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Intestinal microbiota links to allograft stability after lung
transplantation: a prospective cohort study
Junqi Wu1,2, Chongwu Li1,2, Peigen Gao1,2, Chenhong Zhang3, Pei Zhang1,2, Lei Zhang1,2, Chenyang Dai1,2, Kunpeng Zhang1,2,
Bowen Shi4, Mengyang Liu5, Junmeng Zheng6, Bo Pan7, Zhan Chen8, Chao Zhang7, Wanqing Liao7, Weihua Pan7✉, Wenjie Fang7✉ and
Chang Chen 1,2✉

Whether the alternated microbiota in the gut contribute to the risk of allograft rejection (AR) and pulmonary infection (PI) in the
setting of lung transplant recipients (LTRs) remains unexplored. A prospective multicenter cohort of LTRs was identified in the four
lung transplant centers. Paired fecal and serum specimens were collected and divided into AR, PI, and event-free (EF) groups
according to the diagnosis at sampling. Fecal samples were determined by metagenomic sequencing. And metabolites and
cytokines were detected in the paired serum to analyze the potential effect of the altered microbiota community. In total, we
analyzed 146 paired samples (AR= 25, PI= 43, and EF= 78). Notably, we found that the gut microbiome of AR followed a major
depletion pattern with decreased 487 species and compositional diversity. Further multi-omics analysis showed depleted serum
metabolites and increased inflammatory cytokines in AR and PI. Bacteroides uniformis, which declined in AR (2.4% vs 0.6%) and was
negatively associated with serum IL-1β and IL-12, was identified as a driven specie in the network of gut microbiome of EF.
Functionally, the EF specimens were abundant in probiotics related to mannose and cationic antimicrobial peptide metabolism.
Furthermore, a support-vector machine classifier based on microbiome, metabolome, and clinical parameters highly predicted AR
(AUPRC= 0.801) and PI (AUPRC= 0.855), whereby the microbiome dataset showed a particularly high diagnostic power. In
conclusion, a disruptive gut microbiota showed a significant association with allograft rejection and infection and with systemic
cytokines and metabolites in LTRs.
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INTRODUCTION
Lung transplantation is a potentially curative therapy for patients
with end-stage pulmonary disease.1 Nevertheless, the overall
survival after a lung transplant is still inferior compared to other
solid-organ transplantation modalities.2,3 For adult lung transplant
recipients (LTRs) who survived 1 year after transplantation, the
median survival increases from 6.7 to 8.9 years. Severe allograft
rejection (AR) and pulmonary infection (PI) are the most common
complications within 1 year after the transplant.4 These diseases
are not only the major causes of death but are also associated
with chronic lung allograft dysfunction (CLAD).5 Inflammatory
allograft events, such as primary graft dysfunction, are associated
with the subsequent development of AR and PI.6–8 Nevertheless,
predispositions to the susceptibility to pulmonary rejection and
infection are not fully understood.2

Previous longitudinal studies based on gene sequencing have
revealed that the microbiome is appreciable in healthy subjects,
altered in pathological diseases, and significantly associated with
clinical outcomes.9,10 The reduced gut microbial diversity is
correlates with allograft disease etiology and severity.11,12

Compelling evidences have also showed that the gut microbiome
could modulate alloimmunity and rejection, directly implicating
the gut microbiome as a therapeutic target in organ transplanta-
tion.13,14 In addition, longitudinal studies from patients under-
going liver and kidney transplantation have demonstrated
disruption of the gut microbiome after transplantation was
characterized by loss of diversity with important metabolic
pathways and domination by a single species, and an increase
in the prevalence of antibiotic resistance genes.12 These results
supported that potential gut microbiome-targeted interventions
could influence the survival of patients received solid organ
transplantation.
The possibility that the microbiota of the lower respiratory tract

may have local effects following lung transplantation has been
widely reported.15–17 According to these studies, increased lower
respiratory tract bacterial burden and lower diversity are
associated with increased AR and inferior survival. Meanwhile,
gut-associated bacteria were significantly enriched in the patents
with pulmonary inflammation. More importantly, recent studies
have shown intestinal microbiota is vital in determining
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respiratory diseases, such as asthma and atopy development.18

