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Immunotherapy in hematologic malignancies: achievements,
challenges and future prospects
Lu Tang1,2,3, Zhongpei Huang1,2,3, Heng Mei1,2,3,4✉ and Yu Hu 1,2,3,4✉

The immune-cell origin of hematologic malignancies provides a unique avenue for the understanding of both the mechanisms of
immune responsiveness and immune escape, which has accelerated the progress of immunotherapy. Several categories of
immunotherapies have been developed and are being further evaluated in clinical trials for the treatment of blood cancers,
including stem cell transplantation, immune checkpoint inhibitors, antigen-targeted antibodies, antibody-drug conjugates, tumor
vaccines, and adoptive cell therapies. These immunotherapies have shown the potential to induce long-term remission in refractory
or relapsed patients and have led to a paradigm shift in cancer treatment with great clinical success. Different immunotherapeutic
approaches have their advantages but also shortcomings that need to be addressed. To provide clinicians with timely information
on these revolutionary therapeutic approaches, the comprehensive review provides historical perspectives on the applications and
clinical considerations of the immunotherapy. Here, we first outline the recent advances that have been made in the understanding
of the various categories of immunotherapies in the treatment of hematologic malignancies. We further discuss the specific
mechanisms of action, summarize the clinical trials and outcomes of immunotherapies in hematologic malignancies, as well as the
adverse effects and toxicity management and then provide novel insights into challenges and future directions.
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INTRODUCTION
Cancer immunosurveillance is a process in which multiple innate and
adaptive immune effector cells and molecules are involved in the
recognition and killing of cancer cells.1 Extrinsic immune stress can
either prevent tumor growth, development and survival or promote
tumor growth by both sculpting the immunogenicity of the tumor or
inhibiting the anti-tumor immune response.1,2 Immune editing is
considered one of the key parts of why tumors could evade the
surveillance and lie dormant in the host body for years before re-
emerging through the “equilibrium” and “senescence”.3 With the
growth of poorly-immunogenic variants and the destruction of the
host immune system, cancer cells ultimately evade immunosurveil-
lance.4 Cancer cells employ many strategies to suppress the immune
system of the human body, so that they can survive in every stage of
the anti-tumor immune responses.5 The generation of anti-tumor
immune response is a complicated and multi-step process and Chen
et al. refer to these steps as the “Cancer-Immunity Cycle”.6 As for
cancer patients, the “Cancer-Immunity Cycle” does not perform
optimally. Any abnormality in these steps can lead to the failure of
the “Cancer-Immunity Cycle” and consequent cancer immune
evasion.7 Immunotherapies could fight against cancer by harnessing
the immune system and restoring anti-tumor immunity.8 Con-
structed over decades, immunotherapies have begun to demon-
strate such promising results in treating cancer patients and have
been selected as the “Breakthrough of the Year for 2013”.8–10

Hematologic malignancies refer to malignant diseases originat-
ing from the lymphohematopoietic system and may involve all

systems and organs throughout the body. Hematologic malig-
nancies mainly include acute leukemia, chronic leukemia,
lymphoma, multiple myeloma (MM), myelodysplastic syndrome
(MDS), and myeloproliferative neoplasm (MPN). Acute lympho-
blastic leukemia (ALL) is characterized by the abnormal prolifera-
tion of a huge number of immature lymphocytes.11 Acute myeloid
leukemia (AML) is the most commonly occurring acute leukemia
in adults and its incidence increases with age. As a result of
genetical mutations in hematopoietic stem/progenitor cells, AML
is a highly heterogeneous disease.12,13 Lymphomas are typically
divided into two categories, Hodgkin lymphoma (HL, which
accounts for about 10% of all lymphomas) and non-Hodgkin
lymphoma (NHL).14 NHL is the most prevalent kind of lymphoma
arising from lymphocytes that are at various stages of develop-
ment and the characteristics of the specific lymphoma subtype
reflect those of the cell from which they originated.14 Diffuse large
B-cell lymphoma (DLBCL), mantle cell lymphoma (MCL), and
follicular lymphoma (FL) represent the most common types of
NHL. HL, also known as Hodgkin’s disease, is a rare type of
lymphoma with unique histologic, immunophenotypic and clinical
features.15,16 HL consists of two discrete disease entities: classical
HL (cHL), which accounts for the majority of HL cases and nodular
lymphocyte predominant HL.16 MM, MDS and MPN are most
common in elderly patients. MM accounts for about 10% of
hematologic malignancies and cannot currently be cured. It
typically begins as an asymptomatic precursor, either a mono-
clonal gammopathy of undetermined significance or smoldering
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multiple myeloma.17 MDS is a clonal disorder characterized by
ineffective hematopoiesis and a tendency to evolve into AML.18

With increasing advances in chemotherapy, radiotherapy and
targeted therapy, the overall response rate (ORR) of cancer
patients has improved significantly. Historically, multi-drug
chemotherapy has been the cornerstone of the treatment of
both pediatric and adult patients with hematologic malignancies.
However, over the past decade, many patients still face treatment
failure due to relapse and resistance. The molecular characteristics
of hematologic malignancies are highly heterogeneous, leading to
considerable challenges in precision medicine and individualized
treatment.
With the potential to induce long-term remission in patients

with refractory or relapsed (R/R) hematologic malignancies,
immunotherapy has already led to a paradigm shift in cancer
therapy and tremendous success in the clinic. Furthermore,
hematologic malignancies in this setting have some unique
characteristics that make these cancers well-suited as targets for
immunotherapy.19 Immune cells and cancer cells are in constant
interconnection with each other within the hematopoietic system,
enabling an environment that is conducive to immune surveil-
lance. Since the cellular origins of malignancies are the same as
that of the immune system, the nature of these cancer cells is
immunostimulatory. However, this may meanwhile lead to deficit
and hindered immune responses. There has been accelerating
advancement of cancer immunotherapies based on various
strategies to harness the host immune system. Different
immunotherapeutic approaches have their advantages but also
shortcomings that need to be addressed. This review will provide
perspectives on the applications and clinical considerations of
immunotherapies so that clinicians can acquire timely information
about such revolutionary therapeutic options. Here, we first
outline the recent advances made toward understanding multiple
categories of immunotherapies in the treatment of hematologic
malignancies. We further discuss the specific mechanisms of
action, summarize the clinical trials and outcomes of immu-
notherapies in hematologic malignancies, as well as the adverse
effects (AEs) and toxicity management and then provide insights
into future directions.

THE HISTORY OF IMMUNOTHERAPY IN HEMATOLOGIC
MALIGNANCIES
As for the field of treating hematologic malignancies, immunother-
apy mainly involves targeted antibodies, immune checkpoint
inhibitors (ICIs), tumor vaccines, adoptive cell therapy (ACT), and
stem cell transplantation (Fig. 1a). The journey of the history of
immunotherapy for hematologic malignancies is summarized in
(Fig. 1b). The allogeneic hematopoietic stem cell transplantation
(allo-HSCT) is one of the oldest forms of cancer immunotherapy.20

The allo-HSCT was first applied to disease treatment in 1968 by E.
Donnall Thomas, who would later win the Nobel Prize for being a
pioneer in this technology and is praised as “the father of stem cell
transplantation”.20 The allo-HSCT was primarily performed for
treating leukemia in 1975 and lymphoma in 1978. Since then, HSCT
has been used worldwide to treat serious blood disorders.
Although it has been referred to as “the bluntest weapon of
chemotherapists”, as it indeed aims to eradicate and restore the
hematopoietic and immune systems, it still occupies a pivotal
position and gives patients the possibility of a cure. It wasn’t until
the end of the 20th century that new immunotherapy approaches
emerged. Rituximab, a kind of anti-CD20 monoclonal antibody
(mAb), was the first to be approved by the United States Food and
Drug Administration (FDA) for the treatment of cancer in 1997 and
since then has become the prototype for anti-CD20 mAbs and the
backbone treatment regimen for B-cell malignancies, such as
DLBCL, CLL (chronic lymphoblastic leukemia) and FL.21 As well, the
rituximab, combined with CHOP (cyclophosphamide, doxorubicin,

vincristine, and prednisone) regimen, has become the first-line
therapy for patients with NHL.22 Meanwhile, more types of mAbs
have been developed, such as tafasitamab (anti-CD19 mAb) for
DLBCL,23 daratumumab (anti-CD38 mAb) for MM,24 and lintuzu-
mab (anti-CD33 mAb) for AML.25 However, for R/R patients, mAbs
often lose their clinical effectiveness and the development of
bispecific antibodies (bsAbs) may allow for the continuation of
treatment. Blinatumomab, an anti-CD3/CD19 BiTE (bispecific T cell
engager), was the first FDA-approved BiTE for the treatment of R/R
precursor B-cell ALL (pre-B-ALL) and has also achieved remarkable
curative effects.26 Over the past several decades, antibody-drug
conjugates (ADCs) have been evaluated in a variety of clinical trials
of hematologic malignancies. The brentuximab vedotin was
approved by the FDA in 2011 for treating relapsed HL and
systemic anaplastic large cell lymphoma (SALCL).27,28 WT1 (Wilms’
tumor gene 1) peptide-based tumor vaccine was first used in
patients with overt leukemia from MDS or MDS with myelofibrosis
in the year 2002.29,30 As another rising star in immunotherapy, ICIs
have entered the field of treatment for hematologic malignancies
due to their great success in solid tumors. PD-1/PD-L1 (pro-
grammed death receptor 1, programmed death receptor ligand 1)
inhibitors play a notable clinical role in B-cell lymphoma, especially
in HL.31 CTLA-4 (cytotoxic T-lymphocyte antigen number 4)
inhibitor also demonstrates certain curative effects in patients
with HL and AML.32 There’re lots of clinical trials of these drugs
applied to different kinds of hematologic malignancies to over-
come resistance and relapse. ACT is the most popular immu-
notherapy for patients with R/R hematologic malignancies, such as
TCR-T (T cell receptor-engineered T) cell, γ/δ-T (gamma/delta T)
cell, NK (nature killer) cell and CAR-NK (chimeric antigen receptor
nature killer) cell and especially CAR-T (chimeric antigen receptor T)
cell therapy.33–35 Fred Hutchison Cancer Institute used CAR-T cells
for the first time to treat B-cell lymphoma and proved its safety in
the year 2008. And in the year 2010, two patients with CLL first
received CAR-T transfusion and achieved CR (complete remission)
and the CAR-T cells were still detected in vivo after 10 years of
follow-up.36 In 2012, Emily, an American patient with B-ALL,
received CAR-T therapy and was cured. She has been disease-free
for almost 11 years up to now. The development of CAR-T therapy
has been greatly boosted due to the launch of large clinical trials,
such as axicabtagene ciloleucel and tisagenlecleucel, as well as the
FDA’s approval of the first commercialized CAR-T cell product in
2017. At present, CAR-T therapy has achieved remarkable results in
R/R ALL, CLL, NHL, and MM.37 There are many CAR targets for each
malignant disease and the number of treatment lines is gradually
advancing. In summary, immunotherapy has achieved rapid
development in recent years, which provides more possibilities
and hopes for the cure of hematologic malignancies.

OVERVIEW OF IMMUNOTHERAPIES IN HEMATOLOGIC
MALIGNANCIES
HSCT
HSCT is an effective means of curing a range of hematologic
diseases. It is done by harvesting functional hematopoietic stem
cells from the patients or a healthy donor and transplanting them
to the patients to replace their dysfunctional blood system.
Initially, bone marrow was considered as a source of stem cells for
transplantation. However, within the last two decades, peripheral
blood stem cells have replaced bone marrow stem cells and
become the main stream.38 The replacement indicates no impact
on overall survival (OS) except a greater risk of graft-versus-host
disease (GVHD).38 Fortunately, the management of GVHD is strict
and upgraded continuously.39 The allo-HSCT is usually considered
as a preferred choice for hematologic malignancies.40,41 But due to
the greater risk of GVHD, allo-HSCT is still restrictive to the patient’s
own status. This led to the emergence of reduced-intensity stem
cell transplantation (RIST), which is associated with less morbidity
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and mortality and can be performed in a wider range of
patients.42,43 Meanwhile, cord blood transplantation with a low
relapse rate and chronic GVHD was also promoted but was later
hampered by a high incidence of infection and transplant-related
mortality. However, the safety and feasibility of HSCT using single
UM171-expanded cord blood were validated in patients with
malignant hematologic diseases who did not have a suitable HLA
(human leukocyte antigen)-matched donor, indicating the potential
to overcome the disadvantages of other cord blood transplantation
while maintaining the benefits of low risk of chronic GVHD and
relapse.44 Haploidentical family donors, such as parents, children, or
haploidentical siblings, offer the advantage of rapid donor
availability. Currently, two methods are most commonly used for
haploidentical hematopoietic stem cell transplantation (haplo-
HSCT): (i) granulocyte colony-stimulating factor (G-CSF) plus anti-
thymocyte globulin-based regimen with non-manipulated T-cell
enriched grafts, which was originated by the Peking group in China;
(ii) post-transplantation cyclophosphamide-based regimens with
non-manipulated T-cell enriched grafts, which was initiated by the
Baltimore group in the United States.35,45–47 With the development
of haplo-HSCT, strategies to address the associated side effects

have become a research trend. A substantial improvement in non-
relapse mortality and supportive care (e.g., treatment and
prevention of infections or GVHD) has contributed to improved
OS of allogeneic transplantation over the past decades.48,49 In
addition, to overcome barriers such as donor availability, novel
transplantation strategies have been refined. For example, post-
transplant cyclophosphamide for GVHD prevention after haploi-
dentical donor transplants has shown similar outcomes with a
reduced risk of GVHD.50,51 The recurrence of the malignancy
remains the most prevalent cause of post-transplant failure or even
death, emphasizing the importance of enhancing the immune
system in the treatment of hematologic malignancies and how far
we have yet to go to achieve a cure. Although much is still being
discovered, we have learned a great deal about how the host
immune system affects the treatment of hematologic malignancies
from the growing and evolving field of allogeneic transplantation,
which is helping to advance the field of novel immunotherapies.20

mAbs
The mAbs are highly homogeneous IgG antibodies produced from
a single B cell clone and directed against only specific antigenic

Fig. 1 The development of immunotherapy for hematologic malignancies. a Types of immunotherapies for treating hematologic
malignancies. b The journey of the history of immunotherapy for hematologic malignancies
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epitopes. The first-generation mAbs are derived from mice and
typically prepared using the hybridoma technique, which is based
on cell fusion technology that fuses sensitized murine B cells with
the capacity to secrete specific antibodies and myeloma cells with
the capacity to multiply indefinitely into B cell hybrids.52 Through
culturing individual hybridoma cells with such properties into cell
populations, it is possible to generate antibodies against
corresponding antigenic epitopes. However, murine mAbs can
be recognized by the immune system and result in human anti-
mouse antibody reactions, particularly human anti-mouse anti-
body (HAMA),53–55 resulting in limited efficacy of mAbs and
potentially serious AEs. Since then, mAbs have gradually evolved
toward the trend of humanization. The second generation is
human/mouse chimeric mAbs (with the suffix -ximab, e.g.,
rituximab),21 using chimeric antibody or humanized modified
monoclonal antibody technology.56,57 Both approaches greatly
reduce the human anti-mouse immune response, but a certain
degree of immunogenicity still exists because they contain
mouse-derived sequence fragments. The subsequent mAbs are
fully humanized (with the suffix -zumab and -mumab), with the
amino acid sequences that make up the antibodies all derived
from humans. These mAbs are mainly manufactured by phage

display screening,58,59 yeast surface display,60,61 human hybri-
doma technology and single B-cell antibody preparation technol-
ogy,62 or even metabolic strategy like glycoengineering.63

Meanwhile, these mAbs have a 100 percent human component
and reduced immunogenicity, although they may still have
immunogenicity due to anti-idiotype antibodies.
The mAbs are the major component of cancer immunother-

apy.64 mAbs have various mechanisms of action and each type of
antibody has multiple mechanisms of action in parallel, mobilizing
multiple aspects and components of immunity to ultimately kill
tumor cells. The mAbs, when combined with their targets, can kill
cancer cells in two ways (Fig. 2a): (i) direct induction of apoptosis
through programmed cell death (PCD);65 (ii) immune-mediated
mechanisms, mainly including antibody-dependent cellular cyto-
toxicity (ADCC), complement-dependent cytotoxicity (CDC) and
antibody-dependent macrophage-mediated phagocytosis due to
the binding of Fc and FcγR (Fc gamma receptor).65–70

