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Comprehensive landscape of resistance mechanisms for
neoadjuvant therapy in esophageal squamous cell carcinoma

by single-cell transcriptomics
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Dear Editor,

Preoperative neoadjuvant therapy combined with surgical
resection is the standard treatment for locally advanced esopha-
geal squamous cell carcinoma (ESCC). However, more than half of
patients having a partial response to neoadjuvant therapy, which
is considered as a therapy-resistant phenotype and the mechan-
ism is still unclear. The heterogeneity of the ESCC with surgery
alone therapy were characterized by single-cell RNA sequencing
(scRNA-seq) previously, but few report was about ESCC patients
with neoadjuvant therapy.' It is emergent to illustrate the
comprehensive hallmarks of neoadjuvant therapy-resistance in
ESCC at single cell level.

We generated scRNA-seq profiles for 7 ESCC patients under-
went postoperative neoadjuvant therapy but having a partial
pathological response, and 2 patients with surgery alone
(Supplementary Fig. 1a, Supplementary Table 1). The cells were
then classified into 7 cell lineages according to authoritative
markers® (Fig. 1a, Supplementary Fig. 1b), the proportions of
which revealed the cellular landscape of ESCC patients under-
going different therapy strategies (Fig. 1b, Supplementary Fig. 1c).
We further partitioned epithelial cells into malignant and normal
cells according to copy number variations (CNVs, Fig. 1c).
Considering the malignant cells that survive after neoadjuvant
therapy may acquire therapy resistance ability, only malignant
cells were reserved to identify resistant cell lineages to
neoadjuvant therapy.

After dimension reduction and clustering of malignant cells, we
identified 13 robust clusters of tumor cell lineages (Fig. 1d,
Supplementary Fig. 1d), which were variously distributed in
samples underwent different therapy strategies (Fig. 1e), indicat-
ing a potential association between tumor cell lineage and
therapy resistance. Among them, the survival of Ep-C2 exhibited
the highest proportion in patient who underwent chemora-
diotherapy and immunotherapy combination (Fig. 1e). We found
the marker genes of Ep-C2 (Supplementary Table 2), such as
OSGINT and CYP4F3, are related to oxidative stress response and
drug metabolism pathways, including glutathione metabolism,
cytochrome P450-related pathway and platinum-drug resistance
(Fig. 1f, Supplementary Fig. 1e). Transcription factor regulatory
network analysis showed that the regulon MAFG (10 target genes)
and NFE2L2 (27 target genes), the critical factors for antioxidant
response signaling pathway, were activated in Ep-C2 (Fig. 1g,
Supplementary Fig. 1f). We conducted a multiplex immunohis-
tochemistry on 8 patients, including pre- and post-therapy
(chemotherapy combined with immunotherapy). Representative
images of individual samples stained with marker genes of Ep-C2,
including NFE2L2, MAFG, OSGIN1, and CYP4F3 are shown in Fig. Th.
Additionally, the findings demonstrated a significant increase in
the expression of these genes in post-therapy samples
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(Supplementary Fig. 1g). These findings suggest that Ep-C2 with
antioxidant characteristic existed before neoadjuvant therapy and
transformed into a resistant population after neoadjuvant therapy.

We next imputed the enrichment score of Ep-C2 gene signature
(Supplementary Table 3) in another cohort of ESCC without
neoadjuvant therapy. Results showed the tumor cells from patient
T_865 had the highest Ep-C2 enrichment score and highly
expressed the antioxidant response-related genes (Supplementary
Fig. 1h, i). Additionally, the Ep-C2 gene signature was also highly
enriched in some TCGA-ESCC samples (Supplementary Fig. 1j),
indicating the existence of Ep-C2 in ESCC. We then identify
potential drugs that could reverse the gene expression and
restore therapy sensitivity of Ep-C2 by using L1000 CMAP
signatures,® and the top 5 drugs are shown in Supplementary
Fig. 1k. As the synthesis of glutathione occurs in an ATP-
dependent manner, ouabain and digoxin, which target ATPase,
may repress glutathione metabolism of Ep-C2. Overall, this data
provided potential targets to combat therapy resistance of Ep-C2.

Meanwhile, according to marker genes expression, pathway
and TF activity, the molecular mechanisms and hallmarks of
therapy resistance in other heterogeneous tumor cell lineages
were also described briefly (Fig. 1i). Gene sets related to DNA
repair and cell cycle were activated strongly in the Ep-C1, Ep-C4,
Ep-C6, and Ep-C11 lineages (Fig. 1i, Supplementary Fig. 2a, b). The
survival of the Ep-C3 lineage with high expressions of NDRGIT,
SLC2A1, and VEGFA, showed high activity of hypoxia and
angiogenesis (Fig. 1i, Supplementary Table 2, Supplementary
Fig. 2a). However, Ep-C10 exhibited the highest activation of
interferon responses (Supplementary Fig. 2a) and the highest
infiltration in patients who underwent general surgery alone
(Fig. 1e), indicating Ep-C10 lineage was sensitive to neoadjuvant
therapy. Moreover, our study demonstrated that part of tumor
sub-populations possesses single therapy-resistance mechanism,
whereas some show coexisting of multiple therapy-resistance
mechanisms (Fig. 1i). Therefore, exploring comprehensive hall-
marks of substantial heterogeneous tumor cells can provide
foundation for precision therapy.