Interestingly, Wu et al. indicated that direct immune-mediating
functions of the gut microbiota in AR mouse models occur via
impairing Th17 responses.19 To date, whether the gut microbiome
can be linked to allograft diseases in the setting of lung
transplantation is currently unknown.
We hypothesized that the gut microbiota is associated with

pulmonary disorders, including AR and PI, within 1 year after the
transplant. A prospective multi-centers cohort study of LTRs
undergoing per-protocol surveillance bronchoscopy was initiated.
The association between the microbiota community composition
in feces with the development of pulmonary diseases was
evaluated. Subsequently, metabolites and cytokines from paired
peripheral blood were examined to account for the microbial
differences. Finally, we accurately diagnosed AR and PI from our
multi-omics data using a machine learning approach.

RESULTS
Participant and sample profiles
This multi-center prospective study involved 82 LTRs who
underwent lung transplantation between May 2020 and Decem-
ber 2022 and provided the demographic characteristics in
Supplementary Table 1. Over half of the pretransplant diagnoses
were interstitial lung disease (51.2%). Furthermore, 146 pairs of
feces and peripheral serum samples were analyzed after quality
control (Fig. 1a). These samples were classified into three groups
according to the diagnosis at the time of sampling (Supplemen-
tary Fig. 1). AR, PI and event-free (EF) accounted for 25 (17.1%), 43
(29.5%), and 78 (53.4%) cases in the study, respectively. The time
points for each sample were similar for the three groups. In
contrast to demographic characteristics and blood counts

(Supplementary Table 2), more positive culture results and
antibiotics were observed in the PI group.

Alternation of the fecal microbiome in pulmonary disorders
Firmicutes and Bacteroidetes followed by Proteobacteria and
Actinobacteria were the most abundant phyla in the LTRs,
consistent with previous cohorts from healthy individuals (Fig.
1b and Supplementary Table 3). And 32 genera were shared by
≥75% of the samples among the four most abundant phyla (Fig.
1c). The prevalence of Bacteroidetes phyla significantly decreased
in AR, compared with EF (p= 0.043, Supplementary Fig. 2). The
score plots of the Principal Co-ordinates Analysis (PCoA) at the
species level showed a detectable alteration in the overall
structure of the gut microbiomes of the AR/PI compared to EF.
(Fig. 2a, b, Permanova test based on Bray-Curtis distances, AR vs
EF, p= 0.004; PI vs EF, p= 0.046). Furthermore, a significant
microbial gene depletion was observed in the individuals with AR
and PI (PCoA1, Shannon index, Pielou index, and Species number,
Fig. 2c–e).
In total, 487 species were depleted, and 16 were enriched in the

AR specimens compared to EF (Fig. 2f and Supplementary Table 4,
False discovery rate (FDR) < 0.1 and >2-fold change (FC)). These
results are similar with previously reported findings, such as a
relative depletion in probiotics bacteria (like Bacteroides uniformis,
Lachnospiraceae bacterium, Blautia obeum, and Phascolarctobac-
terium succinatutens), and enrichment of Enterococcus phage_I-
ME_EFm1 and Desulfovibrio sp_An276 in patients with pulmonary
inflammation. In these species, bacteria families from Bacteroides
and Lachnospiraceae are known producers of short-chain fatty
acids (particularly butyrate), which play crucial roles in boosting
host immunity.20,21 Moreover, three species were significantly
enriched and 18 were decreased in the PI samples (Fig. 2g and