Rituximab is a first-generation anti-CD20 mAb. Ofatumumab is
one kind of second-generation, fully-humanized anti-CD20 mAb
that binds to a different site from rituximab and was approved by
the FDA for the treatment of CLL in 2009, as well as in
combination with chlorambucil for the treatment of CLL in

Fig. 2 Mechanisms of action of four kinds of immunotherapy drugs. a The monoclonal antibodies (mAbs), when combined with their targets,
can kill cancer cells by direct induction of apoptosis through programmed cell death, antibody-dependent cell cytotoxicity, complement-
dependent cytotoxicity, and antibody-dependent macrophage-mediated phagocytosis. b The BiTE ((bispecific T cell engager) molecule usually
targets one CD3 molecule and one tumor antigen simultaneously. Thus, in addition to the anti-cancer role of the tumor antigen-targeted
antibody, it can promote the activation and recruitment of CD3+ T cells. c After bound to the tumor surface antigen, the antigen undergoes
endocytosis and the antibody-drug conjugates (ADCs) will be internalized into the tumor cell and subsequently transported to the lysosome
to release the cytotoxic payload, which can induce apoptosis and kill surrounding cancer cells through bystander effects. d The blockade of
PD-1 or its ligands PD-L1 and PD-L2 can help to restore the anti-tumor immunity of the body and simultaneously enhance the lysis effect of
cytotoxic T cells to achieve the effect of tumor eradication. CTLA-4 inhibitors can block the binding between CTLA-4 molecule and B7 during T
cell activation, increase the level of the recognition of T cells to tumor-associated antigens (TAAs) and enhance the anti-tumor responses of
the body’s immune effector cells
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Table 1. Representative antibody-based drugs used for treating hematologic malignancies

Type Drug Target Indication If FDA approved? Refs.

mAbs Rituximab CD20 B-NHL Yes 85–88

Ofatumumab CD20 CLL Yes 90

Obinutuzumab CD20 DLBCL, MCL, FL, CLL Yes 74,92–95

Ibritumomab tiuxetan CD20 B-NHL Yes 89

Veltuzumab CD20 B-NHL, CLL No 91

Ocrelizumab CD20 FL No 96

Ocaratuzumab CD20 B-NHL, CLL No 97–99

Ublituximab CD20 CLL No 354

Epratuzumab CD22 B-NHL No 114

Tafasitamab CD19 DLBCL, FL Yes 23,352

Inelituzumab CD19 B-NHL No 112

Galiximab CD80 FL No 113

Alemtuzumab CD52 PTCL, CLL Yes 100,101

MDX-060 CD30 HL, ALCL, T-NHL No 102,103

Daratumumab CD38 MM Yes 75–78

Isatuximab CD38 MM Yes 82–84

Dacetuzumab CD40 MM, NHL, DLBCL No 104–106

Elotuzumab CS1 (SLAMF7) MM Yes 79–81

Milatuzumab CD74 MM, MCL, FL, CLL Yes 107–110

Lintuzumab CD33 AML No 25

BI 836858 CD33 AML No 111

bsAbs Blinatumomab CD19/CD3 B-ALL, B-NHL, DLBCL Yes 124–126

AFM11 CD19/CD3 B-ALL No 127

Mosunetuzumab CD20/CD3 FL Yes 131

Glofitamab CD20/CD3 B-NHL, DLBCL No 132,133

Epcoritamab CD20/CD3 B-NHL, DLBCL/LBCL, FL No 134,135

Odronextamab CD20/CD3 B-NHL, DLBCL No 136

Plamotamab CD20/CD3 B-NHL, DLBCL No 137,138

Teclistamab BCMA/CD3 MM Yes 150–154

Linvoseltamab BCMA/CD3 MM No 155,156

Elranatamab BCMA/CD3 MM No 157,158

Alnuctamab BCMA/CD3 MM No 159

AMG420 BCMA/CD3 MM No 162

TNB-383B BCMA/CD3 MM No 163

AMG701 BCMA/CD3 MM No 164

PF-06863135 BCMA/CD3 MM No 165

Bi38-3 CD38/CD3 MM No 160

AMG424 CD38/CD3 MM No 161

ISB-1342 CD38/CD3 MM No 166

GBR-1342 CD38/CD3 MM No 167

Talquetamab GPRC5D/CD3 MM No 168

Cevostamab FcRH5/CD3 MM No 169

Flotetuzumab CD123/CD3 AML/MDS No 142,146

XmAb14045 CD123/CD3 AML No 147

AMG330 CD33/CD3 AML No 143

AMV564 CD33/CD3 AML/MDS No 144

JNJ-63709178 CD33/CD3 AML No 145

MCLA117 CLEC12A/CD3 AML No 148

ESK1-BiTE WT1/CD3 AML No 149

AFM26 BCMA/CD16A MM No 175

TandAb CD30/CD16A HL No 176

CS1-NKG2D biAb CS1/NKG2D MM No 178
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2014.71,72 Obinutuzumab is another second-generation anti-CD20
mAb and was approved by the FDA in combination with
chlorambucil for the treatment of CLL in 2013 and in combination
with bendamustine for the treatment of R/R FL in 2016.73,74

Daratumumab is an anti-CD38 mAb that was FDA-approved for
the treatment for patients with MM.24 Elotuzumab is an anti-CS1
mAb that was approved by FDA in combination with lenalidomide
and dexamethasone for the treatment of R/R MM in November
2015.20 Furthermore, the FDA-approved mAbs, such as daratu-
mumab,75–78 elotuzumab,79–81 and isatuximab,82–84 have already
revolutionized the standard of care for treatment of MM, or even
in the front-line therapeutic setting. Up to now, as presented in
Table 1, many kinds of mAbs have been developed for the
treatment of hematologic malignancies with their targets invol-
ving CD20, CD19, CD22, CD38, CS1 (SLAMF7), CD52, CD40, CD80,
CD74, and CD33.25,74–114

bsAbs
In complex disease pathogenesis, multiple mediators facilitate the
stimulation of different signaling pathways or promote overlapping
signaling cascades, which limits the therapeutic efficacy of the
targeting of a single molecule.115 Therefore, the bsAbs, which
combine the binding sites of two mAbs in the same molecule, were

developed and transformed into immunotherapy.116 The emerging
bsAbs, exemplified by BiTEs, which promote the activation and
recruitment of CD3+ T cells, have facilitated the fast development
of cancer immunotherapy in hematologic malignancies.117–120

Similar as mAbs, the targeted antigens of bsAbs must be selected
from tumor-associated antigens (TAAs) with high specificity and
high correlation with the malignant phenotype of the tumor.120,121

The bsAbs are mainly divided into three categories according to
their targets: (i) antibodies that target two different tumor antigens;
(ii) antibodies that target one tumor antigen and one immune-
related molecule, such as CD3 for BiTE; and (iii) antibodies that target
two immune-related molecules.117 Because the BiTE molecule
usually targets one CD3 molecule and one tumor antigen
simultaneously, it belongs to the second category of bsAbs (Fig.
2b).117 BiTEs are the main patterns by which bsAbs work in
hematologic malignancies, such as blinatumomab (anti-CD19/CD3
bsAb) approved by the FDA for R/R ALL,26,122–126 AFM11 for B-
ALL,127 anti-CD19/CD3 or anti-CD20/CD3 bsAbs for B-NHL,128–138

anti-CD33/CD3, CD123/CD3, WT1/CD3, or CLEC12A (C-type lectin
domain family 12 member A)/CD3 bsAbs for AML or MDS,139–149 and
anti-BCMA (B cell maturation antigen)/CD3 or CD38/CD3 bsAbs for
MM.150–167 In addition, the anti-GPRC5D (G protein-coupled
receptor, family C, group 5, member D)/CD3 and anti-FcRH5 (Fc

Table 1. continued

Type Drug Target Indication If FDA approved? Refs.

tsAbs TsAb CD19/CD22/CD3 B-ALL No 177

161533 TriKE CD16/IL-15/CD33 AML No 179

CiTE CiTE PD-L1/CD33/CD3 AML No 613

SMITE SMITE CD19/CD3 & CD28/PD-L1 CD19-positive lymphoma or leukemia No 614

ADC Inotuzumab ozogamicin CD22 B-NHL, B-ALL Yes 187,188

Moxetumomab pasudotox CD22 HCL, B-ALL Yes 189,190

Pinatuzumab vedotin CD22 DLBCL, FL No 191

BL22 CD22 B-ALL, HL No 192,193

Polatuzumab vedotin CD79b B-NHL, DLBCL, FL Yes 191,209,210

Loncastuximab tesirine CD19 B-NHL, DLBCL Yes 203,204

Coltuximab ravtansine CD19 B-ALL, B-NHL No 205,206

Denintuzumab mafodotin CD19 B-ALL No 207

Combotox CD19 and CD22 B-ALL No 208

Naratuximab emtansine CD37 B-NHL No 213

AGS67E CD37 B-NHL, T-NHL, CLL, AML No 214,215

Brentuximab vedotin CD30 cHL, PTCL, ALCL, CTCL Yes 181,194–197

Camidanlumab tesirine CD25 cHL No 221

Belantamab mafodotin BCMA MM Yes 211

HDP-101 BCMA MM No 212

Indatuximab ravtansine CD138 MM No 216

Lorvotuzumab mertansine CD56 MM No 217

Milatuzumab doxorubicin CD74 MM No 218

LM-305 GPRC5D MM No 219

Gemtuzumab ozogamicin CD33 AML Yes 198

Vadastuximab talirine CD33 AML No 199,200

IMGN779 CD33 AML No 201,202

Pivekimab sunirine CD123 AML No 220

mAbs monoclonal antibodies, bsAbs bispecific antibodies, tsAb trispecific antibodies, CiTE bifunctional checkpoint inhibitory T cell–engager, SMITE
Simultaneous multiple interaction bispecific T-cell engager, ADC antibody-drug conjugate, FDA Food and Drug Administration, B-NHL B-cell non-Hodgkin
lymphoma, DLBCL diffused large B-cell lymphoma, FL follicular lymphoma, MCL mantle cell lymphoma, CLL chronic lymphocytic leukemia, cHL classical
Hodgkin lymphoma, ALCL anaplastic large cell lymphoma, PTCL peripheral T-cell lymphoma, MM multiple myeloma, AML acute myelocytic leukemia, B-ALL
B-cell acute lymphoblastic leukemia, MDS myelodysplastic syndromes, HCL hairy cell leukemia, CTCL cutaneous T-cell lymphoma, BCMA B cell maturation
antigen, GPRC5D G protein-coupled receptor, FcRH5 Fc receptor homolog 5, CLEC12A C-type lectin domain family 12 member A, NKG2D natural killer cell group
2 member D
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receptor homolog 5)/CD3 bsAbs were also used for the treatment of
MM.168,169 Table 1 presents the bsAbs currently developed for
hematologic malignancies. Although BiTEs have been proven to be
efficient in many R/R hematologic malignancies, several patients still
show no responsiveness to BiTE therapy. It is not only due to defects
in the structure itself but also the immune escape, involving the
aspects of loss of target antigen expression, disrupted trafficking of
the target antigens and extramedullary lesions.170–174 Based on this
fact, bsAbs and trispecific antibodies (tsAbs) engaging NK cells have
also been explored in pre-clinical and/or clinical studies.175–179 Ross
et al. reported the NK-cell mediated lysis of BCMA-positive MM cell
lines induced by AFM26 (anti-BCMA/CD16A bsAb).175 Moreover, the
anti-CD19/CD22/CD3 tsAb that site-specifically fuses anti-CD19 scFv
(single chain variable fragment) and anti-CD22 nanobody to CD3
antigen-binding fragment, was designed for treating patients with
B-ALL.177 It demonstrated enhanced anti-tumor efficacy and the
capacity to overcome immune evasion when compared with the
corresponding bsAbs alone or multiple antibodies in combina-
tion.177 The therapeutic effects provide a new direction for the
development of bispecific and even multi-specific antibodies.

ADCs
The mAbs have the advantage of a longer plasma half-life, yet
they are not inherently cytotoxic. In contrast, small molecule
cytotoxic agents commonly utilized in chemotherapy have high
cytotoxicity and relatively low costs of production, but they are
poorly targeted to cancer cells and have a plasma half-life of only
a few hours.180–182 The concept of utilizing the specific binding
properties of mAbs as a mechanism to selectively deliver cytotoxic
agents to tumor cells is an appealing approach to overcome the
challenges of increasing the therapeutic potentials of cytotoxic
agents. All three components of an ADC, the antibody, cytotoxic
payload, and the linker chemistry that joins them together, are
important for the design of an effective anticancer agent.
Mechanistically, ADC differs from the previously mentioned mAb
and bsAb in that after it binds to the tumor surface antigen, the
antigen undergoes endocytosis and ADC will be internalized into
the tumor cell and subsequently transported to the lysosome to
release the cytotoxic payload (Fig. 2c). The released toxic payload
can induce apoptosis and kill surrounding cancer cells through
bystander effects (Fig. 2c).183 Perhaps the most essential aspect of
developing an effective molecule is the selection of the targeted
antigen to which the ADC will bind.184–186 Advances in related
technology, improvements in the selection of cytotoxic agents
and the use of smaller conjugates have all dramatically enhanced
the potential clinical benefits of ADCs. Several ADCs have been
designed and used for clinical use in hematologic malignancies
and their targets include CD22,187–193 CD30,181,194–197 CD33,198–202

CD19,203–208 CD79,191,209,210 BCMA,211,212 CD37,213–215 CD138,216

CD56,217 CD74,218 GPRC5D,219 CD123,220 and CD25,221 (Table 1).
The initial excitement for ADCs has risen and then fallen with the
approval and subsequent withdrawal of gemtuzumab ozogamicin
in the years 2000 and 2010, respectively.20 With effectiveness in
the treatment of R/R HL and SALCL, brentuximab vedotin, an anti-
CD30 antibody linked to a microtubule inhibitor monomethyl
auristatin E (MMAE), received FDA approval for cancer treatment
in 2011 and for post-autologous HSCT consolidation in 2015.196,222

Inotuzumab ozogamicin is comprised of a humanized anti-CD22
mAb conjugated to calicheamicin, a cytotoxic antibiotic agent and
was as monotherapy for the treatment of CD22-positive B-ALL in
2017.180,223,224 Vadastuximab talirine (SGN-CD33A, 33A), a novel
ADC consisting of pyrrolobenzodiazepine dimers linked to a mAb
targeting CD33, has demonstrated activity and a tolerable safety
profile as a single agent in patients with AML.199 Belantamab
mafodotin225 targeting BCMA is currently the only ADC approved
by the FDA for MM. Furthermore, other TAAs expressed highly on
MM cells are also designed as targets of ADCs. Clinical trials of
lorvotuzumab mertansine (anti-CD56 ADC),217 indatuximab

ravtansine (anti-CD138 ADC),216 milatuzumab doxorubicin (anti-
CD74 ADC),218 and the first anti-GPRC5D ADC, LM-305,219 are
ongoing in present.

