. They
found that even at a 5-fold lower antigen dose and a reduced
number of injections, mice vaccinated with the RBD vaccine
containing MnARK adjuvant showed greater neutralization of
infection with pseudovirus (around 270-fold) and live coronavirus
(8-fold) compared to mice vaccinated with the RBD vaccine
containing aluminum adjuvant.257 Sun et al. used the chemical
engineering strategies to fabricate a nano-manganese adjuvant
based on Mn2+ called nanoMn. The coronavirus vaccine with
nanoMn as an adjuvant induced a strong CD8+ T cell immune
response and showed good safety in vivo.258 In addition, some
other nano-adjuvants based on Mn2+ have also shown the effect
of activating the cGAS-STING pathway and improving the immune
responses of vaccines.259,260 These results suggest that manga-
nese has great potential as a target for the development of novel
vaccine adjuvants.
A number of immunostimulants with different properties have

been evaluated in preclinical and clinical trials. Overall, immunos-
timulants that target TLRs remain the most popular in preclinical
and clinical studies. On the other hand, there is an increasing
trend to combine multiple PRRs agonists and formulate these
agonists into oil-in-water emulsions or load them using other
delivery systems to enhance their targeting of APCs
(NCT02126579, NCT01585350, NCT01008527, NCT02126579).

Delivery system platforms under investigation
In recent years, with the development of engineering materials
science, a variety of vaccine delivery systems based on
engineering materials have been developed. Novel water-in-oil
nanoemulsions, LNPs, polymer nanoparticles, VLPs, caged
protein nanoparticles and inorganic nanocarriers are some of
the important delivery system platforms. Different types of
delivery systems have different mechanisms of action and
physicochemical properties, which correspondingly affect the
efficacy of vaccination. Here, we summarize and describe the
mechanisms, properties, and applications of these delivery
system platforms.
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Novel water-in-oil nanoemulsion. Montanide ISA 51 and Monta-
nide ISA 720 are two novel water-in-oil emulsion delivery systems
being tested in clinical trials.77 Montanide ISA 51 is emulsified with
mineral oil and mannide monooleate, while Montanide ISA 720 is
emulsified with non-mineral oil and mannide monooleate. In
addition, they have different oil-to-water ratios.261 The mechan-
isms of action of these two adjuvants are the formation of an
antigen depot and the slow release of antigen to prolong the
bioavailability of antigens.262 Both preclinical and clinical test
results show that Montanide ISA 51 and Montanide ISA 720
adjuvants enhance serum antibodies production and CTLs
production.263–265 Currently, Montanide ISA 51 and Montanide
ISA 720 are being evaluated in clinical trials as adjuvants for
influenza, malaria, melanoma, and other cancer vaccines (Table 2).
In addition, Montanide ISA 51 is licensed for therapeutic lung
cancer vaccine in Cuba.77 We note that Montanide ISA 51 and
Montanide ISA 720 are often used as emulsified immunostimulant
adjuvants to enhance the potency of immunostimulants
(NCT00199836, NCT01008527, NCT01585350).

Lipid nanoparticles (LNPs). LNPs are multifunctional, non-viral,
nanoscale lipid vesicle delivery systems that consist of ionizable
lipids, phospholipids, cholesterol, and polyethylene glycol mod-
ified lipids.266 Ionizable lipids are the main components of the
LNPs. Phospholipids and cholesterol contribute to the structural
integrity of LNPs, and polyethylene glycol modification helps to
maintain the stability of LNPs. The mechanisms of action of LNPs
mainly include (1) providing effective cargo protection for
antigens and prolonging their bioavailability; (2) increasing the
particle size of antigens to target APCs and promote their uptake
by APCs; (3) promoting antigen escape from endosomes via
membrane fusion, leading to CD8+ T cell immune response.267