Fig. 1 a Overview of the study design. The illustration was created with BioRender.com. b Relative abundances (%) of most abundant phyla
across all fecal samples. Box plots show median (middle line), 25th, 75th percentile (box) and 5th and 95th percentile (whiskers) as well as
outliers (single points). c Prevalence (% samples) of genus across samples for the four most abundant phyla. The Y-coordinate represents the
prevalence of the genus in all samples and the X-coordinate represents the maximum relative abundance of the genus in a single sample. Dot
color shows different genera and size show total rarefied reads
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Supplementary Table 5). However, the differences between the AR
and PI groups were not be observed at the species level
(Supplementary Fig. 3). Next, we combined the AR and PI samples
into an allograft disorder group. The species shared by more than
50% of the subjects in the allograft disorder or EF group were
used to construct a microbial co-abundance network. The allograft
disorder and EF group differed significantly in the characteristics
of the gut microbial network. Observably, the gut microbiota of
the EF group formed a more robust community (Fig. 3a, b). Fewer
edge numbers, node numbers, net connectivity, and net vulner-
ability were observed in the network of allograft disorder samples
than EF, indicating higher network connectivity in the EF LTRs
(Supplementary Table 6). We asked whether any key species drive
the differences between the networks based on the parameters of
average degree, closeness centrality, and betweenness centrality.
We identified a bacterial species of the Bacteroides family, indexed

uniformis, which enriched EF (Relative abundance = 2.4%) and
significantly reduced in AR (Relative abundance = 0.6%, FDR=
0.04). It was reported as an immunomodulatory probiotic,
optimizing the systemic Th1/Th2 balance to reduce autoimmune
disorders in experimental models.22 Furthermore, Netshift analysis
revealed that the Bacteroides uniformis had a higher neighbor shift
(NESH) core (1.125) and stronger betweenness among 39 driven
species (Supplementary Table 7). This finding supports that the
Bacteroides uniformis is the main driver species for the changed
microbial community.
We further investigated the function of the altered gut

microbiome. Kyoto Encyclopedia of Genes and Genomes (KEGG)
module-based analysis showed that mannose biosynthesis,
N-glycosylation by oligosaccharyltransferase and methane meta-
bolism were significantly disturbed in the AR samples (Fig. 3c and
Supplementary Table 8). The mannose supplementation directly

Fig. 2 a Principal co-ordinates analysis (PCoA) of species across three groups. The PERMANOVA was used to define significant differences
across allograft rejection (AR), pulmonary infection (PI), and event-free (EF). b–e The most principal co-ordinates, Shannon index, Pielou index,
and species number of gut microbiotas in AR, PI, and EF. The center line of the box represents the median, and the box bounds represents the
inter-quartile range. The whiskers span 1.5-fold the inter-quartile range. The comparison among the groups was tested by two-sided
Kruskal–Wallis test, **p < 0.01 and ***p < 0.001. f The significantly differential species in f AR vs EF and g PI vs EF. The significantly differential
species were defined by false discovery rate less than 0.1 in Wilcox Rank-Sum Test, and fold change between two groups more than 2. The red,
yellow and green dots represent AR, PI, and EF, respectively

Intestinal microbiota links to allograft stability after lung. . .
Wu et al.

3

Signal Transduction and Targeted Therapy           (2023) 8:326 



suppressed macrophage TNF-α production by reducing the
glyceraldehyde 3-phosphate level in the gut.23 Moreover, the
increased inositol phosphate metabolism and ergocalciferol
biosynthesis were observed in the PI specimens (Supplementary
Table 9). The correlation analysis showed that reduced metabo-
lism positively associated with lower probiotics (Supplementary
Table 10). In addition, an antibiotic resistance gene analysis
showed that more antibacterial-free fatty acids and mupirocin-
related species were observed in the EF specimens (Fig. 3d, e). Our
data revealed that dysfunctional oligomer metabolism in gut
microbiome functionality results from probiotics decline.

Alternation of fecal microbiome correlates with systemic immune
status
Based on the observation that the gut microbiota is significantly
altered in AR and PI, we hypothesized that these compositional
changes play a role in exacerbating disease by contributing to
dysregulation of the immune response. To investigate alterations

in the immune profiles after lung transplantation, the serum levels
of 27 cytokines, including seven functional categories, were
compared across the three groups. The detected cytokines are
involved in tissue remodeling, immunoregulation, inflammation,
and so on. Their patterns differed significantly across the three
groups (Fig. 4a and Supplementary Table 11). The AR and PI
patients showed significant inflammatory stress with 12 cytokines,
such as IL-6, IL-12, IL-17 and TNF-α, significantly up-regulated.
Subsequently, we found that the gut microbiota was significantly
associated with the up-regulated cytokines in the correlation
analysis. The serum IL-6, identified as a key factor in the graft
rejection, positively correlated with increased Enterococcus spp.
and Lactococcus spp. in AR patients (Fig. 4b and Supplementary
Table 12). In addition, the reduction of 16 Bacteroides and 7
Clostridium species was negatively correlated with IL-6. Interest-
ingly, we found 3 Enterococcus phage species, which were
enriched in EF and reported to reduce the pathogenic bacteria
with minimal damage to the normal flora, were negatively