ICIs
Although more ICIs have been developed already,226,227 anti-CTLA-4
(ipilimumab), PD-1 (pembrolizumab, nivolumab, pidilizumab) and
PD-L1 antibodies (atezolizumab, avelumab and durvalumab) have
been the focus of current clinical consideration of checkpoint
inhibitors.32 PD-1 is a prominent immunosuppressive trans-
membrane molecule that is expressed on the surface of T cells.228

In the tumor microenvironment (TME), T cells express high levels of
PD-1 molecules, which can bind to PD-L1 on tumor cells or other
immune cells and PD-L2 on macrophages and dendritic cells (DCs).
This will inhibit the intracellular signaling transduction of T cells,
reduce effector T cell activity, induce T cell apoptosis, negatively
regulate the anti-tumor immune response and ultimately cause
tumor cells to undergo immune escape.229–233 In addition to surface
PD-L1 molecule, tumors can also secrete soluble PD-L1, which more
readily binds to PD-1 on T cells.234,235 Furthermore, immune cells in
TME sometimes are accomplices as well. Despite the direct
suppression of T cells, Treg-expressed CTLA-4 can deplete CD80/
CD86 by trogocytosis to release free PD-L1 on antigen-presenting
cells.236 Presence of PD-L1-expressing DCs and macrophages in TME
may play a dominant role in mediating T-cell immunosuppres-
sion.234 The use of mAbs or inhibitors targeting PD-1 or its ligands
PD-L1 and PD-L2 can selectively block PD-1 and ligand binding
between tumor cells and T cells, thereby helping to restore the anti-
tumor immunity of the body and simultaneously enhance the lysis
effect of cytotoxic T cells to achieve the effect of tumor eradication
(Fig. 2d).237 Once the “Cancer-Immunity Cycle” is established, it can
produce long-lasting anti-tumor effects. PD-1 inhibitors also
enhance the efficacy through the activation of other immune cells
within the TME.238 A robust anti-tumor T-cell response is induced in
tumor-draining lymph nodes by blocking PD-L1-mediated inhibition
of host antigen-presenting cells (APCs) at off-tumor sites.239 A
further opinion has been recently expressed that the activity of ICI is
not limited to TME. PD-1 blockade drives the expansion of a subset
of PD-1lowCD8+ progenitor cells with self-renewal properties,
resulting in the mobilization of stem-like precursor CD8+ T cells
that reside outside the tumor.240 CTLA-4 molecule is normally
expressed on the surface of CD4+ and CD8+ T cells and can bind
with high affinity to B7 ligands on APCs, producing signals that
inhibit T cell activation, reduce cytokine production and decrease
the anti-tumor immune response.241,242 CTLA-4 inhibitors block the
co-stimulatory signal between CTLA-4 molecule and Fc on the
surface of regulatory T cells, which can induce regulatory T cell
death; in addition, this can also block the binding between CTLA-4
molecule and B7 during T cell activation, increase the level of T cell
recognition to TAAs and enhance the anti-tumor responses of the
immune cells (Fig. 2d).243–245 T cell dysfunction, the metabolic profile
of CD8+ T cells and immunosuppressive factors lead to resistance
of ICIs.246–249 The use of PD-1 blockade can also induce anti-PD-1
resistance by induction of dysfunctional PD-1+CD38highCD8+
cells.250 Therefore, combination therapy of ICIs is emerging in the
treatment of hematologic malignancies.251–253

ACTs
ACT is a kind of immunotherapy in which autologous or allogeneic
immune effector cells, activated and expanded in vitro, are infused
into the patient. Such therapies are divided into non-specific and
specific cellular therapies. Non-specific cellular therapy includes
the direct infusion of cytokine-induced killer (CIK) cells, tumor-
infiltrating lymphocytes (TIL), γ/δ T cells and NK cells, some of
which have been used for hematologic malignancies.254–258 The
mechanism by which non-specific cellular therapy alleviates tumor
symptoms is to boost the immunity of the entire body, leading to
limited efficacy. Therefore, specific cellular therapies, particularly
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CAR-T cells, have become more popular in clinical studies.259,260

An incredible area of immunotherapy for hematologic malignan-
cies is the development and refinement of CAR-T cell therapy.
Such therapies involve not only targeting tumor antigens but also
augmenting these targeted immune effectors. CAR-T cells are
designed to express CAR that aims to target specific tumor surface
antigens with antigen specificity and HLA independence and is
therefore not dependent on MHC (major histocompatibility
complex) expression. CAR-NK cells, not only recognize tumor
antigens specifically via the CAR but also eliminate tumors by the
NK cell receptor itself. NK cell activity depends on the balance of
stimulatory and inhibitory signals and is antigen non-specific.
Targeted lysis of CAR-NK cells is based on CAR-dependent and NK
receptor-dependent mechanisms and this lysis effect is also
indicated for antigen-negative cancer cells.34,261,262 The main
sources of CAR-NK cells are usually peripheral blood, cord blood,
induced pluripotent stem cells (iPSCs) and NK92 cell lines. Since
CAR-T therapy has the largest number of clinical trials and the
widest range of applications in the field of cell therapy in
hematologic malignancies, especially for multi-line therapy-
refractory patients, we will focus on CAR-T therapy in the
following sections.
The design of the CAR is the pivotal issue and has undergone

several updates throughout the evolution of CAR-T therapy (Fig. 3a).
Eshhar et al. were the first to construct the CAR-T cells for the
expression of antigen receptors.263 The intracellular structural
domain of first-generation CAR-T cells contains only the signal
transduction structural domain CD3-ζ, so that CAR-T cells have poor
proliferative abilities and a short survival time in vivo, due to the
absence of co-stimulatory signaling and cytokine signaling, such as
interleukin-2 (IL-2).264,265 The co-stimulatory structural domain CD28
or 4-1BB (also known as CD137) were integrated with the CD3-ζ
molecule in the design of the second-generation CAR-T cells, which
allowed CAR-T cells to continuously proliferate and induce
enhanced anti-tumor activity.266,267 The second-generation CAR-
T cells, which are the most widely used in clinical practice, were able
to exert anti-tumor effects even in the absence of exogenous
costimulatory molecules.268 Two different costimulatory domains
(CD28/4-1BB or ICOS/4-1BB) are present in third-generation CAR-
T cells.269–271 The fourth-generation CAR-T cells incorporate
cytokines or co-stimulatory ligands to further enhance T-cell
responses, or suicide genes to enable CAR-T cells to self-destruct
when needed.272,273 The fifth-generation CAR-T cell is also derived
from the second-generation and includes a shortened cytoplasmic
IL-2 receptor β chain domain (IL-2Rβ) and a STAT3 binding
moiety.274 This design enables the fifth-generation CAR-T cells to
enhance the T cell receptor (TCR) and cytokine-driven JAK-STAT
signaling pathways to promote the proliferation and activation of
the bioengineered T cells.274 In addition to improvements through
co-stimulatory domains and cytokines, more important is the
design of the antigen-binding region scFv of CARs. The earliest scFv
targeting CD19 was also of murine origin (FMC63) and it would
generate murine-derived mAbs, namely anti-CAR immune
responses. Moreover, this response has also been shown to affect
CAR-T efficacy and even lead to late relapse.275,276 Therefore,
researchers are continuously working on humanizing scFv frag-
ments and directly design fully human CAR fragments to reduce the
occurrence of this response and its impact on efficacy.277–279

Besides, more novel types of CAR-T cells are being developed to
improve the flexibility of CAR target recognition. To address the
problem of wait for a long time, the “off-the-shelf” CAR-T cells, in
which all T cells are derived from healthy donors, have been
developed.280,281 The universal CAR-T cells replace scFv extracellular
structural domain used in previous generations of CAR T cells with
an adapter-specific recognition structural domain which binds to an
adaptor molecule specific to a tumor target. This design enables
CAR-T cells to recognize multiple antigens by separating the
antigen-targeting structural domain from the T-cell signaling unit.

CAR-T cell therapy is a multi-step process that involves selecting
eligible patients, collecting cells, manufacturing CAR-T cells,
lymphodepletion, infusion of CAR-T cells, and subsequent long-
itudinal follow-up (Fig. 3b). The eligibility of patients depends on
their disease status, previous treatment regimens, risk factors, co-
morbidities, performance status and social factors.282 The patient’s
peripheral blood mononuclear cells (PBMCs) are collected by
leukapheresis and CD3+ T cells are further purified and isolated. T
cell subpopulations are genetically modified to express the CAR of
interest, then expanded in vitro. The expanded CAR T cells are
frozen and stored for future use and ultimately reinfused into the
patients after lymphodepletion-directed chemotherapy. CAR T-cell
therapy generally requires hospitalization and the patient’s
physical reactions, especially the possibility of AEs, should be
closely monitored for several weeks after infusion.
CAR-T cell immunotherapy has gradually become the main

therapeutic option for malignant hematological diseases, with
impressive results to date. From Kymriah and Yescarta, which were
the first to be approved by the FDA for the treatment of leukemia
and lymphoma in August and October 2017, respectively, to the
latest advances such as CB-010 therapy, they all play a pivotal role
in treating malignancies, especially in cases of R/R patients. CAR-T
cell immunotherapy has already achieved notable successes in the
treatment of B-cell malignancies such as ALL, CLL, and DLBCL.
Meanwhile, the most commonly utilized CAR targets for B-cell
malignancies are CD19, CD20, and CD22.283 Of these, CD19 is the
most commonly used target and is highly expressed in the
majority of B-cell malignancies. CD7 is an important target in T-cell
ALL and T-cell lymphoma.284–286 CD30 is usually expressed on
tumor cells of HL,287 and CD33 is a favorable target for AML.288

Two CAR T-cell products, idecabtagene vicleucel and ciltacabta-
gene autoleucel, are the currently FDA-approved BCMA-targeting
therapies. In addition to BCMA, many other investigational CAR
T-cell therapies for MM are being studied, including cell products
targeting SLAMF7, CD19, CD38, TACI (transmembrane activator
and CAML interactor), GPRC5D (G protein-coupled receptor, class
C, group 5, member D), and CD138.282,289–291 However, the
application of CAR-T therapy has been limited by relapse,
resistance and toxicity.292–298 Researchers have used diverse
approaches to improve CAR-T therapy. In terms of target selection,
new targets have been diligently searched for,299,300 and even
dual-target and even multi-antigen-targeted CAR-T have been
introduced291,301–306 to prevent subpopulations of tumors from
being ignored.307 For T-ALL, patients’ own T cells are difficult to
make CAR-T, thus healthy donor T cells are used to prepare
CAR-T.281 Recently CAR-NK and CAR-macrophage cells have also
become new popular products and novel CARs are designed to
overcome treatment failure.308–310 Despite these advancements in
CAR-T cell therapy, there are still several unanswered questions.
For example, the optimal CAR T cell design and engrafting
technique, the ideal intracellular costimulatory domain or the
generation of CARs, the appropriate CD4:CD8 T cell ratio in
infusion products and even factors such as the dominance of
effector versus central memory cells and the influence of Tregs are
unknown. The best timing for the engraftment of CAR-T cells is
also not yet clear and may vary depending on the type of
malignancies. In addition, the impact of TME may be an additional
critical factor in CAR T-cell therapy. Although these questions
remain unanswered, CAR T-cell therapy will be an essential
strategy for the treatment of hematologic malignancies. As more
research is conducted on this breakthrough therapeutic approach,
it will be improved in its efficacy and applicability.

Tumor vaccines
Tumor vaccines, one of the hot topics in research in recent years,
are immunotherapeutic modalities in which tumor antigens are
infused into patients in various forms to generate tumor-specific
lymphocytes in the patient and kill the tumor.311 It consists of
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molecular vaccines and cellular vaccines, among which molecular
vaccines include tumor-associated proteins or peptides and gene
vaccines expressing tumor antigens. Cellular vaccines, on the
other hand, are tumor cells, which are genetically modified to
express MHC molecules and then injected into patients. Tumor
vaccines can enhance the immunogenicity of the tumor, activate
the patient’s immune system, induce the body’s cellular and
humoral immune response and also override the immunosup-
pressive state caused by the tumor. It is designed to not only
induce tumor regression, but also to eliminate minimal residual
disease (MRD), establish long-lasting anti-tumor memory and
avoid non-specific or adverse reactions. Such vaccines have been
developed for B-cell leukemia and lymphoma, ranging from

commonly-mutated genes to DC vaccines.312,313 Vaccines target-
ing immunoglobulin light chain and EBV antigens are also
available.314,315 As clinical trials have been conducted,316–318

although not yet widely used, the prospects are promising.

HOW IMMUNOTHERAPIES WORK: TO PROMOTE “CANCER-
IMMUNITY CYCLE”
The generation of anti-cancer immunity is a cyclical process that
can be self-perpetuating, with the accumulated immunostimula-
tory factors that should, in principle, boost the T cell immune
response. This cycle can also be interrupted by suppressive stimuli,
which result in immunomodulatory feedback mechanisms that

Fig. 3 The evolution of CAR design and the process of CAR-T therapy in clinic. a The design of the CAR has undergone several updates
throughout the evolution of CAR-T therapy. To date, there have been five generations of CAR structures. b CAR-T cell therapy is a multi-step
process that involves selecting eligible patients, collecting cells, manufacturing CAR-T cells, lymphodepletion and infusion of CAR-T cells and
subsequent longitudinal follow-up
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impede the generation of anti-cancer immunity.6 Generally, the
“Cancer-Immunity Cycle” can be divided into multiple steps. First,
the neoantigens that are produced during tumorigenesis are
released and then captured by the DCs for processing. This must
be accompanied by immune-specific signals so as not to induce
peripheral immune tolerance to the tumor antigens. Then, DCs
deliver antigens that are captured on MHC molecules to T cells,
leading to the priming and activation of effector T cells.
Subsequently, through the interaction between the TCR and the
cognate antigen bound to MHC-I, these activated effector T cells
traffic towards and infiltrate into the tumor, where they specifically
recognize and bind to the cancer cells and kill them. Noteworthy,
the killing of these targeted cancer cells also leads to the release
of more TAAs. This in turn extends the breadth and depth of the
immune response in subsequent cycles of rotation.6 Dysregulation
of the “Cancer-Immunity Cycle” is the consequence of tumorigen-
esis and treatment failure. Meanwhile, the TME may also suppress
these effector cells engaged in the “Cancer-Immunity Cycle” and
resultant cancer immune evasion.6,7 Therefore, cancer

immunotherapy requires initiating and promoting the self-
sustainability of the “Cancer-Immunity Cycle” so that it can
normally amplify and spread, but not to the point of generating an
unrestrained autoimmune inflammatory response. In the mean-
time, cancer immunotherapy also needs to be carefully tailored to
counteract these negative feedback mechanisms.8–10 Numerous
factors that play a part in any step of the “Cancer-Immunity Cycle”
offer a wide range of potential therapeutic targets (Fig. 4): (i)
promoting antigen release, presentation and recognition; (ii)
priming and activating the immune response; (iii) overcoming
immune evasion; (iv) targeting immune suppression in the TME.

Promote antigen release, presentation and recognition
Although not established as immunotherapies, chemotherapy,
radiotherapy and targeted therapies (e.g., mAbs, bsAbs, and ADCs)
can kill large numbers of cancer cells, then promote antigen
release and T cell activation. The majority of tumor vaccines are
therapeutic vaccines, which are based on the principle that tumor
antigens are introduced into the patient’s body to improve

Fig. 4 How immunotherapies work? To promote “Cancer-Immunity Cycle”. The “Cancer-Immunity Cycle” can be divided into multiple steps.6

Dysregulation of the “Cancer-Immunity Cycle” is the consequence of tumorigenesis and treatment failure. Meanwhile, the TME may also
suppress these effector cells engaged in the “Cancer-Immunity Cycle” and resultant cancer immune evasion. Numerous factors that play a part
in any step of this cycle offer a wide range of potential therapeutic targets: (i) promoting antigen release, presentation and recognition; (ii)
priming and activating the immune response; (iii) overcoming immune evasion; (iv) targeting immune suppression in the TME
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immunogenicity, activate the immune system and elicit cellular
and humoral immune responses to control or eliminate the
tumor.311 Theoretically, it is feasible to promote the activation of
the immune system through the specific proteins of cancer cells
so as to eliminate cancer cells. Nevertheless, tumor antigens are
heterogeneous thus the primary problem in tumor vaccine
development is to find the universal or specific antigens expressed
on the surface of tumor cells.319,320 CD40 agonist antibodies are
used to promote the maturation and antigen-presenting ability of
DCs by mimicking CD40L cross-linking CD40, inducing the
expansion of tumor antigen-specific cytotoxic T cells and thus
eradicating tumors.105,321,322 CAR T-cell therapy is the process of
transferring genetic material with specific antigen recognition
structural domain and T cell activation signal into T cells through
genetic modification. In this way, the modified T cells can be
activated in an MHC-independent manner by directly binding with
specific tumor antigens and directly killing the tumor cells by
releasing perforin, granzyme B, etc. and also by secreting
cytokines to recruit human endogenous immune cells to help to
kill tumor cells.

