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Metabolic alterations upon SARS-CoV-2 infection and
potential therapeutic targets against coronavirus infection
Peiran Chen 1, Mandi Wu1, Yaqing He2, Binghua Jiang3 and Ming-Liang He1✉

The coronavirus disease 2019 (COVID-19) caused by coronavirus SARS-CoV-2 infection has become a global pandemic due to the
high viral transmissibility and pathogenesis, bringing enormous burden to our society. Most patients infected by SARS-CoV-2 are
asymptomatic or have mild symptoms. Although only a small proportion of patients progressed to severe COVID-19 with symptoms
including acute respiratory distress syndrome (ARDS), disseminated coagulopathy, and cardiovascular disorders, severe COVID-19 is
accompanied by high mortality rates with near 7 million deaths. Nowadays, effective therapeutic patterns for severe COVID-19 are
still lacking. It has been extensively reported that host metabolism plays essential roles in various physiological processes during
virus infection. Many viruses manipulate host metabolism to avoid immunity, facilitate their own replication, or to initiate
pathological response. Targeting the interaction between SARS-CoV-2 and host metabolism holds promise for developing
therapeutic strategies. In this review, we summarize and discuss recent studies dedicated to uncovering the role of host
metabolism during the life cycle of SARS-CoV-2 in aspects of entry, replication, assembly, and pathogenesis with an emphasis on
glucose metabolism and lipid metabolism. Microbiota and long COVID-19 are also discussed. Ultimately, we recapitulate
metabolism-modulating drugs repurposed for COVID-19 including statins, ASM inhibitors, NSAIDs, Montelukast, omega-3 fatty
acids, 2-DG, and metformin.
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INTRODUCTION
In the 21st century, coronavirus infections have become major
global challenges not only to public health, but also to
government managements. Just in the last two decades, we have
experienced three pandemic outbreaks caused by ß-coronavirus
infections. Coronaviruses are enveloped viruses containing an
~30 kb positive-sense single-stranded RNA [(+) ssRNA] genome.1

Coronaviruses transmit among different species, including
humans, livestock, and wild animals. An epidemic caused by
SARS-CoV outbroke in China in 2002-2003, culminating in 774
reported casualties. Middle East respiratory syndrome coronavirus
(MERS-CoV) accounts for another global outbreak in 2020 with
over 800 associated deaths.2 Since December 2019, coronavirus
disease 2019 (COVID-19) has caused a global pandemic with
symptoms of pneumonia, nausea, fever, and respiratory system
impairment.3,4 COVID-19 is caused by a novel pathogen, namely
severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2).
Since 2019, COVID-19 has brought unprecedented casualties and
socioeconomic burden.4,5

Most COVID-19 cases are asymptomatic or mild. However, some
patients have courses characterized by a generalized inflamma-
tory state causing tissue injury in multiple organs and ARDS with a
global mortality rate of 3.4%.6 Patients with hypertension,
diabetes, and cardiovascular diseases have a higher risk of
mortality.7,8 Hitherto, due to a paucity of validated modalities or
vaccines, COVID-19 remains a horrendous threat worldwide.
Despite enormous scientific efforts that have been dedicated to

SARS-CoV-2, the deep layers of SARS-CoV-2 biology and patho-
genesis are not yet well understood.
The envelope (E), membrane (M), and spike (S) proteins

together comprise the outer shield of SARS-CoV-2; while the core
of SARS-COV-2 consists of viral genomic RNA condensed by
nucleocapsid (N) protein. The viral genome RNA encodes non-
structural proteins (NSPs), structural proteins (E, M, S, and N) and
accessory proteins. NSPs are functional in viral RNA replication,
protein synthesis, and regulating intracellular signaling path-
ways.9,10 NSPs also play crucial roles in attenuating host innate
immunity to facilitate the escape from host defense and initiate
inflammatory response.11 S gives rise to the corona shape of the
surface and mediates host receptor recognition and viral entry.
SARS-CoV-2 specifically recognizes and attaches human
angiotensin-converting enzyme 2 (ACE2) for entry via S pro-
tein.12,13 E mediates virus assembly, membrane scission, and
budding, playing a pivotal role in virus replication and intercellular
transmission.14 M is the most abundant protein in the envelope
that directs the assembly process through interaction with the
other structural proteins.15 N directly binds with viral RNA, serving
as capsulation to protect viral RNA from cytoplasmic immune
surveillance and to mediate nucleoprotein complex assembly.16–18