Fig. 3 The microbial association network for a allograft disorder and b EF specimens. The co-abundance correlation between the species was
calculated using SparCC correlation. All significant correlations with BH-adjusted p < 0.05 were included. Each node represents a microbial
species. Edges between nodes represent correlations. c The significant changed Kyoto Encyclopedia of Genes and Genomes (KEGG) modules
in AR vs EF and PI vs EF. The significantly differential modules were defined by false discovery rate less than 0.1 in Wilcox Rank-Sum Test and
fold change between two groups more than 2. d Antibacterial FFA and e mupirocin-related genes in gut microbiota of three groups. The
center line of the box represents the median, and the box bounds represents the inter-quartile range. The whiskers span 1.5-fold the inter-
quartile range. The comparison among the groups was tested by Kruskal–Wallis test. **p < 0.01
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associated with several inflammatory cytokines (MIP-1β, IL-1α,
TNFα and IL-17). In addition, the Bacteroides uniformis was
negatively associated with IL-1β and IL-12, which indicated that
the gut microbiome is involved in allograft diseases possibly via
modulating host immune responses in lung transplant.24,25

Alternation of fecal metagenome correlates with serum
metabolites
Next, we asked which environmental factors explain the levels of
the altered gut microbiome. Serum metabolites are known to play
a key role in mediating the metabolic and immune interactions
between the microbiome and its host, thus providing a
fundamental view into the complex dynamics of environmental
exposures. Consistent with the gut microbiome, AR individuals
exhibited a broad set of perturbations with a major depletion
pattern in serum metabolite levels. Fifty-two altered metabolites
were identified among the three groups (Fig. 5a and Supplemen-
tary Tables 13 and 14). Several depleted metabolites, such as
glucose-6-phosphate, were previously reported to attenuate lung
injury.26 Furthermore, the correlation between the significantly
changed gut microbial species and serum metabolites was
analyzed. We found that lowering lipid ((S)-abscisic acid, methyl
jasmonate and cortisol) positively correlated with these decreas-
ing probiotics (Fig. 5b and Supplementary Table 15). These species
are mainly derived from Bacteroidetes (28 species) and Clostridium

(20 species). Of these, (S)-abscisic acid, which was reported to
reduce lung injury through peroxisome proliferator activated
receptor γ (PPAR-γ) signaling, is strongly associated with the
deletion of 86 species.27 In addition, the loss of Bacteroides
uniformis significant associated with increased quinolinic acid
which is well-known neurotoxin. These results suggest that the
gut probiotics, play a potential protective role in AR development,
mediated by an array of circulating blood metabolites, several of
which were previously shown to play a central role in pulmonary
inflammation, while others were not reported. Thus, upon further
validation in experimental studies, these metabolites may form
new targets to attenuate disease risk.

A machine learning classifier for pulmonary disorders
The accurate diagnosis of AR and PI is important for clinical
practice. We hypothesized that the distinct microbial, and
metabolic signature could predict the AR and PI in lung transplant
patients. At first, 146 specimens were subdivided in to a training
cohort (104 samples) and multi-regional validation cohort
(42 samples, Supplementary Table 16). Based on a support vector
machine (SVM) approach, we constructed machine learning
models by employing the clinical parameters, including blood
counts and serum cytokines, and used the significantly changed
species of the gut microbiome and the significantly disturbed
serum metabolites to distinguish AR, PI, or EF from the subjects