Priming and activation of immune response
CTLA-4, an inhibitory receptor that is expressed primarily on
T cells, has a suppressive function on T cell activation and is
upregulated upon T cell activation. Antibodies targeting the
immunomodulatory receptor CTLA-4 have two putative mechan-
isms of action: direct inhibition of CLTA-4 binding to its cognate
ligand and depletion of immunosuppressive regulatory T (Treg)
cells via Fc-mediated immune-mediated mechanisms, mainly
including ADCC and CDC.245 More importantly, the BiTEs are able
to redirect T cells to specific tumor antigens and to directly
activate the T cells.323 Because T cells lack Fcγ receptors, natural
antibodies cannot directly recruit these T cells. The BiTE molecule
typically targets a tumor antigen and a CD3 molecule at the same
time. The CD3 molecule associates non-covalently with the T cell
receptor (TCR) and participates in antigen-specific signal transduc-
tion that can induce T cell activation. In addition, directly
expanding and making available increased numbers of function-
ally competent immune cells represents an intuitively desirable
therapeutic concept.19 HSCT refers to the transplantation of
hematopoietic stem cells from a donor into a recipient to rebuild
or restore the recipient’s immune system. Cellular immunotherapy
stimulates the body’s anti-tumor immune response by isolating
autologous or allogeneic immune effector cells, activating them
in vitro and then injecting them into the body. As with CAR-T cell
therapy, the scFv recognizes specific TAAs, including the proteins,
glycoproteins and other components. CD3-ζ is typically a signaling
region containing three ITAMs (immunoreceptor tyrosine-based
activation motifs). Upon scFv recognition and binding to TAA,
phosphorylation of the ITAM triggers ZAP70 signal transduction
and subsequent signaling to initiate and prime the T cell immune
responses.324 This is a principle similar to antigen-antibody
complementarity, which can bypass the MHC-dependent antigen
presentation and enable the TAA to directly stimulate the
activation of CAR-T cells.

Overcoming immune evasion
An important mechanism by which tumor immune evasion occurs
is by suppressing the function of effector immune cells. Immune
checkpoints are a class of molecules that have a negative effect on
immune cell function and are most expressed in immune cells.
They can regulate the degree of activation of the immune system,
resulting in them playing an important role in the prevention of
autoimmune effects. However, these molecules are susceptible to
being hijacked by tumor cells, which means the tumor cells can
bind to the corresponding ligand/receptor on the immune cell,
activating the inhibitory pathway and preventing immune cells
from killing the tumor, thus enabling the immune escape of the

tumor.3 ICIs aim to block the corresponding immune checkpoints
to prevent the activation of the relevant immunosuppressive
pathways and have been widely used in various types of solid and
hematologic malignancies.325,326 Moreover, T cell exhaustion
occurs due to a multi-factorial etiology resulting from sustained
exposure to tumor antigens, the loss of stimulation/secretion of
effector cytokines, the involvement of immunosuppressive cell
types and immunophenotypic alterations including increased
expression of inhibitory receptors and checkpoints such as LAG3
(lymphocyte-activation gene 3), TIGIT (T cell immune receptor with
Ig and ITIM domains), TIM3 (T cell immunoglobulin mucin 3).
Therefore, T cell exhaustion may be reversed and the anti-tumor
immune response enhanced by inhibitors targeting these
inhibitory receptors and checkpoints.

Targeting immune suppression in TME
The TME is the internal environment in which tumor cells survive
and develop and immune cells in the TME have different
mechanisms of pro- or anti-tumor immune action in tumor
growth and progression. Tregs suppress T cell activity either
directly or by secreting suppressor cytokines such as IL-10 and
TGF-β; myeloid-derived suppressor cells (MDSCs) suppress T cell
activity and modulate the intrinsic immune response to suppress
the immune response. Therefore, targeting the TME is another
important mechanism of cancer immunotherapy. For example,
overexpression of indoleamine 2,3-dioxygenase (IDO) in tumors
inhibits T cell proliferation and promotes regulatory T cell
differentiation and IDO inhibitors can effectively improve the
immunosuppressive microenvironment of tumors and enhance
the anti-tumor immune response.

REPRESENTATIVE CLINICAL TRIALS AND OUTCOMES
HSCT
Numerous clinical trials have validated the elimination of
hematologic malignancies through transplantation.327–329

Transplantation-related clinical trials mainly involve two aspects:
(i) exploration of peripheral blood stem cell transplantation
(PBSCT) and RIST; (ii) comparison of allogeneic HSCT with HLA
genotype identical sibling donors (ISD) and haploidentical donors
(HID). Around the beginning of the 21st century, several clinical
trials were conducted to investigate the efficacy and safety of
PBSCT.330,331 These results confirmed the advantage of PBSCT in
terms of hematopoietic system reconstitution. Meanwhile, it
makes HSCT less harmful to the donor. To expand the application,
RIST has been raised for those who can’t tolerate allo-HSCT. And
relevant clinical trials were designed to discover the appropriate
chemotherapy regimen and compared RIST with high-dose
conventional conditioning. A 7-year clinical trial showed that 8
out of 12 patients who received RIST were still alive after 1 year,
while only 3 out of 13 patients who received high-dose
chemotherapy were still alive.332 Fludarabine-melphalan as a
preparative regimen for RIST is associated with a significant
reduction in transplant-related mortality according to an update
from the MD Anderson Center.333 The study in Europe has also
shown a reduction in the non-relapse mortality rate in RIST.334 To
date, more clinical trials are ongoing to evaluate RIST in elderly
patients with AML and MDS.335–337 Haplo-HSCT is now being used
regularly for patients. However, it was not until 2015 that the
technology became more mature and clinical trials comparing it
to the ISD-HSCT were conducted.338,339 The results of haplo-HSCT
performed in patients who were in remission did not differ
significantly from those of ISD-HSCT. In later studies, both
transplantation methods were applied to patients not in remis-
sion, where haplo-HSCT showed better efficacy.340 Although there
may be a higher rate of GVHD, it has the potential to be used in
high-risk child patients.341 In addition, haplo-HSCT can be
followed by adoptive T-cell therapy and the results of such trials
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have shown that T-cell infusion can be beneficial in reconstituting
the immune system and preventing relapse.342,343

mAbs
The most representative mAb used in the treatment of lymphoma
is none other than Rituximab. There is a pivotal phase II trial of
rituximab monotherapy that was conducted in 166 patients with
R/R low-grade NHL, in which the ORR was 48 and 6% of the
patients achieved the complete response.344 The stage was set for
the approval of rituximab with these and subsequent results.345

However, an increasing number of clinical trials have opted to use
rituximab in combination with other chemotherapy regimens to
improve efficacy. In 2001, one phase II trial of the first-line R-CHOP
regimen was initiated in 33 patients with aggressive NHL. The
results were surprising with an ORR of 94% and a CRR (complete
response rate) of 61%, demonstrating for the first time the
feasibility and safety of the R-CHOP regimen in these patients.86

Clinical trials of R-CHOP in MCL were then conducted. As implied
by the results of a prospective randomized trial conducted by the
German Low-Grade Lymphoma Study Group (GLSG), R-CHOP was
significantly superior to CHOP as first-line therapy in terms of ORR
(94%), CRR (34%) and time to treatment failure (21 months),
although no differences were observed in progression-free
survival (PFS).346 Currently, R-CHOP has been designated as the
first-line treatment agent for NHL by the National Comprehensive
Cancer Network (NCCN), while there are numerous clinical trials to
validate the efficacy of R-CHOP as a treatment to overcome
relapse or refractory of NHL.347 It is approved in Europe and the
United States for use in combination with chemotherapy to treat
patients with previously untreated or R/R CLL.348 For example, a
phase II trial evaluated the efficacy of the addition of rituximab to
first-line chemotherapy with fludarabine and cyclophosphamide.
And the chemo-immunotherapy group achieved a better clinical
outcome, with 65% of patients free of disease progression at 3
years after the randomization.349 Venetoclax-rituximab was also
proved to be able to be applied in R/R CLL with significantly
higher rates of PFS(84.9%) at 2 years.88

The development of new mAbs is ongoing and clinical trials are
being conducted. Ofatumumab, a fully human mAb, has been
used as a single-agent CD20 immunotherapy in R/R CLL and FL in
international clinical trials and has been shown to be an active,
well-tolerated treatment with significant clinical improve-
ments.71,90,350 There are some clinical trials, such as GAUDI,
GAUGUIN and GADOLIN, to investigate the efficacy of obinutuzu-
mab (also called GA101) monotherapy and immunochemical
combination with it in treating patients with DLBCL, MCL, FL and
CLL.73,92–95 It has also been used to treat CD20-positive indolent
NHL refractory to rituximab. In this study, the median PFS was
25.8 months and OS was also prolonged, demonstrating the
clinical benefit of obinutuzumab.74,351 As well, tafasitamab (anti-
CD19 mAb) is also approved for the treatment of R/R DLBCL and
FL as a novel agent.23,209,210,352,353 Some mAbs which has already
been approved in autoimmune disease, such as alemtuzumab
(anti-CD52 mAb) and ublituximab (anti-CD20 mAb), also expanded
their indications to hematologic malignancies. In the GENUINE
trial, ublituximab plus ibrutinib achieved encouraging efficacy in
high-risk CLL and the ORR was 83%.354 Alemtuzumab combined
with CHOP similarly showed better outcomes with an ORR of 72%
and CRR of 60% in the phase 3 trial.100 In recent years, mAbs have
gradually been introduced into the treatment of other hemato-
logic malignancies. Daratumumab, an anti-CD38 mAb, is initially
used as monotherapy in R/R MM. In a phase I-II dose-expansion
study, daratumumab was administered to patients who had
received a median of four prior therapies, including 76% of
patients who had received autologous HSCT. The ORR was 36% in
the cohort with a dose of 16 mg/kg and 10% in the cohort with a
dose of 8 mg/kg. PFS was 5.6 months and 65% of patients who
responded had no disease progression at 12 months.76 The results

of the SIRIUS trial were similar and both were favorable in terms of
safety and exciting efficacy.77 Daratumumab was also combined
with classical regimens of MM to investigate the efficacy. The
phase 3 trial suggested that the ORR was higher in the
daratumumab combination group (82.9%) than that in the control
group with bortezomib and dexamethasone alone (63.2%).24 A
similar outcome also occurred in the trial that compared the
regimen of lenalidomide and dexamethasone, with an ORR of
92.9%.75 Afterwards, daratumumab plus bortezomib, melphalan
and prednisone was also considered as a prior-line therapy for
untreated MM patients. And the outcome indicated that the
addition of daratumumab resulted in a lower risk of disease
progression or death.78 Another anti-CD38 mAb named isatux-
imab has improved its effectiveness when combined with classical
therapy regimens. Randomized phase 3 trials have been
completed for all of thesecombinations.82–84 Meanwhile, elotuzu-
mab targeted CS1 on MM cells and also indicated encouraging
results in serial clinical trials called ELOQUENT that was conducted
in R/R and newly diagnosed MM patients.80,81 In a word, mAbs
occupy an important position in hematologic cancers and
chemoimmunotherapy associated with mAbs has become a
popular trend at the present.

bsAbs
In hematologic malignancies, bsAb therapy usually refers to the
BiTEs. Blinatumomab is the first bsAb designed for this field. Some
early clinical trials were conducted for NHL in the year 2008. Out of
38 patients who received blinatumomab, a response was only
observed in 11 patients. And the longest duration of CR is
13 months in one MCL patient.355 Furthermore, it has been
studied in more cases of B-ALL. A phase II trial has demonstrated
that blinatumomab is effective in MRD-positive B-ALL patients
who are resistant to previous chemotherapy. The drug showed a
high response rate, with an ORR of 76% and a relapse-free survival
(RFS) rate of 78%.356 Other studies showed similar results,26,357,358

and blinatumomab is also effective in children and young adults
with the first relapse of B-ALL.359,360 Therefore, it has already
become an approved therapy for R/R B-ALL. Recently, there’re
emerging trials to discover the efficacy of the combination
therapies of blinatumomab and other regimens for newly
diagnosed Philadelphia chromosome (Ph) positive or negative
B-ALL.124,361–363 Blinatumomab was also used to treat patients
with R/R B-NHL and DLBCL and showed great anti-tumor
efficacy.125,126,364,365 Meanwhile, some novel bsAbs entered the
market in 2022, representing the rapid development of this field.
Mosunetuzumab, a CD20/CD3 bispecific antibody, was approved
for R/R FL based on the results of the multicenter phase II study in
which 90 patients with FL received mosunetuzumab and the
ultimate CRR was 60%.131 Glofitamab is also targeted to CD20 but
has been shown to induce durable CR in patients with R/R
DLBCL.132,133 In the phase I/II study, 52 patients who had
previously received CAR-T therapy were enrolled and 35% of
them achieved a CR and 78% of CR were sustained at
12 months.133 Epcoritamab, odronextamab and plamotamab are
all anti-CD20/CD3 antibodies and relevant clinical trials have
demonstrated that they are competitive in terms of efficacy and
safety.134,136 A anti-BCMA/CD3 bsAb, teclistamab, was the first BiTE
developed for MM.150–154 In the trial MajesTEC-1, teclistamab
demonstrated promising efficacy, with durable responses that
deepened over time and was well tolerated in R/R MM patients.153

Another phase 1–2 study also showed that teclistamab resulted a
high rate of deep and durable response in patients with triple-
class-exposed R/R MM.151 The ORR was 63%, the median duration
of response was 18.4 months and the median duration of PFS was
11.3 months.151 Patients enrolled in the trial MajesTEC-2 had
received ≥1 prior line of therapy.152 While in the trial s MajesTEC-4
and MajesTEC-7, newly-diagnosed patients were enrolled and
teclistamab was combined with classical regimens for treating
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MM.150,154 In addition to teclistamab, other anti-BCMA/CD3 bsAbs
have emerged currently, including linvoseltamab, elranatamab
and alnuctamab and serial trials are being con-
ducted.155–159,366–368 In a Phase 2 study, 232 patients received
talquetamab (anti- GPRC5D/CD3 bsAb) monotherapy and 70% of
those experienced a response and the median duration of
response was 10.2 months.168 A multicenter, open-label, phase
1/2 study of flotetuzumab (MGD006, anti-CD123/CD3 bsAb) was
conducted in 88 adults with R/R AML and showed acceptable
safety and encouraging evidence of activity in PIF (primary
induction failure)/ER (early relapse) patients.142 JNJ-63709178,
another kind of anti-CD123/CD3 bsAb, was found to have limited
exposures and clinical activity with an unfavorable safety
profile.145

ADCs
Over the past several decades, ADCs have been evaluated in many
preclinical models and early-phase clinical trials of hematologic
malignancies. Gemtuzumab ozogamicin, an anti-CD33 ADC, was
once used in AML patients with their first relapse and no history of
an antecedent hematologic disorder and a median age of 61
years. This was based on the result of the clinical trial which
revealed that 30% of patients who were treated with gemtuzu-
mab ozogamicin achieved a remission, characterized by 5% or
fewer blasts in the bone marrow.369 However, a phase III SWOG
S0106 randomized comparative trial did not confirm the clinical
benefit of gemtuzumab ozogamic in combination therapy, such as
CR rate, disease-free survival (DFS) and OS. Moreover, increased
toxicity was observed and probably caused by relatively high
instability of the linker in the bloodstream combined with a high
recommended dose.370 Thus, gemtuzumab ozogamicin was
withdrawn in 2010 due to its serious toxicities and poor outcomes
of survival.371–373 It has been re-approved until 2017, following
adjustments to the dosage and conditions as well as extensive
clinical trials.374–377 At present, it is believed that the benefit of
gemtuzumab ozogamicin can be predicted by some related
conditions and this is the reason why gemtuzumab ozogamicin is
used in AML with high CD33 expression levels and corresponding
mutated genetic profiles (e.g. NPM-1 mutated, KMT2A rear-
ranged).198,378,379 Furthermore, gemtuzumab ozogamicin is effec-
tive when used in newly diagnosed core binding factor (CBF)-
deficient AML in the clinical trial conducted by MD Anderson.380 In
addition, a humanized anti-CD22 ADC called inotuzumab ozoga-
micin was initially given to patients with R/R B-NHL in a phase 1
clinical trial. Unfortunately, the final ORR was only 39% for the 79
patients enrolled.187 Later on, inotuzumab ozogamicin has been
tried to be used in R/R B-ALL patients. In the phase 2 trial, the ORR
was 57% for the 49 patients in the study.381 To further
demonstrate the promise of inotuzumab ozogamicin, it was
compared to standard intensive chemotherapy for ALL in a phase
3 trial. In the inotuzumab ozogamicin group, the CR rate was
significantly higher (80.7%), the median duration of remission was
longer (4.6 months) and the median PFS was also longer
(5.0 months).180 Based on these results, the FDA approved the
use of inotuzumab ozogamicin in adult R/R B-ALL. Meanwhile,
clinical trials continued to evaluate the efficacy of the combination
therapy in Ph(-) ALL and in pediatric patients.188,382,383 Another
anti-CD22 ADC, called moxetumomab pasudotox, has been
developed for the treatment of R/R hairy cell leukemia (HCL).189