After years of research, LNPs have been used in the delivery of
various vaccines and have shown to strongly enhance both
humoral and cellular immune responses. Alameh and his
colleagues found that LNPs enhanced humoral immune responses
to mRNA and protein subunit vaccines by inducing the prolifera-
tion of powerful T follicular helper cells, germinal center B cells,
long-lived plasma cells, and memory B cells.268 Oberli and his
colleagues induced activation of CD8+ T cells when using LNPs to
deliver mRNA vaccines for the tumor-associated antigens gp100
and TRP2 to treat B16F10 melanoma, which led to tumor
shrinkage and prolonged overall survival in mice.266 In recent
years, LNPs have been extensively tested as a promising mRNA
vaccine delivery system in clinical trials for COVID-19 vaccines,
tumor vaccines, influenza vaccines, etc (Table 2). In 2020, Pfizer’s
BNT162b2 vaccine (known as Comirnaty) and Moderna’s mRNA-
1273 vaccine (known as Spikevax), both of which deliver mRNA
antigens with LNPs, were approved for emergency marketing.
These two mRNA vaccines have made a significant contribution to
the fight against COVID-19.269,270

Polymer particles. Polymer particles are generally divided into
natural polymer and synthetic polymer particles. Usually, the
mechanism by which they function is through the slow release of
antigens. The most common natural polymer used in vaccine
delivery is chitosan. Chitosan has a high cationic charge and
bioadhesive properties.271 Therefore, chitosan can form a tight
complex with anionic nucleic acid through electrostatic interac-
tion.272,273 Furthermore, the bioadhesive properties of chitosan
allow it to remain in contact with mucosal surfaces for a long time,
prompting continuous stimulation of immune cells by antigens.
This indicates that chitosan may be a promising delivery system
for nucleic acid vaccines and mucosal vaccines. Sawaengsak et al.
prepared a nanoparticle vaccine by cross-linking chitosan with
sodium tripolyphosphate to encapsulate inactivated influenza
virus antigens and found that mice that received 2 doses of this
vaccine intranasally were able to produce more antigen-specific

antibodies and IFNγ+ T cells. This resulted in 100% protection
against influenza virus attack in vaccinated mice.274 Recently,
chitosan has also been tested as a delivery system for Neocrown
DNA vaccines. After intranasal immunization, high levels of
neutralizing antibodies were detected in mice, and various Corona
Virus and their mutant pseudoviruses were effectively neutra-
lized.275 In addition, chitosan has also recently been found to
induce type I interferons production for CD8+ T cell immunity by
activating the DNA sensor cGAS-STING pathway.276

Synthetic polymer particles typically have higher reproducibility
and a more controlled rate of slow release than natural
polymers.277 PLGA, a synthetic polymeric particle material, is
now widely used as a carrier for vaccine delivery. In preclinical
studies, Kim et al. encapsulated vaccine components (including
antigens and immunostimulants) in PLGA to increase uptake and
presentation of antigen by DCs, which allowed the immunosti-
mulant to target DCs in lymph nodes more than systemic
spread.278 Koerner et al. designed a PLGA particle that encapsu-
lated antigens and dsRNA adjuvants. The particle vaccine was
found to exhibit an ideal release curve, increased the number of
targeted lymph nodes, and was effectively phagocytosed and
presented by DCs. Finally, an effective and lasting anti-cancer
immune response was produced.279 PLGA is also used to deliver
other cancer vaccines and HBV vaccines and to enhance their
immunotherapeutic effects.280–283 At present, PLGA particles have
been clinically tested as delivery systems for cancer vaccines
(NCT01753089, NCT04751786).284 It is worth noting that PLGA has
been approved by the FDA for drug delivery. Therefore, we
believe that a PLGA-based vaccine delivery system will be
approved for human use in the near future.285,286

Virus-like particles (VLPs). VLPs are polymeric particles with a fixed
shape derived from the coat proteins of viral capsids and formed
by the self-assembly of protein monomers.287 VLPs’ excellent
particle sizes and geometry make it an effective platform for
delivery of vaccine antigens.288,289 VLPs are typically between 20
and 100 nm in diameter and therefore readily enter lymphatic
vessels and target lymph nodes for uptake by specialized APCs.11

In addition, due to their highly repetitive and rigid structure, VLPs
can display multivalent antigenic epitopes on their surface and
therefore can extensively cross-link BCRs, thereby stimulating B
cells and inducing a robust and long-lasting antibody response.290