Fig. 4 a Radar plot shows the log10-median expression of 27 cytokines in the serum across three groups. Circular distribution of cytokines is
color-coded by seven functional categories and ticks show in increase in expression from the inside to the outside of the circle. b The
correlation of the selected fecal microbiome with serum cytokines. Species with enrichment in either AR, PI, or EF samples indicated by the
colored bar along the top of the heatmap. Black stars within heatmap boxes indicate significant results. *p < 0.05

Fig. 5 a The 52 significant altered metabolites among AR, PI, and EF. The comparison between two groups was tested by the Student’s t test.
b The correlation of the selected fecal microbiome with serum metabolites. The significantly correlated (calculated by Spearman correlation,
p < 0.01) species and metabolite are showed in the cycle. Species and metabolites with enrichment in either AR, PI, or EF samples are indicated
by the colored bar of the inside track. The phylum of the microbiome and class metabolites are indicated by the colored bar of outside the
track. The green and yellow lines represent positive and negative correlation, respectively
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(Fig. 6a–d). When identifying AR, PI, or EF, the precision-recall
curve (PRC) showed that the predicted power of the SVM models
based on the clinical parameters was significantly lower than
models using microbiome and metabolome data in the validated
samples. However, the single microbiome (area under the
precision–recall curve, AUPRC range = 0.703–0.764) and metabo-
lome (AUPRC range = 0.605–0.654) were also less effective. The
SVM models based on the multi-omics data (integration of clinical,
microbial and metabolic features) accurately predicted AR, PI, or
EF in the validated subjects (AUPRC= 0.801 for AR, AUPRC= 0.855
for PI, and AUPRC= 0.809 for EF). These data supported a high
predictive power of the multi-omics for diagnosis of AR and PI in
lung transplant.

DISCUSSION
In this prospective, observational, multi-center study, we obtained
a comprehensive multi-omics profiling from 146 samples of LTRs.
To our knowledge, this is the first clinical cohort of LTRs assembled
for this type of analysis. By comparing the gut microbiome profiles
of AR and PI with EF controls, we found a unique signature of AR,
with hundreds of significantly reduced microbiomes. Besides the
loss of gut microbial diversity, the specific functions, such as
mannose biosynthesis, were disrupted. Bacteroides uniformis was
identified as the keystone species for the constructing the
microbial network. Meanwhile, several altered intestinal species,
including Bacteroides uniformis and Enterococcus phage, were
significantly correlated with the systemic immune status and
metabolites. Based on the SVM approach, we proposed and
validated an effective multi-omics classifier in discriminating AR
and PI patients.
In various clinical cohorts with organ transplantation, patients

succumb due to the loss of “health-promoting” species and the
overgrowth of “disease-promoting” species.28 Haak et al. reported
that the absent representation of butyrate-producing bacteria in
the fecal microbiota was associated with increased susceptibility
to respiratory infection in allogeneic hematopoietic stem cells and
kidney transplant recipients.29 In addition, gut microbiota
dysbiosis affects the clinical outcome of various of organ
transplantations. Kato et al. showed that intestinal Bacteroides
and Streptococcus were increased while Enterococcus and Clos-
tridium were significantly decreased in liver transplant recipients
with AR compared to healthy recipients.30 Moreover, Lactobacil-
lales and Enterobacteriales are negatively correlated with AR status
in patients with intestinal transplants.31 However, previous studies
on the gut microbiome in solid organ transplantation have been
constrained by 16S ribosomal RNA (rRNA), which provides only
limited resolution. Similar with our results, Swarte et al. proved
that gut dysbiosis, including lower microbial diversity, increased
abundance of unhealthy microbial species, and decreased
abundance of important metabolic pathways could be observed
in the both liver and kidney transplant recipients based on the
shotgun metagenomics data of 1370 fecal samples.12