The life cycle of coronaviruses generally includes the following
stages (as shown in Fig. 1): host cell receptor specific engagement
with S protein19; viral uptake by endocytosis or membrane
fusion13; uncoating and viral RNA synthesis in replication
organelles20,21; progeny virions assembly to mature virions;
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ultimate release by unknown mechanism.3 Following viral entry by
membrane fusion or endocytosis, the release and uncoating of
viral genomic RNA, together with NSPs, subject to translation and
formation of replication and translation complex (RTC). In the
replication stage, viral genomic RNA is coated by double-
membrane vesicles (DMVs), which are derived from the endo-
plasmic reticulum (ER).22 DMVs provide a microenvironment to
protect the viral genome and to facilitate viral RNA synthesis.23,24

DMVs have a pore to connect with the cytoplasm for material
exchange while shielding viral RNA from intracellular immune
surveillance.25 In the assembly stage, newly produced viral RNA
and NSPs are subsequently incorporated into virions at the
cytoplasmic side of the ER-to-Golgi intermediate compartment
(ERGIC).26,27 After being transported to Golgi, coronaviruses are
further modified and assembled, giving rise to the morphology of
mature virions. Ultimately, virions egress from the host cell by
exocytosis. As for the mechanism for viral egress, debates still
exist. It was initially postulated that SARS-CoV-2, similar to other
enveloped viruses, hijacks the biosynthetic secretory pathway for
its exit. However, recent research discovers that coronaviruses
including SARS-CoV-2 use lysosome for egress instead of hijacking
the biosynthetic secretory pathway.28 Until now, the egress
mechanism of coronaviruses has not been determined yet.27,29

Lipid metabolism is indispensable in providing energy and
material, maintaining homeostasis, regulating immune response,
and relaying signals. Many viruses were reported to rewire host
cellular lipid metabolism to create replication compartments.30–34

Lipid droplet (LD), a cellular organelle for lipid storage, was
reported to be closely associated with cellular antiviral innate
immunity.35,36 Lipid accumulation was observed in the lungs of
COVID-19 patients and cells infected by SARS-CoV-2, colocalizing
with N protein.37,38 Significant lipid pattern alterations were
demonstrated by Lipidomic analyses of plasma from COVID-19

patients, and the lipid pattern was shown to correlate with disease
severity and progression.39,40

Glucose metabolism is another network that regulates a series
of physiological alterations. Aside from providing energy and
material for cells, glucose metabolism is also associated with virus
infection, immunity, tumorigenesis, homeostasis, and so forth.41–47

More importantly, it is supported by clinical evidence that
diabetes mellitus, which is characterized by an impaired capability
to control blood glucose, is a major risk factor predisposing to
severe COVID-19.7,48,49 A retrospective study shows that well-
controlled blood glucose is associated with markedly lower
mortality rates. On the contrary, patients with type 2 diabetes
(T2D) or dysregulated blood glucose have poor outcomes.50

Analysis of single-cell RNA-sequencing data in bronchoalveolar
lavage fluid immune cells reveals that enhanced glycolysis is the
most important metabolic feature of all immune cells in COVID-19
patients.51 The relationship between dysregulated blood glucose
profile and COVID-19 is bidirectional. Infection by SARS-CoV-2
could also worsen the condition of type 2 diabetes patients.52,53

Considering the huge socioeconomic damage caused by
coronaviruses, it is an urgent need to develop effective
therapeutic interventions for the next outbreak. A more profound
comprehension of host metabolic alterations and their association
with coronaviruses will prompt us to understand more about
COVID-19 pathology and promote antiviral drug development.
This review aims to generalize and discuss current findings about
the role of host metabolism in SARS-CoV-2 infection.

Virus entry
Apart from ACE2, other host receptors including lectins, DC-
SIGN, L-SIGN, and AXL, also serve as alternative entry sites of
SARS-CoV-2.54–56 S protein trimers recognize and bind to cell
receptor ACE2 with its S1 domain. Then S protein is cleaved by

Fig. 1 The life cycle of SARS-CoV-2. The life cycle of SARS-CoV-2 includes the following stages: receptor recognition via S protein; viral entry
through the endocytosis pathway or the membrane fusion pathway; replicative transcription complex formation; viral RNA replication in
DMVs; virion assembly in ERGIC; virion maturation in Golgi; egress through an unknown pathway
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host transmembrane serine protease TMPRSS2 at the S2’ site.57

The anchored S2 domain is activated to trigger viral and host
lipids bilayer fusion, releasing the viral ribonucleoprotein
complex into the cell.58–60 In addition to the membrane fusion
pathway, endocytosis is also hijacked for SARS-CoV-2 entry.61,62

The endocytosis pathway mediates the trafficking of SARS-CoV-2
to the late endosome/lysosome, in which proteases (such as
cathepsin L) prime S protein to initiate membrane fusion.63,64