Currently, VLP-based vaccines have been successful and are
already widely available in the market, such as Cervarix® and
Gardasil® for HPV, Sci-B-Vac™ for hepatitis virus, and RTS, S VLP
vaccine.291 VLPs can be used to deliver not only endogenous viral
antigens, but also heterologous antigens modified on VLPs by
chemical coupling or gene fusion. For example, a breast cancer
VLP vaccine that attaches HER2 antigenic epitopes to 30 nm
icosahedral cowpea mosaic virus (CPMV) could effectively induce
antigen-specific responses and tumor protection in a mouse
model.292 In addition, the tumor-associated carbohydrate antigen
MUC1 can be covalently linked to Qβ, a self-assembled icosahedral
shell VLP with 25 nm. This MUC1 VLP vaccine induces higher levels
of specific antibodies and prolongs the survival of tumor-bearing
mice.293 Several VLP-based vaccines have successfully entered
clinical trials, including the chikungunya vaccine, influenza
vaccine, Neocon vaccine, cancer, encephalitis and other vaccines
(Table 2).294 Notably, due to the highly ordered and repetitive
spatial structure of VLPs, which is highly conducive to cross-linking
BCRs, the VLPs vaccines can strongly activate B cells even in the
absence of T helper (Th) cells.288

Caged protein nanoparticles. Caged protein nanoparticles typi-
cally consist of a series of repeating motifs that allow antigenic
epitopes or antigens to be incorporated into their subunit
structures, so that these incorporated antigenic epitopes or
antigens are displayed on the surface of the assembled
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Table 2. Clinical trials of delivery system platforms under investigation (2016–2023)

Platform type Platform name Mechanisms and effects Antigen Tested diseases NCT number Phases

Delivery system platforms of infectious disease vaccines

W/O emulsion Montanide ISA
51

(1) Forming a depot at the injection site;
(2) Sustained-release antigens to
enhance antigen presentations.

PPfs5 and ScPvs20
recombinant protein

Malaria NCT00295581 I

FLU-v peptide Influenza NCT02962908 II

CS protein Malaria NCT02083068 II

CS protein Malaria NCT04739917 II

Montanide ISA
720

(1) Forming a depot at the injection site;
(2) Sustained-release antigens to
enhance antigen presentations.

PfCP2.9 recombinant
protein

Malaria NCT00284973 I

LNPs LNP (1) Providing effective cargo protection
for antigens and prolonging antigen
bioavailabilities; (2) Increasing the
particle size of antigens to target
antigens to APCs and lymph nodes;
(3) Promoting antigens escape from
endosomes by membrane fusion and
leading to CD8+ T cell immune
response.

mRNA Influenza NCT03076385 I

mRNA Zika NCT03014089 I

mRNA Rabies NCT03713086 I

mRNA RSV NCT04528719 I

mRNA Chikungunya NCT03829384 I

mRNA Cytomegalovirus NCT03382405 I

ARCT-021 mRNA COVID-19 NCT04480957 I/II

mRNA Influenza NCT03345043 III

mRNA COVID-19 NCT04470427 III

mRNA COVID-19 NCT04368728 III

mRNA COVID-19 NCT04860258 III

VLPs VLP (1) Trafficking antigen to lymph nodes;
(2) Displaying multivalent antigens;
(3) Cross-linking with BCRs to strongly
activate B cells.

H7N9 VLP protein H7N9 Influenza NCT01897701 I

COVID-19 VLP protein COVID-19 NCT04450004 I

A Trivalent VLP
protein

Encephalitis NCT03879603 I

COVID-19 VLP protein COVID-19 NCT05040789 III

PXVX0317
Chikungunya VLP
protein

Chikungunya Virus NCT05072080 III

Caged protein
nanoparticles

Ferritin (1) Trafficking antigens to lymph nodes;
(2) Displaying multivalent antigens;
(3) Cross-linking with BCRs to strongly
activate B cells.

Hemagglutinin
protein

Influenza NCT03186781 I

Hemagglutinin
protein

Influenza NCT04579250 I

Hemagglutinin
protein

Influenza NCT03814720 I

EBV gp350 protein Epstein-Barr virus
infection

NCT04645147 I

SARS-CoV-2
recombinant spike
protein

COVID-19 NCT04784767 I

Inorganic
nanocarriers

Gold
nanoparticle

Forming nanovaccines with appropriate
particle size to target antigens to APCs
and lymph nodes.