Emerging microbiome studies in pulmonary diseases, such as
acute respiratory distress syndrome (ARDS) and lung cancer, have
demonstrated marked abnormalities compared to healthy con-
trols in the lower respiratory tract and gut.32–35 Dickson et al.
analyzed bacterial communities from the bronchoalveolar lavage
fluid (BALF) of ARDS patients and found that gut-associated
Bacteroides, which were absent in the healthy controls, were
detectable in 41% of the samples.32 Further studies confirmed that
the bacterial community is characterized by predominant
Enterobacteriaceae and had a significantly decreases diversity in
the lungs of ARDS.36 The gut-derived Enterobacteriaceae and lower
diversity are also highly correlated with clinical outcomes.37 All the
existing studies have supported the existence of the “gut–lung
axis.” Nevertheless, the mechanisms by which the gut microbiota
affects the immune responses in the lungs remain undetermined.
The crosstalk between microorganisms and the host is complex,

and our current understanding of these interactions is in its
infancy. Our study showed that the loss of Bacteroides uniformis
negatively correlates with IL-1β and IL-12, and the increased two
cytokines could modulate serious allograft dysfunction.13,24

Notably, the administration of Bacteroides uniformis was reported
to attenuate systemic and adipose tissue inflammation, inducing
changes in the host immunity.22 Fabersani et al. showed that an
increased concentration of the anti-inflammatory cytokine IL-10
was involved in Treg induction and type 2 innate lymphoid cell
activation. Therefore, the research on the mechanism underlying
the Bacteroides uniformis’ modulation on IL-1β and IL-12 is worth
further investigation in the LTRs. In addition, we also found that
the richness of the mannose-producing microbiome, is associated
with the reduction of graft-versus-host disease. Further analysis
emphasized that the “lung–gut” axial might be built by the
systematic alteration of metabolites and cytokines caused by the
dysbiosis microbial community.
The International Society for Heart and Lung Transplantation

(ISHLT) reported that severe infection (33.1%) and graft failure
(16.1%) were the leading causes of death within 1-year after lung
transplant.4 The early clinical symptoms of PI and AR, including
chest CT and blood counts, are similar, and treatments for severe
infection and rejection are mutually exclusive. Several studies have
shown an early and accurate diagnosis of AR and PI is crucial in
clinical practices, which might enable treatment before irrever-
sible organ function damage. Various biomarkers of AR were
identified, such as plasma cell-free DNA and microRNAs (area
under curve (AUC)= 0.72–0.89).38,39 However, there are no
independent validation cohorts in these researches. Despite the
relatively small samples used to build the SVM model, the
diagnostic power of the SVM classifier for the predicted and
objective outcomes was highly significant. More importantly, we
validated this multi-omics model in an independent external
cohort. Further analysis of the multi-omics model contribution
showed that Bacterium 1XD428 and Bacteroides uniformis con-
tributed the most to the detection of AR (Supplementary Table
17). In addition, Niameybacter massiliensis and Bacteroides cutis had

Fig. 6 The precision-recall curves (PRC) of support vector machine (SVM) models based on the features from a clinical data, b serum
metabolites, c gut microbiota, and d multi-omics data. The red, yellow, and green lines represent the diagnosis of AR, PI, and EF, respectively
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the largest contribution for the detection of PI (Supplementary
Table 18). These findings further showed that Bacteroides uniformis
might play a modifying role in the pathogenesis of AR.
The present study had some limitations that warrant further

exploration. First, the recognized variation in the gut microbiome
data between the individuals and confounders, such as medica-
tion status and indications for lung transplantation, likely limited
our analysis to detect additional significant taxonomic and
functional biomarkers for AR and PI in the LTRs. Further
experimental studies are need to verify our findings and
investigate the underlying mechanism. Second, the follow-up
time was relatively short, and the association between the gut
microbiota and CLAD was not investigated in this study. A
longitudinal analysis with a long-term follow-up of patients with
AR, PI, and CLAD would be interesting if paired with samples
collected from of the lower respiratory tract and blood to evaluate
the potential effect from the gut.
Using a comprehensive gut microbiome, serum cytokine, and

metabolomic profiling, we present a deep mapping of the LTRs.
Our analysis unraveled new paradigms and therapeutic directions,
for example the depletion of Bacteroides uniformis in AR. It may
form the basis for future mechanistic experiments, preclinical and
human interventional studies.