In the long-term follow-up from the pivotal trial, complete
responders lasting ≥60 months was 61% and median PFS without
the loss of hematologic remission was 71.7 months. Moxetumo-
mab pasudotox fills the gap in R/R HCL where there is no
adequate therapy.384 In 2022, brentuximab vedotin (anti-CD30
ADC) was used in patients with III/IV-stage cHL. Compared with
the classical ABVD (doxorubicin, bleomycin, vinblastine and
dacarbazine) regimen, the combination of brentuximab vedotin
plus BVD (bleomycin, vinblastine and dacarbazine) showed better

consequences with a 6-year OS of 93.9%.181 Polatuzumab vedotin
has been designed to target CD79b and used for the treatment of
R/R B-NHL including DLBCL and FL.191,209,210 Polatuzumab vedotin
combined with bendamustine and rituximab resulted in a
significantly higher CR rate and reduced the risk of death by
58% compared with bendamustine and rituximab in patients with
transplantation-ineligible R/R DLBCL.210 Loncastuximab tesirine
(ADCT-402) is a humanized anti-CD19 IgG1 mAb conjugated
through a protease-cleavable Val-Ala linker to a pyrrolobenzodia-
zepines dimer, a DNA crosslinking agent.203,204 A phase 1 study of
loncastuximab tesirine in R/R B-cell NHL showed that ORR in
evaluable patients was 45.6%, including 26.7% CRs. ORRs in
patients with DLBCL, MCL, and FL were 42.3%, 46.7%, and 78.6%,
respectively.185 Further, a multicentre, open-label, single-arm,
phase 2 trial (LOTIS-2) was conducted in patients with R/R DLBCL
after two or more multiagent systemic treatments with an ORR of
48.3% and a CRR of 24.1%.203 Belantamab mafodotin chose BCMA
as the target and fills the gap of ADC in MM and the serial trials
continue to discover its clinical efficacy and durability as
monotherapy or combined with other regimens.211,385,386 The
DREAMM-2, a two-arm, randomized, open-label, phase 2 study,
demonstrated that 31% of 97 patients in the 2·5 mg/kg cohort and
34 of 99 patients in the 3–4mg/kg cohort achieved an overall
response.211 In DREAMM-6 trial, belantamab mafodotin showed a
better outcome with an ORR of 75% and a median PFS of
8.6 months.386 It seems that ADCs have already played an
important role and became a new trend in immunotherapy for
hematologic malignancies nowadays. These ADC drugs have
achieved satisfactory results in clinical trials and have been
approved for use in the diseases for which they are
intended.191,203,204,210,353 Furthermore, there’re still some novel
ADCs waiting for approval and the corresponding clinical trials are
ongoing.199,200,221

ICIs
Several clinical trials of ICIs have been conducted in hematologic
malignancies, including MM, ALL, AML, NHL and HL.387–390

However, only the results of PD-1 blockade in HL are particularly
remarkable. Some observations may suggest why HL is uniquely
sensitive to PD-1/PD-L1 blockade.391 First, HL biopsies typically
show the Reed-Sternberg (R-S) cells that are surrounded by an
extensive immune infiltration, but it is ineffective. Moreover,
increased surface expression of PD-L1 was also observed in HL
biopsies. Second, HL is characterized by the genetic alterations in
9p24.1 that result in copy gain and overexpression of PD-L1 and
PD-L2, with an increase in copy gain or amplification of 9p24.1 in
more than 97% of newly diagnosed HL biopsy specimens.392,393

Third, infection with Epstein-Barr virus (EBV) is common in HL
patients and also causes PD-L1 to be overexpressed, which is one
of the key mechanisms by which the virus could persist in the
host.394 In contrast, NHL does not display a high frequency of
9p24.1 alterations, thus the efficacy of ICI decreased for NHL
patients.395

Table 2 gives a summary of representative clinical trials of ICIs
that are already approved by the FDA or some novel ICIs (e.g.,
dual-target ICI) that are still in the stage of the clinical
study.387,396–407 Ipilimumab, a CTLA-4 inhibitor, has been eval-
uated in clinical trials of the treatment for NHL and HL
patients,396–398 but only showed certain therapeutic effects in
HL with an ORR of 76% and CRR of 57%.398 Since HL has the
property of being more sensitive to ICIs targeting PD-1, most of
the clinical trials of PD-1 blockades, including nivolumab,
pembrolizumab and pidilizumab, were conducted on R/R
HL.194,387,396,398,400,408 In recent years, nivolumab and pembrolizu-
mab have been used in patients with NHL, CLL404,409,410 and even
in some lymphomas for which there is no effective therapy, such
as PCNSL (primary central nervous system lymphoma) and PMBCL
(primary mediastinal large B-cell lymphoma).402,403,411 Moreover,
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there’s a clinical trial of pidilizumab conducted in advanced
hematologic malignancies including MM, promoting the wide
application of ICIs.412 In addition to PD-1 blockade, CD47 blockade
has emerged as the treatment for R/R NHL, MM and especially for
AML/MDS, where PD-1 blockade shows poor efficacy.413–417 To
improve the overall response, one phase 1b trial explored the
safety and efficacy of combined PD-1 and CTLA-4 blockade in
patients with R/R lymphoid malignancies, including HL, NHL, and
MM.399 But it is regrettable that there was no meaningful
improvement in the efficacy of the combinations over single-
agent nivolumab in the diseases studied. While this combination
was active in HL (ORR 74%, CRR 23%), the toxicity of nivolumab
/ipilimumab was higher than expected from nivolumab alone.

ACTs
Our primary focus has been on the large clinical trials of CAR-T cell
therapy in various hematologic malignancies. Table 3 gives a
summary of representative clinical trials and outcomes of CAR-T
cell monotherapy for blood cancers. Tisagenlecleucel, axicabta-
gene ciloleucel and lisocabtagene maraleuecel are the most
representative anti-CD19 CAR-T cell products and they have been
studied in a large number of clinical trials. For tisagenlecleucel,
ELIANA has indicated its efficacy in pediatric patients with
B-ALL.418 Other clinical trials with tisagenlecleucel are predomi-
nantly focused on B-NHL. Among them, JULIET investigated the
CAR-T therapeutic efficacy in R/R DLBCL,419 BELINDA raised
tisagenlecleucel as second-line treatment,420 and ELARA enrolled
patients with R/R FL.421 The clinical trials for axicabtagene
ciloleucel are called ZUMA422–427 and cover the treatment of R/R
LBCL, B-ALL, and MZL. The most recent one, ZUMA-12, demon-
strated the high response rate of axicabtagene ciloleucel as first-
line therapy for untreated high-risk LBCL.427 Lisocabtagene
maraleuecel has fewer trials in comparison with the two products
above, but the 2022 TRANSCEND CLL 004 study showed surprising
results suggesting an ORR of 82% in patients with R/R CLL and
small lymphocytic lymphoma (SLL).428 However, the antigen
expression of tumor cells still limits the efficacy of CAR-T therapy.
Since CD19 may not cover all types of lymphoma subclones,428–430

CAR-T cells targeting other highly-specific antigens and dual
targets,302,431–437 such as CD22, CD19/CD20, and CD30, have been
developed as well. The anti-CD30 CAR-T cells have also been
developed in HL,435–437 and more clinical trials are being
conducted to verify their efficacy.
In addition to lymphoma and leukemia, CAR-T cells have also

made great progress in treatment of MM.278,438–446 Idecabtagene
vicleucel (ide-cel) and ciltacabtagene autoleucel (cilta-cel) have
already been approved by the FDA based on responses and safety
demonstrated in the KarMMa and CARTITUDE-1 trials.439,440,442

Meanwhile, more companies have launched CAR-T cell products
for MM, such as orva-cel, P-BCMA-101.443,444,446–449 CAR-T cell
products against the new target, GPRC5D, have also been
developed without delay. Usually, patients enrolled in CAR-T
clinical trials have a good baseline condition. This is to prevent
them from not being able to tolerate side effects such as CRS.
However, the first clinical trial of the GPRC5D target was
conducted in patients with poor baseline conditions who had
received multiple lines of therapy.299 The clinical results also
showed a high level of safety and efficacy, taking the develop-
ment of CAR-T to a new level. In other types of hematological
malignancies, CAR-T therapy is still in the exploratory phase of
development. A single-center, single-arm, phase 2 trial assessed
the activity and safety of a combination of humanized anti-CD19
and anti-BCMA CAR T cells in patients with R/R MM and confirmed
that this combined infusion is feasible with ORR of 95% and CRR of
43%.450 As for AML, CAR-T therapy seems to be less effective due
to the lack of appropriate tumor targets and is still being explored
in preclinical and clinical studies.289,451–453 The difficulty of
manufacturing cell products using autologous T cells is the major

problem facing CAR-T therapy in T-ALL. As a result, several
institutions have developed donor-derived CAR-T cells and have
conducted clinical trials to confirm the efficacy and safety of these
CAR-T cells.281,284,454 The donor-derived CAR-T cells suggested
encouraging effects, especially in those patients who received
allo-HSCT.455

The universal CAR-T cells, also known as “off-the-shelf”, can
overcome the problem of long period of manufacturing and
enable those patients whose T cells are under poor condition to
receive CAR-T therapy. Due the heterologous nature of allogeneic
CAR-T cells, many products are designed to knock out of the TCR
or edit the CD52 gene to overcome GVHD and HVGD (host versus
graft disease). It is slao essential to examine the safety and in vivo
persistence of universal CAR-T cells through clinical trials.446,456–460

Anti-CD19 universal CAR-T cells, like PBCAR0191 and bispecific
universal CAR-T CTA101, also showed high rates of CR (60% and
83.3%).301,461 81.8% of patients showed OR after RD13-01 infusion
(CRR 63.6%) without GVHD and severe CRS.458 A phase 1
UNIVERSAL trial reported a first-in-class, allogeneic, anti-BCMA
CAR-T cell therapy (ALLO-715) engineered to abrogate GVHD and
minimize CAR-T rejection. ALLO-647 (anti-CD52 antibody) was
used for lymphodepletion with fludarabine and/or cyclopho-
sphamide before ALLO-715 infusion. There was obvious expansion
in 83.3% of patients yet 63.3% of patients showed undetectable
levels of CAR-T cells by the day 28.446 Overall, universal CAR-T cells
have made some progress, but the clinical safety, efficacy and the
duration of response of these products still requires further
observation.
Although CAR-T cell therapy has achieved outstanding results

when used as a monotherapy, there are still certain patients who
do not benefit from it and further research is urgently needed to
improve and prolong the efficacy of CAR-T therapy. Therefore,
researchers are focusing on the combination of other immu-
notherapies with CAR-T cell therapy. The immune checkpoint
molecule PD-1 on the surface of CAR-T cells has been reported to
be overexpressed due to T-cell overactivation and thus blocking
the PD-1/PD-L1 pathway might effectively restore the function of
CAR-T cells.462 Clinical trials have been performed with the
combination of PD-1 blockers and CAR-T therapy and the results
have been encouraging. A phase II clinical trial of anti-CD30 CAR-T
treatment in combination with PD-1 inhibitor in R/R CD30-positive
lymphoma has been conducted. Among the 12 patients who were
evaluated for response, the ORR was 91.7% and the CRR was 50%.
And 7 patients maintained their response until the end of the
follow-up.463 Additionally, the combination of CD19 CAR-T cells
and PD-1 blockade was proven to reduce intracranial tumor
burden in a patient with centrally-invasive lymphoma.464 How-
ever, some researchers have chosen to construct endogenous PD-
1 dominant-negative receptors (DNRs) within CAR-T cells to allow
them to bind both TAA and PD-1 on tumor cells, ensuring that
CAR-T function is not inhibited.465,466 In combination with CAR-T
cell therapy, HSCT is also a popular alternative. Bridging therapy
with donor CAR-T cells after allogeneic transplantation can have
shown a prolonged effect on the efficacy of the transplant.467,468

According to the results from a retrospective study, haplo-HSCT
with pre-transplant negative MRD after CAR-T cell therapy can
significantly improve LFS (leukemia-free survival) and OS in
patients with R/R B-ALL.469 This finding was confirmed in
subsequent clinical trials. In the subgroups of patients who
achieved MRD-negative CR after CAR-T cell therapy, event-free
survival (EFS), and RFS were significantly prolonged by allo-
HSCT.470 As a result, CAR-T therapy followed by transplantation
can improve survival in a similar manner and is a viable option for
achieving a durable remission of the disease.
Currently, CAR-NK is also a hot topic of research, with the major

advantage that NK cells are able to be produced from healthy
donor-derived PBMC, core blood, or iPSCs (induced pluripotent
stem cells) without any appreciable toxicity. 11 patients were
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treated in a phase 1/2 study with anti-CD19 CAR-NK derived from
core blood. Among them, 8 patients experienced a response and 7
of them experienced a CR. The infused CAR-NK cells proliferated
and persisted in vivo at low levels for at least 12 months.471

Although it was not effective in B-ALL patients unfortunately,
NKX019 showed a favorable efficacy in R/R B-NHL patients and the
ORR was 83% and CRR was 50% in the higher-dose group.472

Besides, NKX101 targeted NKG2D (natural killer cell group 2
member D) and achieved an ORR of 47% in all R/R AML patients
enrolled.473 For R/R MM, FT576 was proved to be safe and
tolerates without CRS, GVHD, or neurotoxicity and was determined
a recommended dose in a phase 1 trial.474 In addition, more
researches on CAR-NK cells are still in the pre-clinical stage or early
clinical trials.308,475 Further research is also needed to perfect the
design and manufacturing to improve the efficacy and durability
of CAR-NK cells.476,477

AES AND TOXICITY MANAGEMENT
The era of immunotherapy has brought revolutionary break-
throughs for hematologic malignancies. These therapies are
designed to stimulate the immune system to recognize and
attack cancer cells, thereby extending survival and improving
outcomes. However, immunotherapy poses new clinical problems
and challenges for hematologists due to its toxicity, which is
different from traditional chemotherapy, depending on the
specific mechanism of action.478 The occurrence of AEs cannot
be ignored and can affect almost all organs and systems. These
AEs further impede the clinical application of immunotherapy and,
in severe cases, even threaten the patient’s life.478 Therefore, the
need for and importance of toxicity management has become
increasingly apparent. Treatment of AEs usually depends on the
organ involved and the severity of symptoms. These toxicities
often require specific management, including steroids and
immunomodulatory therapy, for which consensus guidelines have
been proposed and published. Here, we summarize the typical
AEs associated with various immunotherapies, including HSCT,
antibody-based therapies, ICIs, and CAR-T cell therapies, and then
discuss their clinical management.