Peptide Dengue NCT04935801 I

Peptide COVID-19 NCT05113862 I

Delivery system platforms of tumor vaccines

W/O emulsion Montanide ISA
51

(1) Forming a depot at the injection site;
(2) Sustained-release antigens to
enhance antigen presentations.

NY-ESO-1 peptide Cancer NCT00199836 I

Mixed TAA peptide Central nervous
system tumors

NCT00935545 I

P10s‐PADRE peptide Breast cancer NCT01390064 I

Gp100 peptide Melanoma NCT00003274 II

HLA-A2-restricted
peptides

Melanoma NCT00145158 I/II

Peptide Prostate cancer NCT02452307 I/II

Montanide ISA
720

(1) Forming a depot at the injection site;
(2) Sustained-release antigens to
enhance antigen presentations.

NY-ESO-1 protein NY-ESO-1-expressing
tumors

NCT00819806 I

LNPs LNP (1) Providing effective cargo protection
for antigens and prolonging antigen
bioavailabilities; (2) Increasing the
particle size of antigens to target

KRAS mRNA Tumor NCT03948763 I

mRNA Melanoma NCT02410733 I

mRNA Triple-negative breast
cancer

NCT02316457 I
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particles.295 Similar to VLPs, caged protein nanoparticles have
properties such as highly ordered and repetitive spatial structure
and optimal size for lymph node transit. However, unlike VLPs,
caged protein nanoparticles are of non-viral origin. Caged protein
nanoparticles such as heat shock proteins,296 protein vault,297,298

and ferritin protein299 have been extensively studied as delivery
platforms for vaccines in preclinical and clinical settings. Among
the above protein nanoparticles, ferritin is the most frequently
applied. Ferritin is a protein with an octahedral symmetry
structure formed by the self-assembly of 24 subunits, each of
which consists of four alpha-helix bundles.300 Kanekiyo et al.
constructed a nano-influenza vaccine with an antibody titer more
than 10 times higher than licensed inactivated vaccines by
genetically fusing the hemagglutinin antigen of the H1N1
influenza virus with a ferritin of Helicobacter pylori origin, and
inserting the hemagglutinin antigen into the ferritin subunit and
displaying it on its surface.301 Promising results obtained with this
design have helped develop three vaccines against other
influenza subtypes, which are now in phase 1 clinical trials
(NCT03186781, NCT03814720, NCT04579250). In the above three
phase 1 clinical trial, the trial NCT03186781 has been completed.
The results show that the influenza vaccine H2HA-ferritin, whether
as a stand-alone or booster regimen, is safe and well tolerated,
and can produce a broadly neutralizing antibody response.302

Recently, Zhang and his colleagues developed a ferritin-based
SARS-CoV-2 nanoparticle vaccine that elicited an effective
protective immune response.303 In addition, the HBV vaccine
based on ferritin nanoparticles can deliver HBV antigen preS1 to
specific APCs, activate a strong immune response, and induce a
high level of sustained antibody responses.86 In addition, ferritin
nanoparticles can effectively deliver tumor-specific antigens to
lymph nodes, resulting in specific cytotoxic CD8+ T cell responses
and significant inhibition of tumor growth.304 Notably, a
computer-based de novo design caged protein nanoparticle
called I53-50 has recently shown exciting results as a powerful
and versatile platform for the presentation of multivalent antigens.
The SARS-CoV-2 vaccine based on I53-50 showed 60 SARS-CoV-2
spike receptor binding domains in the highly immunogenic motif,
which produced a neutralizing antibody titer 10 times higher than
that of the control vaccine.305 Similarly, a nanoparticle vaccine
based on I53-50 that can display 20 respiratory syncytial viruses
DS-Cav1 trimer antigens induced an approximately 10-fold higher
neutralizing antibody response than DS-Cav1 trimer antigens
alone.87

Inorganic nanomaterials. Gold nanoparticles are one of the
commonly used inorganic nanomaterials delivery systems.306,307