MATERIAL AND METHODS
Study design and participants
We prospectively established a cohort (ChiCTR1900028066) of
LTRs at Shanghai Pulmonary Hospital (SPH), The First Affiliated
Hospital of Guangzhou Medical University, Changhai Hospital, and
Sun Yat-sen Memorial Hospital from May 2020. Our study aimed to
analyze the clinical significance of intestinal microbiome char-
acteristics in LTRs. Due to the severe acute rejections and
infections that mainly occur within 1-year after lung transplant,
we limited all the enrolled samples in this period. AR was
diagnosed and graded according to the ISHLT guideline.40 The
diagnosis of PI was confirmed by a multidisciplinary team,
including thoracic surgeons, respiratory physicians, pathologists,
and radiologists. The cases without any symptoms and negative
pathological based on the findings with most recent biopsies were
considered EF samples. All the fecal samples and paired blood
specimens were collected under strict sterile conditions during
hospitalization for surveillance bronchoscopy or treatment. Speci-
mens from inpatients were taken within 12 hours of admission
and stored at −80 °C until used. Samples taken from the same
patient at least two months apart could be included in analysis.
This study achieved the approval from the Institutional Review
Board of SPH (IRB number: K19-164), and written informed
consent was obtained from all enrolled LTRs. The specimens from
the perioperative period were also excluded due to the irregular
diet. The specific treatment regimens and details of the specimen
collection are detailed in the Supplementary Material.

Metagenomic sequencing of feces
Consistent with our previous study, genomic DNA was extracted
from the fecal specimens via the QIAamp PowerFecal DNA kit
(#51804, QIAGEN, USA), and the sequencing library for each
sample was prepared using the KAPA HyperPlus Library Prepara-
tion Kit (#KK8514, Roche).41 Shotgun sequencing was performed
on the Illumina Novaseq 6000 platform at Adfontes Biotechnology
Co. (Shanghai, China) to obtain 150 bp forward and reverse
paired-end reads. On average, each sample yielded more than 8 G
of raw data.

Serum untargeted metabolomics
Frozen serum samples were thawed at 4 °C. The LC-MS analysis
was performed using an Orbitrap Exploris 120 (Thermo Fisher
Scientific, USA) and a Vanquish UPLC System (Thermo Fisher

Scientific, USA) for an Orbitrap Q Exactive mass spectrometer for
untargeted metabolomics detection. A detailed description of the
metabolomics extraction, data processing, and analysis is detailed
in the Supplementary Material.

Multiplex immunoassay analysis of cytokines
Thawed serum samples were diluted twofold and centrifuged at
3000 × g for 5 min. A multiplex immunoassay of 27 cytokines (Bio-
Rad Laboratories Inc, Hercules, CA) was used to analyze the
cytokines and chemokines in the serum. The analytes were
measured using the Luminex X-200 system (Luminex Corp, Austin,
TX). An 8-point standard curve in duplicate, was included on every
96-well plate. Results with more than a half of the samples above
the limit of detection were selected for further analysis.

Bioinformatics analysis and statistical tests
Microbiota data. The raw sequencing reads were preprocessed
using Trimmomatic v0.39 to remove the low-quality reads.42

Bowtie2.4.1 software was used to filter out the redundant
originating from the host. Paired-end reads with high quality from
each sample were de novo assembled into contigs of at least 500 bp
by SOAPdenovo software v2.04 (http://soap.genomics.org.cn/
soapdenovo.html). Genes were predicted by MetaGeneMark
(v2.10, http://topaz.gatech.edu/GeneMark/). CD-HIT (v4.8.1, http://
www.bioinformatics.org/cd-hit) was used to construct the non-
redundant gene catalog for the microbial genes.43 High-quality
reads were mapped onto the gene catalog via SOAP2 software
(v2.21, http://soap.genomics.org.cn/), and the counts of the reads
that aligned to a gene were normalized by gene length to calculate
the abundance of each gene in an individual sample.44 The
taxonomy annotation of the non-redundant gene catalog was
performed using DIAMOND software (v0.9.9.110, https://
github.com/bbuchfink/diamond/) based on the NCBI NR databases
(Version 2018-01-02, https://www.ncbi.nlm.nih.gov/).45 The func-
tional annotation of the non-redundant gene catalog was done
using DIAMOND software based on the KEGG database (v2019.10,
http://www.kegg.jp/kegg/).
For the alpha-diversity and beta-diversity analysis of the gut

microbiota, the Shannon index, observed species, Pielou index,
and PCoA based on species were performed using the R vegan
package. The Wilcox Rank-Sum Test of single variation was used to
determine the species and functional features significantly
differentiated between the groups, and the differences were
defined as significant differences when the FDR was <0.1 and >2-
FC.
The AR and PI were combined into an allograft disorders group.