AEs of HSCT
Although HSCT can give some patients a chance at a cure, it is not
an easy decision to be made. Transplantation has been a cure for
thousands of patients with lethal forms of cancer. However, there
can still be life-threatening risks and complications. Most of the
side effects that can occur shortly after the transplant are the
result of the bone marrow being destroyed by drugs or radiation
just before the transplant. Others may be due to side effects of the
conditioning treatments themselves. A short-term side effect that
can occur with chemotherapy and radiation is mucositis. To
prevent this, doctors often give anti-nausea medication at the
same time as chemotherapy. Patients can easily get serious
infections for at least the first six weeks after the transplant until
the new stem cells start to produce white blood cells.479–481 To
prevent possible infections, antibiotics are used until the blood
counts reach a certain level. It can take about 6 months to 1 year
after the transplant for the immune system to take effect. Injuries
and bleeding are other potential risk because the conditioning
regimen can damage the body’s ability to generate platelets.
Pneumonitis is a type of inflammation of the lung tissue that’s
most commonly seen in the first 100 days after the transplant.
However, some kinds of lung problems can occur much later after
a transplant. Pneumonia caused by an infection is more common,
but pneumonitis can also be caused by radiation, GVHD, or
chemotherapy, rather than by the infection itself. Pneumonitis can
be particularly severe if the patient has received total body
irradiation with chemotherapy as part of the pre-transplant
regimen. Acute kidney injury (AKI) directly related to stem cell

transplant encompasses a wide range of both structural and
functional disorders, which may be of the vascular (hypertension,
thrombotic microangiopathy), glomerular (albuminuria, nephrotic
glomerulopathies), and/or tubulointerstitial type.482–484 AKI is a
common complication following stem cell transplantation, affect-
ing ~10–73% of patients.482 A serious side effect in which tiny
veins and other blood vessels in the liver become blocked is a
hepatic veno-occlusive disease (VOD).485 It is very rare and is only
seen in people who have had an allogeneic transplant.485,486 The
onset of VOD is usually about 3 weeks after transplantation. It is
more common in older patients who have had liver disease before
the transplant and in patients who have acute GVHD. The
symptoms are yellow skin and eyes, dark urine, tenderness under
the rib cage and a rapid increase in body mass.485 It is life-
threatening, so it is very important to recognize and diagnose
VOD at an early stage.487,488

GVHD. GVHD is a leading contributor to mortality and morbidity
after allo-HSCT.489,490 The donated immune cells may also attack
some of the organs, most typically the skin, the gastrointestinal
tract and the liver. As a result, there may be some changes in the
functioning of the body’s organs and an elevated risk of
infections.491 GVHD reactions are very common and can range
in severity from barely noticeable to life-threatening.39,492,493

Acute GVHD can occur between 10 and 90 days after the
transplant and lasts for a short period of time. Chronic GVHD has a
later onset and longer duration. The patient may experience one
or both types of GVHD, or neither type of GVHD. Acute GVHD
develops in approximately one-third to one-half of allogeneic
transplant recipients. It is less frequent in the younger patients
and the ones with a more closely matched HLA. A rash, burning
and redness of the skin on the palms and the soles of the feet are
usually the first symptoms. The rash may spread to the rest of the
body. Other symptoms may include nausea, vomiting, stomach
cramps, decreased appetite, jaundice, abdominal pain, and weight
loss. Medications that can suppress the immune system may be
given to prevent acute GVHD, such as steroids (glucocorticoids),
methotrexate, cyclosporine, tacrolimus, or some types of
mAbs.492,494 These are administered before acute GVHD begins
to occur. The risk of acute GVHD can also be reduced by the
removal of immune cells from the donor stem cells prior to
transplantation. However, this also increases the risk of viral
infection, leukemic recurrence and graft failure. Researchers are
exploring new ways to remove allo-activated T cells from donor
transplants, which would reduce the severity of GVHD while still
allowing donor T cells to destroy any remaining cancer cells. Mild
cases of GVHD can usually be treated with topical steroid
medications. More severe cases of GVHD may need to be treated
with oral steroid medications or intravenous steroid medications.
Chronic GVHD, which can lead to significant morbidity and
mortality, usually occurs within one year of allo-HSCT.495 When
engrafted immune cells attack host cells, it causes inflammation
and fibrosis in various types of tissues and multiple organ systems,
such as the esophagus, gastrointestinal tract, neuromuscular
system, genitourinary tract, liver, lungs, mouth, eyes, muscles, and
joints.495,496 Symptoms of chronic GVHD may include dry eyes,
raised or discolored rash, thickened skin, swollen abdomen,
yellowing of the skin and eyes, dry mouth, breathlessness,
difficulty swallowing, fatigue, muscle weakness, and joint stiffness.
Chronic GVHD can also be treated with immunosuppressive drugs,
but these drugs increase the risk of infection. Most patients who
have chronic GVHD will be able to stop taking the immunosup-
pressive medication if their symptoms are getting better.

Secondary cancers. It is possible for the original type of cancer to
come back and for a second type of cancer to develop after the
transplant.497–499 The cancers that can develop are solid tumors in
various organs, leukemia and MDS. They tend to occur a few years
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or even longer after engraftment.500,501 Post-transplant lympho-
proliferative disorder (PTLD) is an out-of-control growth of
lymphocytes that can occur following alloHSCT.502,503 Normally,
T cells assist the body in getting rid of virally infected cells. The
pretransplant treatment compromises the immune system,
enabling EBV infections to get out of control. PTLD after allo-
HSCT is relatively rare and generally occurs within one to six
months. The symptoms of PTLD consist of swollen lymph nodes,
fever and chills.503 Although there is no standard treatment, the
usual management is to reduce the use of immunosuppressive
drugs and encourage the patient’s immune system to fight back.
Other options involve infusing lymphocytes to boost the immune
response and the administration of antiviral drugs.503–506

AEs of antibody-based therapies
Antibody-based drugs have been generally considered to be less
toxic than cytotoxic chemotherapeutics used for cancer therapy,
while some of these elements may be recognized as foreign
substances and thereby cause hyperactivation of immune and
innate reactions. A wide spectrum of AEs to antibodies is observed,
necessitating efforts to identify, manage and minimize side effects.
Some toxicities result from the binding of a therapeutic antibody to
its target antigen on normal cells, which refers to the “on-target, off-
tumor” toxicity. Therefore, the manifestations of such toxicities are
dependent on the target of antibody drugs. For example, rituximab
can cause profound first-dose toxicity related to the rapid lysis of
normal and malignant B cells that bear the target antigen, CD20.507

Acute reactions can be caused by a variety of mechanisms, including
acute IgE-mediated hypersensitivity and anaphylactoid reactions
against the antibodies, serum sickness, tumor lysis syndrome (TIS)
and CRS.508,509 Clinical manifestations include local skin reactions at
the injection site, fever and influenza-like syndrome and potentially
fatal acute anaphylaxis and systemic inflammatory response
syndrome (SIRS). Hypersensitivity reactions may be severe enough
to require aggressive management and discontinuation of therapy.
Meanwhile, these antibodies have immunomodulatory effects thus
they can also induce various autoimmune diseases. AEs are also
common in patients receiving bsAbs, with the majority of them
being grade 3 or higher-grade AEs. A phase II study which included
R/R B-ALL patients revealed that the common AEs during
blinatumomab therapy included pyrexia (81%), fatigue (50%),
headache (47%), tremor (36%), and leukopenia (19%), and most of
the AEs occurred during the first cycle of administration.357 In
another trial, patients in the blinatumomab group suffered more AEs
but the rate of serious AEs in the blinatumomab group was lower
than that in the chemotherapy group.510 The T-cell activation
induced by BiTE poses the risk of unique complications such as CRS,
neurotoxicity and TIS.511 Moreover, severe CRS and neurological
toxicity are the main reasons for the interruption of BiTE therapy,
which can be controlled by close clinical monitoring and timely
preventive or therapeutic intervention.
More importantly, the immunogenicity of antibodies is not only

related to the percentage of homology, as specific amino acid
changes at some positions can also affect immunogenicity. Drug-
induced immunogenicity has been recognized as a major
challenge in the development of antibodies, resulting in adverse
effects and loss of efficacy. Drug administration to patients may
induce humoral immune responses, causing the formation of anti-
drug antibodies (ADAs). ADAs can complex with circulating
therapeutic antibodies, making it difficult to achieve efficacious
levels of circulating therapeutic antibodies. ADAs may not only
inactivate the drug and cause a loss of targeting and/or increased
clearance of ADA-drug complexes but also induce increased
toxicity caused by the immune response that accompanies ADA
formation, loss of drug targeting, or formation of highly
immunogenic complexes.508,512 Therefore, ADA assays should be
rationally designed to allow an understanding of the character-
istics and consequences of the detected ADAs.

Both the cytotoxic molecules and the antibody portion of ADCs
can affect normal cells, resulting in “off-tumor” toxicities.513 These
“off-tumor” toxicities can be divided into “on-target” and “off-
target” toxicities. The “on-target” toxicity is caused by ADCs killing
normal tissues that express the target antigen, while “off-target”
toxicity refers to the killing of ADCs in tissues that do not express
the target antigen. Based on clinical observations, “on-target
toxicity” caused by small molecule toxins is the major source of
adverse effects of ADCs. Both antibody-mediated ADCC and CDC
effects can occur in normal cells expressing the target antigen and
lead to adverse reactions such as secondary kidney injury. In
addition, like mAbs and bsAbs, ADCs can block the signaling of
target antigens in normal cells, resulting in adverse reactions such
as lung injury and liver toxicity. The “off-target toxicity” can be
caused by the shedding of cytotoxic molecules into the
circulation, bystander effect on normal cells and endocytosis
and uptake of ADC by normal cells, causing normal cells to suffer
damage from cytotoxic molecules.514 The main victims are
lymphocytes, granulocytes, and platelets in the bloodstream,
followed by kidneys, lungs, nerves, skin and other tissues, causing
clinically observed side effects similar to those of chemother-
apeutic drugs.513 Common AEs include fever, nausea, infection,
vomiting, and stomatitis. Severe side effects were low blood
counts, liver damage including hepatic VOD, infusion-related
reactions and hemorrhage. Treatment discontinuation should be
considered for patients who develop obvious signs or symptoms
of anaphylaxis, including severe respiratory symptoms or clinically
significant hypotension. Premedication with a corticosteroid,
antihistamine and acetaminophen is recommended about one
hour prior to the administration of ADC agent.515

Immune-related adverse effects during ICI therapy
AEs linked to the use of ICIs are referred to as immune-related AEs
(irAEs). These primarily include immune-related skin toxicity,
endocrinopathies, hepatotoxicity, gastrointestinal toxicity, pul-
monary toxicity, hematologic toxicity, central nervous system
toxicity, cardiovascular toxicity, rheumatologic toxicity, immuno-
toxicity, renal toxicity, ocular toxicity, etc.). The incidence of irAEs
with single-agent ICIs varies depending on the single agent, the
tumor type and the disease setting.478 Grading of irAEs is in
accordance with the Common Terminology Criteria for AEs
(CTCAE). Recommendations for the monitoring, diagnosis and
treatment of irAEs are available in consensus guidelines from the
American Society of Clinical Oncology (ASCO), the European
Society of Medical Oncology (ESMO), the NCCN and the Society for
Immunotherapy of Cancer (SITC).516–520 In principle, there are four
sequential steps in the management of irAE: (i) diagnosing and
grading irAEs, (ii) ruling out differential diagnoses and workup
before immunosuppression, (iii) selecting the appropriate immu-
nosuppression strategy for grade ≥2 cases, and (iv) actively
evaluating at 72 h to make treatment adjustments.521 While the
management depends on the affected organ system, in general,
ICI therapy should be followed with close monitoring for grade 1
toxicities, except for some neurologic, hematologic and cardio-
vascular toxicities.521 ICI therapy may be discontinued for the
majority of grade 2 toxicities. Consideration should be given to
resuming ICI therapy if symptoms revert ≤grade 1. Suspension of
ICIs and initiation of high-dose corticosteroids is generally
warranted for grade 3 toxicities. Corticosteroids should be tapered
over the course of a minimum of 4 to 6 weeks. For grade 4
toxicities, permanent discontinuation of ICIs is generally recom-
mended. This does not apply to endocrinopathies that have been
controlled with hormone replacement therapy.521,522

Immune-related skin toxicity. Dermatologic toxicity seems to be
one of the most commonly occurring AEs during treatment with
ICIs.523–527 Maculopapular eruption and pruritus are the most
common symptoms. Serious dermatologic toxicities, such as
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Stevens-Johnson syndrome (SJS), toxic epidermal necrolysis (TEN),
drug rash with eosinophilia and systemic symptoms (DRESS) and
acute febrile neutrophilic dermatosis (Sweet syndrome) and
systemic symptoms, are rare.524 Although serious cutaneous AEs
are rare, cutaneous side events can have a significant impact on
the quality of life, reduce patient compliance and lead to dose
adjustments or even discontinuation of treatment.525,528 The
question of whether ICIs can be resumed after grade 3 skin toxicity
has been reduced to grade 1 or less with hormonal therapy should
be discussed with the dermatologist. ICIs should be discontinued
permanently and patients referred to a dermatologist if severe
(grade 4) herpetic dermatoses occur.516–520

Immune-related endocrinopathies. Immune-related endocrinopa-
thies involving the thyroid gland (hypothyroidism or thyrotox-
icosis), pituitary hypophysitis, adrenal glands (adrenal
insufficiency), and pancreas (diabetes mellitus) are a frequent
cause of acute and prolonged morbidity and may even be
fatal.529–533 Mild symptoms can be managed with continuation of
ICI therapy with appropriate hormone replacement therapy;
moderate symptoms require immediate discontinuation of ICI
therapy and moderate symptoms require oral prednisolone
0.5–1mg/kg; severe symptoms require intravenous prednisolone
1mg/kg (methyl) tapered to 5mg depending on symptom
control, but hormone therapy cannot be discontinued. Routine
monitoring of blood glucose levels is recommended in patients
treated with ICIs and caution is required for the development of
life-threatening ketoacidosis.533 Unlike other irAEs, endocrinopa-
thies are almost always permanent and require lifelong hormone
replacement.520 Due to the relatively vague nature of the
symptoms associated with these endocrinopathies, prompt
recognition and initiation of treatment can have a dramatic
impact on a patient’s health and quality of life.

Immune-related hepatotoxicity. ICI-associated hepatitis is mainly
characterized by elevated levels of transaminases with mildly
elevated levels of bilirubin.534–536 The diagnosis of immune-
related hepatitis may be aided by laboratory tests, which include
viral serologies, liver ultrasound, cross-sectional imaging, and liver
biopsy.534 Serum transaminase and bilirubin levels are recom-
mended for all patients receiving ICI therapy before each
treatment cycle to assess liver function. Hepatitis is usually
asymptomatic, with some patients presenting with low-grade
fever and malaise, which may be associated with transaminase
levels.535 Most patients with immune-related hepatitis respond to
corticosteroids, but a substantial fraction require treatment with a
secondary immunosuppressive agent.534 It is also important to be
alert to cases in which rebound transaminase levels or even
fulminant hepatitis have been observed clinically, even after
transaminase levels have been reduced to normal. The patient’s
clinical presentation and serologic test results must continue to be
monitored after recovery of liver function.

Immune-related gastrointestinal toxicity. Immune-related gastro-
intestinal toxicity is also a common adverse effect of ICI therapy,
mainly manifested as diarrhea, colitis and small bowel inflamma-
tion.537–540 The risk of gastrointestinal side effects is much higher
with anti-CTLA-4 mAbs than with anti-PD-1/PD-L1 mAbs and can
occur at any time during treatment, even months after treatment
has ended. The median time for gastrointestinal side effects was
3 months. Following the diagnosis of immune-related gastro-
intestinal adverse events, the clinical selection of treatment
options was based on the severity and duration of diarrhea. In
addition to discontinuation of ICI, patients with grade 1 diarrhea
may be treated with antidiarrheal drugs alone (loperamide, etc.)
based on active rehydration and correction of water-electrolyte
imbalance; for grade 2 diarrhea and above, glucocorticoids are the
first recommended treatment; for grade 3–4 diarrhea or if

glucocorticoid therapy is ineffective, immunosuppressive agents
(e.g, infliximab, vedolizumab) are also an option.