Since the physicochemical properties such as composition, size,
morphology, hydrophobicity, surface charge, homogeneity, and
distribution of gold nanoparticles can be precisely tuned by
material synthesis and surface chemical modification to shape
specific immune types, gold nanoparticles have been studied as a
promising antigen delivery system in recent years.308 Gold

nanoparticles promote antigen presentation and enhance adap-
tive immune responses by (1) protecting antigens from degrada-
tion and (2) forming nanovaccines of reasonable particle size to
facilitate direct antigen transport to lymph nodes. In addition, Zhu
et al. reported that gold nanoparticles could enhance antigen-
specific antibody production by activating NLRP3 inflammasome
and promoting the production of Th2-type cytokines.309 When
gold nanoparticles were used as an adjuvant for the SARS-CoV-2
protein vaccine, they were also found to promote antigen-specific
IgG production, but were unable to induce a cellular immune
response sufficient to combat viral infection.310 Therefore, to
expand the use of gold nanoparticles, they are often used in
combination with additional immunostimulants or surface mod-
ified, to enhance their T-cell immune responses. Xu et al. prepared
gold nanoparticles modified with PEI and found that the
nanoparticles significantly promoted T-cell proliferation by acti-
vating APCs.311 Wang et al. coupled recombinant influenza
hemagglutinin to gold nanoparticles and then coupled it to
TLR5 agonist flagellin as a particle adjuvant system. Intranasal
vaccination of mice with this vaccine was found to increase
antigen-specific IgA and IgG levels, and to increase secretion of
the cytokine IFN-γ and activation of CD8+ T cells.312 Clinically,
dengue and SARS-CoV-2 vaccines using gold nanoparticles as
adjuvants are being tested (NCT04935801, NCT05113862).
Similar to gold nanoparticles, mesoporous silica nanoparticles

(MSNs) are also characterized by strong loading capacity and easy
surface modification.313 Modified MSNs have been investigated as
effective vaccine delivery systems. By assembling MSNs with iron
oxide nanoparticles, Lee et al. formed hollow MSNs with extra-
large mesopores. The surface modification was then performed
using PEI, so that the gaps within the modified MSNs allowed
efficient loading of various model proteins of different sizes, and
could enhance antigen presentation and cross-presentation.
When used as a cancer vaccine delivery system, it increased the
production of antigen-specific CTLs, inhibited tumor growth in
mice, and improved the survival rate of tumor-bearing mice.314 Li
et al. reported an example of mesoporous silica/calcium
phosphate composite nanoparticles loaded with tuberculin-
purified protein derivative of tuberculin as adjuvants for tumor-
associated antigens. The results showed that the composite
particles were able to significantly inhibit the growth of tumors.315

MSNs-based materials have also been tested in studies as delivery
systems for other antigens.316 It has been noted that MSNs have
slowly started clinical trials as carriers for other drugs.317 Since
MSNs have shown effectiveness as a vaccine delivery system in
preclinical studies, we believe that vaccines based on MSNs as a
delivery system will also be licensed for clinical trials in the near
future.
With the development of materials science, material-based

delivery systems have developed rapidly. It is now possible to
enhance the adaptive immune responses of vaccination by
protecting vaccine components and targeting them to APCs or
specific lymphoid tissues through delivery systems. However,

Table 2. continued

Platform type Platform name Mechanisms and effects Antigen Tested diseases NCT number Phases

antigens to APCs and lymph nodes; (3)
Promoting antigens to escape from
endosomes by membrane fusion and
leading to CD8+ T cell immune
response.

mRNA Gastrointestinal
cancer

NCT03480152 I/II

mRNA Melanoma NCT03897881 II

mRNA Melanoma NCT03815058 II

Polymeric
particles

PLGA Sustained-release antigens to enhance
antigen presentations.

Autologous
melanoma cell lysate

Melanoma NCT01753089 I

NY-ESO-1 peptide Advanced solid
tumor

NCT04751786 I
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compared with immunostimulants, relatively few delivery systems
have entered clinical testing. This may be due in part to the
unresolved safety issues of the delivery systems. Therefore, the
specific mechanism of the interaction between the delivery
systems and the host immune cells or organs still needs further
research to clarify its effectiveness and side effects, so as to better
balance and control the relationship between the two.