Then, the species that were shared in more than 50% of the
samples were used to construct a microbial association network
for the allograft disorders or EF group using FastSpar software
based on the SparCC algorithm. The p values for the correlation
between two species were calculated from 1000 bootstraps and
adjusted by the Original FDR method of Benjamini and Hochberg
to obtain the significance of the correlations. The network
attributes, such as the node (vertex) number, edge (link) number,
mean degree, density, connectivity, and average path, were
calculated using the R package graph. The driven species were
identified by NetShift from altered microbiomes.46 Altered species
from allograft disorders and EF group were defined as the case
and control, respectively. Then, the betweenness value each
selected species was obtained by a Spearman’s rank correlation
analysis. The betweenness values of selected species were input
into the NetShift package to calculate NESH cores.

Analysis of metabolomic data. At first, the qualified raw data were
converted to mzXML format by MSConvert in the ProteoWizard
software package (v3.0.8789).47 The XCMS software packages were
used for feature detection, retention time correction, and
alignment.48 We identified metabolites by accuracy mass (<20
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ppm) and the MS/MS data and matched these with HMDB,
METLIN, MAASSBANK, LipidMaps, mzcloud, and KEGG. The robust
LOESS signal correction (QC-RLSC) was applied for data normal-
ization to correct for any systematic bias. After normalization, only
ion peaks with relative standard deviation less than 30% in the QC
were kept, ensuring proper metabolite identification. A Student’s t
test was performed to examine the overall distribution of the
serum metabolites between the groups, with a threshold of a p
value < 0.05 for considering the significant differential metabolites.
The significant differential metabolites were visualized by the R
Heatmap package. We subjected the differential metabolites to a
pathway analysis based on MetaboAnalys.49

Multiplex immunoassay data analysis
For the radar chart visualization, the log10-median expression
values of each factor were calculated for each group. The highest
log10 expression value from all the factors was arbitrarily set to 1
and plotted as the maximum value in the corresponding figures
using the R fmsb package. We used the Wilcox Rank-Sum Test to
determine the immune factors that were significantly differen-
tiated between the groups.

Multi-omics association analysis
A multi-omics analysis based on the intestinal microbiota and the
serum metabolites and cytokine data was carried out. First, we
selected key species from the significantly different species (AR vs
EF and PI vs EF). Then, using the association between the gut
microbiota, serum metabolites, and cytokines in the LTRs, we
constructed a correlation analysis using Spearman’s correlations in
R version 4.1 (psych package). The differences were defined as
significant when the p value was <0.05. The correlations were
visualized by the R Heatmap and cyclize package.

Machine learning model construction
The SVM algorithm was utilized to construct one-versus-rest for
multi-class classification by scikit-learn (Python, https://
github.com/j-bac/scikit-dimension).50 The target outcome was a
diagnosis of AR from PI and EF, PI from AR and EF, and EF from AR
and PI. The clinical parameters included blood counts and serum
cytokines, and the significantly changed species in the gut
microbiome (p < 0.05 and >2-FC) or the significantly changed
serum metabolites (p < 0.05) were used to construct SVM models.
Integration of all the above variables was also used to construct
the SVM model. We assigned the 104 samples of SPH to the
training cohort and 42 samples of the other three centers to a
validated cohort. We performed the cross-validation and para-
meter optimization was used to develop the models in the
training samples. The validated samples were used for testing. A
PRC was determined, and the AUPRC was calculated to evaluate
the diagnostic values of the classifiers. We identify Feature
contribution index were obtained by identifying the best alpha
value, fitting a final model on the whole data set, and reporting
features contribution of this model.
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