Immune-related pulmonary toxicity. Immune-related pulmonary
toxicity is a heterogeneous group of disorders that includes
various clinical manifestations such as interstitial lung disease (ILD)
or pneumonitis and rarer presentations such as bronchiolitis or
pulmonary sarcoidosis.519,541–543 Immune-related pulmonary toxi-
city usually appears in the first few months and is accompanied by
non-specific clinical manifestations but with suggestive radiologic
signs.544 Exploratory endoscopy, including bronchoalveolar lavage
and transbronchial lung biopsies, can further refine the diagnosis
by ruling out a lung infection and demonstrating lymphocytic
alveolitis. Any new respiratory symptoms, such as upper
respiratory tract infection, cough, wheezing and dyspnea, should
prompt a chest CT (computerized tomography) scan. Follow-up
and monitoring are recommended for those who have imaging
changes only and no clinical symptoms (grade 1); prednisolone
therapy is suggested for those with mild to moderate symptoms
(grade 2) and those with severe or life-threatening symptoms. For
grade 2 pneumonia, clinical symptoms should be evaluated every
2–3 days; for grade 3–4 pneumonia, clinical symptoms and
imaging should be evaluated after 2 days of treatment and if there
is no evidence of improvement, immunosuppressive agents such
as infliximab, cyclophosphamide, or mycophenolate mofetil can
be considered.517–519

Other rare immune-related toxicities. Rare immune-related toxi-
cities during ICI treatment mainly include neurotoxicity, cardio-
toxicity, rheumatologic immunotoxicity, hematologic toxicity,
neuromuscular toxicity, and nephrotoxicity.545–553 However, they
are still reported in 1–12% of cases and are more common in
patients receiving combination therapy. As an increasing number
of patients with cancer are being treated with checkpoint
inhibitors, the balance between clinical benefits and treatment-
related toxicities for each patient is becoming more challen-
ging.554 Rarity is not the same as insignificance and the extent of
damage to patients after its occurrence can even lead to death in
a short period of time. In general, patients who experience a
severe grade 3 or 4 irAE during ICI therapy are at risk of
experiencing serious toxicities when rechallenged with checkpoint
inhibitors.555

CAR-T therapy-related toxicities
Cytokine Release Syndrome (CRS) and neurotoxicity are the most
common and unique toxicities associated with CAR T-cell
therapies,556–567 and they are completely different from the irAEs
that are associated with the treatment of ICIs. CAR-based therapies
have the advantage of higher targeting specificity over conven-
tional chemotherapy and radiotherapy. However, like antibody-
based therapies, targeted antigens od CAR-T cells are also
expressed in normal cells, such as CD19 in the normal B-cell
lineage. The “on-target, off-tumor” toxicity is widespread, although
a large part of others has not been identified or overlapped with
other symptoms. Some toxicities, such as hypogammaglobuline-
mia, are a direct consequence of the “on-target, off-tumor” effects
of the CAR-T cells and others may be an indirect result of the
immunosuppressed state of the host.565 For early recognition of
potential toxicities and timely intervention, clinical monitoring
before, during and after CAR-T cell therapy is critically required.
Perhaps more importantly, with the appropriate management
strategies, some of these toxicities associated with CAR-T
therapies can be reversed with appropriate monitoring and
management (Table 4).559,568–570

CRS. CRS is the most common life-threatening adverse event
associated with CAR T-cell therapy. Variable incidence of CRS has
been reported with different CAR T-cell therapies due to

Immunotherapy in hematologic malignancies: achievements, challenges and. . .
Tang et al.

22

Signal Transduction and Targeted Therapy           (2023) 8:306 



differences in grading scales used to assess CRS severity, CAR
T-cell design and generation and clinical trial design.565,571 The
typical time to the onset of CRS ranges from 2 to 3 days, with a
persistent duration of 7 to 8 days, although CRS can occur within a
few hours or as late as 10 to 15 days after CAR-T cell infusion. The
onset of CRS is usually characterized by fever and constitutional
symptoms such as malaise and anorexia. In severe cases, CRS also
manifests with features of a systemic inflammatory response.
These include hypotension, hypoxia, cytopenia, coagulopathy and
even organ dysfunction. The organ dysfunction may be the
secondary effect of hypotension or hypoxia, but it may also be a
direct result of the release of cytokines. Organ dysfunction can be
prevented or even reversed in the majority of patients if the
symptoms and signs of CRS are recognized and addressed in a
prompt and timely manner.564 CAR-T cell-mediated cancer
elimination was also the trigger for the systemic inflammatory
response, which is the hallmark of CRS.556,558,572 Thus, from a
clinical standpoint, the most important management to overcome
CRS is to block the feedback loop of cytokines.573 Cytokines and
markers of inflammation that have been implicated in more
severe CRS are C-reactive protein (CRP), ferritin, interferon (IFN)-γ,
IL-1, IL-2, soluble IL2-Rα, IL-4, IL-6, IL-8, IL-10, tumor necrosis factor
(TNF)-α, granzyme B, granulocyte/macrophage colony-stimulating
factor (GM-CSF), macrophage inflammatory protein-1α (MIP-1α),
and monocyte chemoattractant protein-1 (MCP-1).564,574–577 A
number of risk factors for severe CRS have been implicated,
although these vary between different studies and likely between

different indications. In general, these include an increased CAR-T
cell expansion and a higher tumor burden.578,579 Moreover, bone
marrow (BM) suppression is also considered a determinant of the
occurrence and evolution of CRS.579 Because the management of
CRS depends on the severity of the disease, several institutions
had independently developed different CRS grading systems prior
to the publication of consensus guidelines. These guidelines have
contributed to the standardization of CRS management. Both
direct targeting and non-specific immunosuppressive strategies to
counteract overactive immune cells and elevated cytokine are
used to control CRS in patients receiving CAR T-cell therapy. IL-6
has been implicated as an activating signal for CAR-T cells and is
considered a pivotal mediator of CRS. The empirical testing of
various blocking antibodies soon identified IL-6 as a critical driver
of CRS. Tocilizumab, a monoclonal antibody that blocks signaling
through the IL-6 receptor (IL-6R), became a cornerstone of CRS
management.564,580–583 In general, patients with grade 1 CRS
should be given broad-spectrum antibiotics along with supportive
care. This may vary depending on the end-organ toxicities that are
observed. Intravenous tocilizumab should be administered for a
maximum of 4 doses to patients with grade ≥2 CRS. In cases of
grade ≥3 CRS and in cases of grade 2 toxicity with sustained
hypotension after anti-IL-6 therapy, the addition of corticosteroids
should be considered.518 To prevent the progression of CRS,
emergent intervention is warranted. However, other potential
causes of the inflammatory response, including infection and
malignant progression, should be ruled out. If there is no

Table 4. Monitoring and management of toxicities associated with CAR-T therapy

CAR-T therapy-related AEs Biomarkers to monitor Toxicity management

CRS CRP, IFN-γ, IL-1, IL-2, IL2Rα, IL-4, IL-6, IL-8, IL-10,
TNF-α, granzyme B, MIP-1α, MCP-1, and GM-CSF in
PB

Grade 1: broad-spectrum antibiotics along with supportive care;
Grade ≥2: Intravenous tocilizumab ≤4 doses; Grade ≥3 and in cases
of grade 2 toxicity with sustained hypotension after anti-IL-6
therapy: add corticosteroids; Refractory to both tocilizumab and
corticosteroids: use other agents include the Janus-associated
kinase inhibitor, cyclophosphamide, extracorporeal cytokine
adsorption with continuous renal replacement therapy, IVIG and
anti-thymocyte globulin.

Neurotoxicity IL-1, IL-6, IFN-γ, TNF-α/β, CRP, coagulation markers,
ferritin in PB; MCP1, IL-6, IL-8 in CSF; ICE score

Grade ≥1 ICANS: monitoring, supportive care and corticosteroids
alone; Tocilizumab was not recommended unless patients have
concurrent CRS.

HLH/MAS Blood routine test; IFN-γ, IL-6, GM-CSF, CRP, ferritin
in PB

Suppress the overactive immune cells; Corticosteroids, anakinra or
intrathecal cytarabine can be considered in cases when the HLH/
MAS is caused by resistance to tocilizumab.

CARAC Primary coagulation markers including platelet
count in PB, APTT, PT, FIB, FDP, and D-dimer; test
for CRS

Management of CRS; replacement therapy to decrease the risk of
bleeding and control active bleeding, including the transfusion of
platelet, fresh frozen plasma and prothrombin complex
concentrates and fibrinogen and cryoprecipitate; anticoagulant
therapy and/or antifibrinolytic therapy should be used as
appropriate for patients with high-grade CRS.

Cytopenia Blood routine test, CRP, ferritin in PB; cytology of
blood marrow

Growth factors, thrombopoietin receptor agonists, stem cell
enhancement, transfusion support; Elimination of infectious risk

Hypogammaglobulinemia Gammaglobulinemia in PB Intravenous or subcutaneous immunoglobulin G

Infection IL-6, CRP in PB; lymphocyte count; CT of lungs;
viral and bacterial etiologic test

Provide antibacterial or antifungal prophylaxis; For certain patients
with concurrent severe or recurrent infections and
hypogammaglobulinemia: IVIG is recommended as replacement
treatment.

ADAs Detection of ADAs in serum (HAMA is the ADA
occurred in CAR-T therapy with murine-derived
scFv)

Secondary reinfusion by altering the target and strengthening
lymphodepletion.

CAR-T chimeric antigen receptor T cell, AEs adverse effects, CRS cytokine release syndrome, CRP C-reactive protein, IFN interferon, IL interleukin, TNF tumor
necrosis factor, MIP macrophage inflammatory protein, MCP monocyte chemoattractant protein, GM-CSF granulocyte/macrophage colony-stimulating factor,
PB peripheral blood, IVIG intravenous immunoglobulin G, CSF cerebrospinal fluid, ICE immune effector cell associated encephalopathy, ICANS immune effector
cell-associated neurotoxicity syndrome, HLH/MAS Hemophagocytic lymphohistiocytosis/macrophage activation syndrome, CARAC CAR-T therapy-associated
coagulopathy, APTT activated partial thromboplastin time, PT prothrombin time, FIB fibrinogen, FDP fibrin degradation products, CT Computed Tomography,
ADA anti-drug antibody, HAMA human-anti-mouse antibody, scFv single chain variable fragment
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improvement in CRS after treatment with tocilizumab and
steroids, an examination for infection should be performed and
managed as necessary. In addition to siltuximab and anakinra,
other agents may be considered for patients who are refractory to
both tocilizumab and corticosteroids. These agents include the
Janus-associated kinase inhibitor, cyclophosphamide, extracorpor-
eal cytokine adsorption with continuous renal replacement
therapy, intravenous IgG (IVIG) and anti-thymocyte globulin. Data
in support of the use of any of these agents are mostly from
anecdotal reports or small case series.

Neurotoxicity. Neurotoxicity is another adverse event that has
been a concern in clinical trials of various immune effector cell
therapies.577,584,585 Neurologic toxicity may occur concurrently with
CRS. However, in some cases, neurologic toxicity may not occur
simultaneously but may occur before or days after CRS. Like CRS
rates, neurotoxicity incidence rates across clinical trials vary
considerably. Neurologic toxicities are diverse and may include
temporary working memory loss, delirium, seizures and rarely,
acute cerebral edema.564 Neurotoxicity associated with CAR T-cell
therapies has been referred to as immune effector cell-associated
neurotoxicity syndrome (ICANS). It is characterized by a pathologic
process involving the central nervous system following any
immunotherapy that results in the activation or engagement of
endogenous or infused T cells and other immune effector cells. The
time to the onset of neurotoxicity is typically 4–10 days after the
administration of CAR-T cells, with a duration of 14–17 days. For
BCMA-directed CAR T-cell therapies, the duration may be some-
what shorter. CRS is considered to be a potent risk factor for ICANS
and the severity of CRS is highly correlated with that of ICANS. The
development of neurotoxicity is associated with a higher pre-
treatment disease burden, a higher peak CAR T-cell expansion, a
higher baseline inflammatory status, an earlier and higher elevation
of pro-inflammatory cytokines in the blood and cerebrospinal fluid
and the presence of pre-existing neurological comorbidities.563 Pro-
inflammatory cytokines were accumulated in the cerebrospinal
fluid during severe neurotoxicity, with a disproportionately high
level of IL-6, IL-8, and MCP1, suggesting a production that is specific
to the central nervous system.563 IL-1, derived from monocytes, has
recently been highlighted as a key driver of neurotoxicity.556 Gust
et al. also described the endothelial dysfunction and increased
permeability of the blood-brain barrier (BBB) during neurotoxicity
following adoptive immunotherapy with CD19 CAR-T cells, which
may help to identify risk predictors for neurotoxicity.585 Increased
BBB permeability may enable inflammatory cytokines and immune
cells to migrate into the central nervous system and potentially
contribute to inflammation of the nervous system.585,586 As in the
case of CRS, the risk factors and the incidence of CRS are reported
with variability between studies. CD19-directed CAR is more likely
than BCMA-directed CAR to be accompanied by high-grade ICANS.
The grade of ICANS determines the management of neurotoxicity.
Consensus guidelines with recommended grading of ICANS have
been issued by the American Society for Transplantation and
Cellular Therapy (ASTCT). It’s recommended that clinicians use this
scale to grade any CAR-T cell-related neurotoxicity.587,588 Along
with careful monitoring and supportive care, corticosteroids are the
cornerstone of ICANS management. Since tocilizumab may
exacerbate ICANS,575 for patients with grade 1 CRS (fever only)
and higher grade ICANS, corticosteroids alone may be preferred.
The NCCN consensus panel does not recommend treating patients
receiving CAR T-cell therapy for neurotoxicity with tocilizumab
unless they have concurrent CRS.518

Hemophagocytic lymphohistiocytosis/macrophage activation syn-
drome. Hemophagocytic lymphohistiocytosis/macrophage acti-
vation syndrome (HLH/MAS) is regarded as a serious immunologic
syndrome that is triggered by out-of-control immune activation,
which includes the hyperactivation of macrophages and

lymphocytes, increased production of pro-inflammatory cytokines,
infiltration of lymphocytes and histiocytes into tissues and organs
and multi-organ failure.569,584,589,590 In contrast to primary HLH/
MAS, CAR T-cell therapy-induced HLH/MAS is thought to be a type
of secondary HLH/MAS because it is initiated by an immune
trigger.558 In a recent study, it was estimated that HLH/MAS occurs
in 3.5% of the patients who receive CAR T-cell therapy.591

Nevertheless, the actual incidence of HLH/MAS has been disputed,
in part because of the close overlap in symptoms between CRS
and HLH/MAS. The definitive diagnosis of HLH/MAS after CAR
T-cell therapy can be challenging as the clinical features and
laboratory abnormalities overlap substantially with the CRS.558,591

The majority of patients with moderate-to-severe CRS exhibit the
typical laboratory abnormalities of HLH/MAS, such as elevated
levels of CRP, cytopenia, hyperferritinemia, hypofibrinogenemia,
coagulopathy, and increased levels of several serum cytokines, in
particular IL-6, INF-γ and GM-CSF.478,569,584,589 The clinical mani-
festations related to CAR T cell-induced HLH/MAS typically
comprise fever, multi-organ dysfunction and central nervous
system disorders and occasionally hepatosplenomegaly or hemo-
phagocytosis in the bone marrow or other organs.589,591 Suppres-
sing the overactive immune cells that are contributing to
symptoms is the ultimate goal of clinical management of HLH/
MAS. In some cases, resistance to tocilizumab may also lead to
late-onset HLH/MAS-like lesions. Corticosteroids, anakinra, or
intrathecal cytarabine should be considered in such
cases.584,589,590 However, there is still a lack of data to support
the use of such drugs in this setting.