CONCLUSION AND PERSPECTIVES
In recent years, the emergence and spread of the novel
coronavirus have brought great challenges to global public health
in the prevention and control of diseases, which once again brings
to light the importance of vaccine development. A topic that
cannot be ignored in vaccine development is adjuvants, due to
their ability to greatly enhance the adaptive immune responses of
vaccines. At the beginning of the review, we summarize and
describe the action mechanisms of adjuvants. According to the
action mechanisms, adjuvants can be classified as immunostimu-
lants and delivery systems. Immunostimulants activate APCs by
targeting specific PRRs, leading to enhanced antigen-presenting
and co-stimulatory signaling, which results in adaptive immune
enhancement. The delivery systems target antigens to APCs or
lymph nodes by prolonging the bioavailability of antigens to
enhance the uptake and presentation of antigens by APCs,
resulting in an enhanced adaptive immune response. Subse-
quently, this review elaborates on classical adjuvant platforms as
well as adjuvant platforms under investigation, in the hope of
informing the selection of rational adjuvants when developing a
specific vaccine. In order to promote the better development of
the adjuvant field, we believe that the following points may
require attention.
First of all, selecting the right adjuvant to assist the antigen and

improve the immune responses is an important issue in the
development of new vaccines. However, this issue is complex and
challenging. This is due to the fact that the response of the
immune system to a given vaccine and adjuvant is highly
dependent on the specific situation, and no one adjuvant is
appropriate for the antigens in all cases. In conjunction with the
description of adjuvants in this review, we propose here that the
following factors need to be considered when selecting adjuvants
for new vaccine development. For example, the routes of
administration (e.g., intramuscular, mucosal, intraperitoneal),318,319

the type of immune responses required (antibody-biased or CD8+

T cell-biased, or both),320,321 the type of pathogens,322 the type of
antigens (subunit antigens or mRNA antigens),323–325 and the
stage of the diseases.326 In addition, the biological characteristics
of the vaccine recipients may also be important, including species,
ethnicity, age, medical history and genetic composition, etc.327–332

Moreover, the safety and economy of adjuvants also need to be
taken into account. All of these factors may affect the effective-
ness of vaccine adjuvants.
Moreover, considering that the combination of immunostimu-

lants (mainly PRRs agonists) and delivery systems (especially
nanoparticle delivery systems) are currently used for adjuvants
development to achieve higher immune activation.84,333 Here,
some issues need to be carefully considered. First, through our
knowledge of the yellow fever virus vaccines, we know that
simultaneous activation of multiple innate receptors is more
effective than activation of a single receptor.334 Therefore, there is
a great need to clarify the signaling interactions between different
PRRs in order to better screen for a more effective combination of
PRRs.335 In addition, given the differences of physicochemical
characteristics between antigens and PRR agonists, and between
different PRR agonists, delivery systems need to be more rationally
designed to be flexible and compatible enough to deliver multiple
vaccine components simultaneously.

Finally, we would also like to mention a point about classical
adjuvants. The classical adjuvant has shown good biosafety in
historical use. Besides, the mature research and development
technologies and well-established manufacturing conditions and
equipments provide a relatively easy platform for the develop-
ment of new vaccines to be translated. Nevertheless, the
disadvantage of classical adjuvants is their limited immune
stimulation ability. In view of this, there is an urgent need for
new adjuvants to make up for the shortcomings of classical
adjuvants. However, the cost and time of preclinical development
and clinical trials limit the conversion of new adjuvants. Therefore,
we believe that while promoting the development and translation
of new adjuvants, some performance optimization and formula-
tion improvement of classical adjuvants, such as surface
modification, granulation, and combination with other adjuvants
that improve their immune efficacy, may be a research project
with clinical value.336,337

In this review, we systematically summarize the mechanisms of
action of adjuvants, and introduce and discuss the characteristics
and application scenarios of different types of adjuvants according
to their mechanisms. We expect this review to provide a reference
value for further research on the mechanisms of adjuvants,
rational use of existing adjuvants, and design and development of
new adjuvants.
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