T cell heterogeneity and dynamics are important in therapy
responses. We found the fraction of GZMK" effector memory T
cells (Tem-GZMK) was increased in most neoadjuvant therapy
patients, especially in the patient who underwent immunotherapy
(Fig. 1j, Supplementary Fig. 2c). While the expression levels of
cytokines and effector molecules such as IFNG and TNF in Tem-
GZMK cells were lower than in IFNG" effector memory T cells
(Tem-IFNG) (Fig. 1k), demonstrating the cytotoxic-insufficient
status of Tem-GZMK cells. According to the T cells infiltration
and evolutionary trajectory (Fig. 1j, Supplementary Fig. 2d), we
inferred that the evolution of Tem-GZMK to Tem-IFNG may be
inhibited and recover process could be an important means of
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Fig. 1 a t-SNE plot of high-quality cells across all samples, colored by cell lineage. b Proportions of different cell lineages, categorized by
neoadjuvant therapy strategy and colored according to cell lineage. ¢ Heatmap shows the predicted CNVs by CopyKAT among epithelial cells
across all chromosomes. The cells were clustered into two groups based on CNVs, where malignant epithelial cells had more CNVs than
normal epithelial cells. d t-SNE plot of all malignant epithelial cells (Ep) in our cohort, colored by tumor cell lineages. e Proportions of tumor
cell lineages in different therapy strategies. f Enriched KEGG pathways of Ep-C2 lineage based on marker genes. g t-SNE visualization of AUC
scores of two regulons (TF and its target genes), split by therapy strategies. h Multiplex immunohistochemistry of pre- and post-therapy
samples using the antibodies and colors are as follows: DAPI (blue), NFE2L2 (yellow), MAFG (green), OSGIN1 (Magenta), and CYP4F3 (red).
i Resistance hallmarks of ESCC to neoadjuvant therapy. ECM extracellular matrix, EMT epithelial mesenchymal transition, TF transcription
factor, MMPs matrix metalloproteinases, Tem effector memory T cell. j The average fractions of four types of T cell lineages under different
neoadjuvant therapy. Tem effector memory T cells, Tex exhausted T cells. k Dot plot shows differentially expressed genes between Tem-GZMK
and Tem-IFNG cells. I NicheNet analysis shows the potential ligands expressed by neighboring cells that presumably affected the differentially
expressed genes between Tem-GZMK and Tem-IFNG cells. Ligand activity indicates the ability of each ligand to predict the target genes, and
better predictive ligands are thus ranked higher. The regulatory potential score indicates the confidence that a particular ligand can regulate
the expression of a particular target gene. m Violin plot shows average gene expression across all myeloid sub-populations, colored by lineage
identity. Mono monocyte, Macro macrophage, DC classical dendritic cell, pDC plasmacytoid dendritic cell, pro M proliferation monocyte/
macrophage. n Ligand-receptor interaction analysis between the myeloid lineage and endothelial lineage. Prior interaction potential score
indicates the confidence that a particular ligand can interact with a particular receptor. o Relative interaction strength of each incoming
signaling pathway among tumor cell lineages and fibroblasts in samples from chemoradiotherapy patients

improving therapeutic effect (Fig. 1i). In ESCC ligand-receptor Supplementary Fig. 2e) leading us to hypothesized that combin-
network, IL15 exhibited strong regulatory effect to CD69 and ing IL15 agonists with neoadjuvant therapy would be essential to
TNFRSF9 (Fig. 11), which were important molecules for T cell improve therapy effect.

activation and cytotoxic T cell expansion. However, the insuffi- Myeloid lineages execute therapy resistance through promoting
ciency of IL15 in the tumor microenvironment (TME, angiogenesis. Typically, we found that most myeloid lineages in
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tumor tissue expressed well-known angiogenesis inducers such as
VEGFA, HIF1A, and MMP9, while only monocyte cells highly
expressed the endogenous angiogenesis inhibitor
thrombospondin-1 (THBS1) (Fig.1m). We assessed cell-cell com-
munication (CCC) between endothelial cells and myeloid cells in
the patients treated with the anti-angiogenesis drug apatinib. We
found VEGFA interact not only with the receptor VEGFR (FLT1, KDR)
but also with the alternative receptors NRP1 and NRP2 (Fig. 1n),
which transmit strong proliferation signals to endothelial cells and
lead to the failure of anti-angiogenesis drug. Analysis of
endothelial cells also identified tumor-associated endothelial cell
population, ie., EC-FLT1 (Supplementary Fig. 2f), which receive
angiogenic signals from TME.

We also found activation of tumor-associated fibroblast lineages
would enhance therapeutic resistance through CCC (Fig. 1i,
Supplementary Fig. 2g). Our results demonstrated stronger CCC
exists in chemoradiotherapy and anti-angiogenesis therapy
patients than those who underwent general surgery alone,
whereas communication strength was suppressed in chemother-
apy and immunotherapy patients (Supplementary Fig. 2h). The
dynamic changes of communications such as EGF, IGF, CCL, and
WNT were activated or up regulated in chemoradiotherapy
patients, whereas SEMA5 and SEMA6 were activated in chemor-
adiotherapy and immunotherapy combination patient (Supple-
mentary Fig. 2i). Further analyses of chemoradiotherapy patients
showed that Ep-C7 cells receive the most signals from fibroblasts
via the COLLAGEN, LAMININ, and FN1 pathways (Fig. 10), which is
in line with the functions of Ep-C7 cells, such as participating in
ECM interactions and EMT (Fig. 1i). These results suggest that
deposition of ECM proteins near Ep-C7 cells protects tumor cells
from the cytocidal effects of certain therapies.

Collectively, we identified the comprehensive hallmarks of
various tumor lineages that resist neoadjuvant therapy, and the
TME cells associated with therapy resistance in ESCC. The study of
post-neoadjuvant therapy ESCC patients at single cell level
uncovered resistance mechanisms and potential targets for
therapies.
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