Hypogammaglobulinemia. Hypogammaglobulinemia is another
potential risk related to CAR T-cell therapy. Hypogammaglobuli-
nemia has been reported in up to 53% of patients who have been
treated with CAR-T cells in clinical studies.592,593 Hypogammaglo-
bulinemia is a disorder that is characterized by decreased levels of
antibodies in the blood and an increase in the risk of infection.
Hypogammaglobulinemia is the consequence of an extremely
small number of B cells or plasma cells, termed B cell aplasia or
plasma cell aplasia, respectively.593 Even in patients in CR after
CAR T-cell therapy, long-term hypogammaglobulinemia may still
occur. The recommendations are made based on experts’
opinions, institution-specific experience and infection prevention
approaches and strategies from other contexts due to the lack of
randomized, controlled clinical trials for the treatment of
hypogammaglobulinemia.593 Hypogammaglobulinemia can be
controlled with either intravenous or subcutaneous immunoglo-
bulin G, a product of fractionated blood derived from the pooled
plasma of many individuals.592–595 Immunoglobulin offers broad
protection from opportunistic infections because it contains
antibodies against a variety of infectious agents.592

Cytopenia. Patients receiving CAR T-cell therapy are also at high
risk for developing hematologic toxicities, particularly sustained
cytopenia such as neutropenia, thrombocytopenia, anemia and/or
leukopenia.596–598 Cytopenia may appear following CAR-T infusion
and always presents at an early stage (<30 days), frequently for a
prolonged period (30–90 days) and sometimes persists or appears
at a late stage (>90 days).597 The onset and duration of cytopenia
are often correlated with the severity of CRS and ICANS, the
burden of the tumor, the number of prior therapies, baseline
blood counts, peak levels of CRP and ferritin, as well as the CAR
construct.596,597,599,600 Bone marrow biopsy is critical for the
evaluation of both primary disease and secondary bone marrow
neoplasm in patients with persistent or late-onset cytopenia. The
management options for cytopenia are somewhat limited and
need to be individualized based on the likely underlying etiology.
These options may include growth factors, thrombopoietin
receptor agonists, stem cell enhancement, transfusion support
and the elimination of infectious risk.597,601,602
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Coagulopathy. The typical time to onset of CAR-T therapy-
associated coagulopathy (CARAC) is often 6 to 10 days after CAR-
T cell infusion and closely follows the elevation of IL-6 and other
cytokines and gradually relieves as the CRS is controlled.503 CARAC,
including disseminated intravascular coagulation (DIC), prolonged
prothrombin time/activated partial thromboplastin time, and
hypofibrinogenemia, often occurs in patients with severe CRS.603

Over half of the patients experienced thrombocytopenia or at least
one abnormal coagulation parameter after CAR-T therapy. Clinically
bleeding events occurred in about 19.6% of patients with
coagulopathy and 14 to 50% of patients with coagulopathy
developed DIC; 6.7 to 42.9% of patients with DIC died.503

Monitoring of patients with CARAC is imperative to avoid the
potential for bleeding events and even life-threatening hemor-
rhage. Since the severity of CARAC is highly associated with that of
CRS, the management of CRS is of great importance. As bleeding is
the main feature of CARAC, replacement therapy can decrease the
risk of bleeding and control active bleeding, including the
transfusion of platelet, fresh frozen plasma and prothrombin
complex concentrates and fibrinogen, and cryoprecipitate. More
importantly, anticoagulant therapy and/or antifibrinolytic therapy
should be used as appropriate for patients with high-grade CRS.503

Infection. Infectious complications following CAR T-cell therapy
are very common. They have been reported in up to ~70% of
recipients.604–606 The majority of infections develop shortly follow-
ing infusion and can be attributed to several causes, such as the
depletion of normal B cells or plasma cells resulting from the direct
action of the CAR-T cells, the depletion of lymphocytes and
granulocytes caused by conditioning chemotherapy, anti-cytokine,
or corticosteroid therapies given for CRS or neurologic toxicity and
immunocompromise induced by the patient’s underlying malig-
nancy.604,607 Infections, including bacterial, viral and fungal infec-
tions, have been reported following CAR T-cell therapy and can be
life-threatening.604 An increased likelihood of acute infections may
also be linked to the seriousness of CRS. The control of infections is
generally with agents that are selective for the source of the
infection. Risk stratification should be performed based on patient
characteristics such as prior suppressive therapy, history of
infection, etc. when determining whether to provide antibacterial
or antifungal prophylaxis.604 For certain patients with concurrent
severe or recurrent infections and hypogammaglobulinemia, the
NCCN guidelines suggest IVIG as a replacement treatment.518

ADA. Since CAR is an exogenous sequence, it has certain
immunogenicity which leads to ADA production by humoral
immunity after infusion. Early-generation CAR-T cells were
constructed from murine-derived scFv and the species difference
resulted in the generation of a HAMA.276 Even though humanized
CAR circumvented immunogenicity to a certain extent, some
patients were still reported to have ADA in clinical trials of CD19
and BCMA, which eventually affected the efficacy or led to earlier
relapse.278,608 Therefore, monitoring of ADA has become an
important part of current CAR-T clinical trials. Although with large
individual variability, the factors related to the production of ADA
are currently thought to be the use of CAR-T with murine scFv and
multiple infusions of the same CAR-T product.275,609 There is no
targeted method to solve the problem of ADA, but it should be
monitored by ELISA (enzyme-linked immunosorbent assay) and
flow cytometry, to understand the reason for drug resistance or
recurrence in patients in time,610,611 and to reduce the impact of
ADA on secondary reinfusion by replacing the target and
strengthening lymphodepletion.609,612

CHALLENGES AND FUTURE PROSPECTS
Each immunotherapy strategy has achieved varying degrees of
encouraging results in hematologic malignancies. Different

immunotherapeutic approaches have their advantages but also
shortcomings that need to be addressed (Table 5). Further clinical
exploration will be needed to further improve the prognosis of
patients with hematologic malignancies. The allo-HSCT remains
the primary treatment for hematologic malignancies with a
potentially curative outcome. The haplo-HSCT modality can best
address the limited source of allo-HSCT donors, but it’s still
necessary to further explore how to minimize the severity of
GVHD and transplant-related death while improving anti-tumor
effects, especially for patients with R/R hematologic cancers. The
future direction of transplantation will be toward personalization,
in which a combination therapy strategy is very essential. R/R
patients can be pre-treated with CAR-T therapy or other targeted
therapies to achieve remission before bridging to HSCT. Patients,
who still have residual disease after incomplete remission with
various treatments such as chemotherapy, targeted therapy and
immunotherapy, can be treated with donor CAR-T combined with
allo-HSCT. For patients with positive MRD after transplantation,
CAR-T therapy can also be recommended. The second direction is
to optimize donor selection, especially for familial donors and to
avoid selecting donors who carry the same genetic defect as the
patient. Molecular testing can be used to detect HLA loss and
guide the search for donors for patients who need a second
transplantation. In addition, anti-tumor therapy needs to be
considered along with GVHD prevention and thus individualized
management should be conducted after transplantation to
balance the anti-GVHD and anti-tumor benefits. The mAbs, bsAbs,
and ADC-based agents have also improved the treatment of
cancer patients to some extent, but the clinical toxicities remain
unavoidable. Meanwhile, some patients have demonstrated little
or no responsiveness to such treatments. Ideal tumor antigens
need to be screened for these antibody-based therapies to
improve the anti-tumor effects and reduce the incidence of “off-
tumor, on-target” effects. The technical threshold for the
development of bsAbs is more difficult compared to single-
target mAbs. Selecting the best target combination is only the first
step, followed by a rational structural design based on the
receptor structure as well as the biological mechanism of the
disease. In addition, inappropriate clinical design and dosing
regimens will result in higher toxicity in patients, which can be
improved by optimizing treatment strategy, dose and timing to
reduce side effects to some extent. The payload and linker in ADC
drugs can also directly affect effectiveness and safety. In addition,
how to solve the complexity of pharmacokinetics, enhance drug
stability, improve drug efficacy and reduce drug resistance are
also urgent to be explored. The bsADC (bispecific antibody-drug
conjugate) combines the advantages of bsAbs and ADCs and is a
major challenge for the future. Compared to mAbs, bsADCs can
target tumor cells more specifically through two antibodies,
overcoming drug resistance while increasing the safety. Mean-
while, novel therapeutic agents, such as bifunctional checkpoint-
inhibitory T cell engager (CiTE),613 simultaneous multiple interac-
tion T cell engager (SMITE),614 trispecific killer engager (TriKE) and
BiTE-expressing CAR-T cells, are being designed to integrate
various immune functions into one molecule or a single cellular
vector and thereby enhance efficacy without compromising
safety.172 ICIs have shown superior efficacy mainly in HL and
primary mediastinal large B-cell lymphoma, but has limited efficacy
in other hematologic cancers. Serious irAEs may also occur with ICI
therapy, which will impede its application in the clinic. The
exploration of more-effective and rational combinatorial
approaches is an area of great interest in improving the efficacy
of ICI therapy. The emergence of ACTs, especially CAR T-cell
therapy, offers a new therapeutic avenue and hope for R/R patients
with hematologic malignancies. However, these therapeutic
approaches are usually accompanied by serious complications
such as CRS, ICANS, and “off-target” effects, while achieving
remarkable results. Challenges remain in the optimization of CAR
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design and cell products, improvement of remission rates,
prolongation of remission duration, reduction of toxicity and
expansion of this therapeutic modality to other cancer types. To
further improve patient outcomes, innovative strategies are needed
to enhance the therapeutic efficacy and in vivo persistence of CAR-
T cells and to mitigate tumor cell resistance. Elucidation of
mechanisms of resistance and immune escape has long been a
big challenge. Epigenetic mechanisms play an important role in
both tumor development and anti-tumor immune regulation and

epi-drugs represented by DNA methylation inhibitors and histone
deacetylation inhibitors can coordinate, potentiate and reduce
immune escape effects in several aspects by regulating tumor
killing and enhancing the anti-tumor immunity.615–617 Therefore, a
deeper and broader exploration of epi-immunotherapy will further
advance the understanding of this emerging concept and bring
more creative breakthroughs in immunotherapy. Allogeneic CAR-T
cells also have the potential to overcome many of the manufactur-
ing limitations of traditional autologous CAR T-cell therapies.

Table 5. The advantages and limitations of various immunotherapies in hematologic malignancies

Type of
immunotherapy

Advantages Limitations Future directions

allo-HSCT The only option to achieve a cure for
hematologic malignancies.

Incidence of transplant related
mortality and graft-versus-host
disease.

Personalization and combination
therapy; optimization of donor selection,
maintenance therapy to balance the anti-
GVHD and anti-tumor benefits.

mAb Specifically targeting tumor antigen and
inducing cancer cell death; their
combination with chemotherapy has been
first-line therapy for several cancers.

Incidence of “off tumor, on target”
effect and therapy-related toxicities.

Requirement for suitable target antigen;
optimization of treatment strategy;
overcome drug resistance to single-agent
therapies.

bsAb Combining the binding sites of two
monoclonal antibodies in the same one
molecule to promote cancer cell killing.

Incidence of “off tumor, on target”
effect and therapy-related toxicities; a
lack of co-stimulation might induce
T-cell anergy and compromise the
clinical efficacy;

Requirement for suitable target antigen;
need to selecting the best target
combination; require rational structural
design; optimization of treatment
strategy; overcome drug resistance to
single-agent therapies.

ADC Utilizing the specific binding properties of
mAb to selectively deliver cytotoxic agents
to cancer cells to increase the therapeutic
potentials of cytotoxic agents.

Incidence of “off tumor, on target”
effect and therapy-related toxicities.

Requirement for suitable target antigen;
require rational structural design; solve
the complexity of pharmacokinetics,
enhance drug stability, improve drug
efficacy and reduce drug resistance;
optimization of treatment strategy;
design of bsADCs; overcome drug
resistance to single-agent therapies.

ICI Blockade of immunosuppressive
checkpoint signaling pathway.

Incidence of irAEs; only the
therapeutic results in HL was
remarkable.

Overcome drug resistance to single-
agent therapies; combination therapy
with epi-drugs, CAR-T therapy and/or
HSCT.

CIK, γδ T and NK
cells

Non-specific cellular therapies; no demand
for genetical modification.

Requirement for a large number of
cells; limited efficacy in hematologic
malignancies.

Improvement of clinical efficacy and
reduction of toxicity; combination
therapy with epi-drugs, ICIs and/or HSCT.

CAR-T cell therapy Specific cellular therapies; no restriction of
MHC; achieve rapid development and great
success in treating hematologic
malignancies, especially R/R patients; serve
as the “bridge” to transplant; several cell
products have achieved FDA’s approval and
entered into the commercialized field.

Therapy-related toxicities, such as CRS
and neurotoxicity; long period of
manufacturing; high cost.

Requirement for suitable target antigen;
optimization of CAR design and cell
products; improvement of remission
rates; prolongation of remission duration;
reduction of toxicity and expansion of
this therapeutic modality to other cancer
types; universal CAR-T products;
overcome drug resistance to
monotherapy; combination therapy with
epi-drugs, ICIs and/or HSCT.

CAR-NK cell
therapy

Specific cellular therapies; no restriction of
MHC; provide an “off-the-shelf” cell product
and could be readily available for
immediate clinical use; serve as the
“bridge” to transplant.

Still in early stage of clinical studies;
limited efficacy in hematologic
malignancies.

Requirement for suitable target antigen;
optimization of CAR design and cell
products; improvement of clinical
efficacy and reduction of toxicity;
expansion of this therapeutic modality to
other cancer types; overcome drug
resistance to monotherapy; combination
therapy with epi-drugs, ICIs and/or HSCT.

Tumor vaccine Taking advantage of tumor-associated
antigens or tumor-specific antigens to
stimulate the immune system.

Still in very early stage of clinical study;
limited efficacy in hematologic
malignancies.

Requirement for suitable target antigen
and vaccine vectors; improvement of
clinical efficacy and reduction of toxicity.

allo-HSCT allogeneic hematopoietic stem cell transplantation, mAb monoclonal antibody, bsAb bispecific antibody, ADC antibody-drug conjugate, bsADC
bispecific antibody-drug conjugate, ICI immune checkpoint inhibitor, HL Hodgkin lymphoma, irAEs immune-related adverse effects, MHC major
histocompatibility complex, R/R refractory and relapsed, FDA Food and Drug Administration, CIK cytokine-induced killer cells, γδ T gamma/delta T, NK
natural killer, CAR-T chimeric antigen receptor T, CRS cytokine release syndrome
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Universal CAR-T cells will undoubtedly be the future direction of
CAR-T therapy. While there are still concerns about host-versus-
graft and graft-versus-host reactions caused by CAR-T cells in the
allogeneic environment, the risks and side effects are being
reduced through gene knockout technology and the safety of
universal CAR-T cells will be further enhanced. Universal CAR-T
therapies are expected to bring less expensive and more
immediately available “off-the-shelf” therapies to patients with
malignant hematologic cancers. However, there are many chal-
lenges with universal CAR-T cells and clinical studies are still in the
early stages. Tumor vaccines take advantage of tumor-associated
antigens or tumor-specific antigens to stimulate the immune
system but are currently in their infant stage and there is still much
space for refinement to discover their full potential.
The current status quo in cancer treatment is that immunotherapy

is generally used as a second-, third-, or even last-line treatment
option when patients have no better options. Based on promising
results in terms of efficacy and safety, immunotherapy is expected to
become the first line of treatment in the future, while conventional
treatment will be relegated to the second line.618 Treatment
regimens for patients with hematologic cancers typically include
3–4 or even 5 cytotoxic drugs and the addition of immunotherapy
drugs can reduce the use of these chemotherapy agents. Several
clinical trials have confirmed that the combination of immunother-
apy with reduced chemotherapy regimens has improved rather than
suppressed therapeutic effects. Therefore, one of the major trends in
cancer treatment is that immunotherapy will become increasingly
prominent.618 Combination immunotherapy is an exciting area of
research that may further enhance our ability to utilize the immune
system against hematologic malignancies. Currently, HSCT remains a
fundamental treatment option and combining HSCT with novel
immunotherapies is a promising direction for our future. Many
clinical questions remain to be answered. Which immunotherapy
works best in the context of HSCT? Which immunotherapy is better
suited as a bridge to HSCT or as a preferred option after HSCT
relapse? Which immunotherapy approach is more appropriate for
patients who are ineligible for HSCT? With the continuous
development and advancement of molecular biology and immunol-
ogy technologies, immunotherapy is expected to further change the
existing treatment paradigm of hematological cancers. The detailed
information generated by multidimensional omics technologies,
single-cell sequencing and others will not only provide insights into
the complex determinants of efficacy and toxicity of immunothera-
pies but also help identify predictive biomarkers and develop new
treatment strategies. As future research helps to address these
challenges, these advanced technologies may eventually become
the standard and necessary tool in the field of immunotherapy,
revealing the relationship between key drivers of cancer phenotypes
and enabling clinicians to better predict and monitor patient
responses, thereby facilitating more comprehensive and realistic
personalized treatments for cancer patients.619–632

CONCLUSION
Malignant hematologic cancers are major diseases that pose a
serious threat to human health. The past and present are very
exciting eras for immunotherapy of hematologic malignancies,
but the future looks quite incredible and we are rapidly moving in
that direction. Although the various immunotherapies aim to treat
cancer patients through different mechanisms of action, the core
is to restart and maintain the “Cancer-Immunity Cycle” and restore
normal anti-tumor immunity. Multiple categories of immunothera-
pies have been developed for the treatment of blood cancers and
are being further evaluated in clinical trials. More importantly,
some of these immunotherapies have been approved by the FDA
for the treatment of blood cancers or have even entered the
commercialization stage. At present, immunotherapy for blood
cancers still faces a series of challenges. The most important of

these is safety, where different therapies are accompanied by
varying degrees of treatment-related side effects, thus emphasiz-
ing the importance of early detection and intervention of
toxicities. As mentioned above, clinical experts have been
developing guidelines for the management of toxicities based
on clinical trials and real-world clinical experience. The establish-
ment of these guidelines has provided a solid foundation for
improving the safety and widespread use of immunotherapy. In
addition, they are gaining experience in managing the unique
complications associated with novel immunotherapies and estab-
lishing practice guidelines that will be critical to expanding their
use worldwide. Another notable issue is treatment failure due to
resistance and relapse. This illustrates the striking difference in the
ability of each patient to respond to immunotherapy, highlighting
the potentially urgent need for and importance of personalized
cancer treatment.
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