Increasing evidence supports the critical role of lipid rafts in
SARS-CoV-2 infection. Lipid rafts are located at cell membranes,
they are microdomains enriched in lipid molecules including
cholesterol and sphingolipids. Lipid rafts are involved in a variety
of physiological processes.65 Lipid rafts are also proposed as
important for the entry of other coronaviruses by providing a
platform for entry receptors. Lipid rafts are suggested to be a
promising therapeutic target.66–68 From a mechanistic perspec-
tive, lipid rafts provide platforms for membrane receptors involved
in viral entry of SARS-CoV-2.69 SARS-CoV-2 entry can be reduced
by disturbing lipid rafts. ACE2 colocalizes with well-established raft
proteins caveolin-1, flotillin-2, and ganglioside GM1 in Vero E6
cells.70,71 However, either endogenous ACE2 in Vero E6 cells or the
transiently expressed ACE2 in CHO cells is not enriched in lipid
rafts.72,73 The controversial results might be caused by different
experimental methods. How and which receptors are recruited to
the lipid rafts requires further investigation.
Changes in cholesterol levels disrupt lipid rafts and the

receptors attached.74 SARS-CoV-2 spike-bearing pseudovirus
infection is associated with cholesterol-rich lipid rafts.75 Accord-
ingly, Cholesterol-25-hydroxylase, an interferon-stimulated gene
(ISG) that triggers cholesterol trafficking from the plasma
membrane to ER, inhibits SARS-CoV-2 entry by depriving
accessible cholesterol at the plasma membrane. More importantly,
the entry inhibition can be restored by replenishing soluble
cholesterol to the cells.76 Furthermore, lipid rafts are also
proposed to promote viral entry through the endocytosis path-
way. SARS-CoV-2 internalization is mediated through a lipid raft-
dependent endocytic pathway, but which endocytosis pathway is
practically responsible for SARS-CoV-2 entry entails further
investigations.75 In some enveloped viruses, infection causes
fusogenic viral protein displayed on the cell membrane, which
allows adjacent cells to fuse and form multinucleated syncytia.77,78

Syncytia formation is also observed in SARS-CoV-2 infected cells or
lungs of deceased patients.79,80 Syncytia formation indicates that
SARS-CoV-2 has an ability of cell-to-cell transmission, allowing the
virus to avoid contact with antibody.81 Of note, it is evident that
cell-to-cell transmission through the formation of channels or
syncytia requires intact lipid rafts.82 In addition, S protein-
mediated membrane fusion and syncytia formation requires
cholesterol involvement.80 Hence, it is reasonable to deduce that
lipid rafts are also involved in syncytia formation during SARS-CoV-
2 infection.
Intriguingly, S protein can directly interact with cholesterol. A

study identified putative cholesterol recognition amino acid
consensus motifs in SARS-CoV-2 S protein. Antibodies blocking
the cholesterol-binding site of S protein significantly curbed viral
entry.83 The interaction between S protein and high-density
lipoprotein (HDL) has been interrogated. SR-B1 is an HDL receptor
located on the cell membrane that drives the cellular uptake of
cholesteryl esters and other lipid components of HDL.84 S protein
directly binds with SR-B1-bound HDL and captures lipid materials
from HDL. Genetic depletion of SR-B1 curbs SARS-CoV-2
pseudovirus entry.83 Another study also demonstrated that S
protein can remove lipid components from HDL. Co-culture of
HDL with S protein altered the function of HDL to exchange lipids
from model cellular membranes.85

Although cholesterol on cell membrane facilitates viral entry, the
role of intracellular cholesterol in SARS-CoV-2 infection is more
complicated. Two independent genetical screens by CRISPR

libraries identified genes in cholesterol metabolism as essential
for SARS-CoV-2 infection, including sterol-regulatory element-
binding protein (SREBP-2), SREBP cleavage activating protein
(SCAP), low-density lipoprotein receptor (LDLR), and Membrane-
Bound Transcription Factor Peptidase, site 1 and 2 (MBTPS1 and
MBTPS2). Treatment of amlodipine, a calcium-channel antagonist
that increases intracellular cholesterol levels, significantly inhibited
SARS-CoV-2 infection.86,87 In addition to facilitating viral entry, it is
likely that cholesterol metabolism also affects SARS-CoV-2
infection in other stages of its life cycle. Future studies on the
interplay between SARS-CoV-2 and cholesterol metabolism are
warranted.
Many viruses including ebola virus (EBOV), human immunode-

ficiency virus type I (HIV-1), hepatitis C virus (HCV), and simian
virus 40 (SV40) are reported to employ sphingolipids for cell
membrane attachment.88–91 The sphingolipid metabolism path-
way is also manipulated for SARS-CoV-2 entry (Fig. 2). Sphingo-
lipids and their metabolites together comprise a complex network
of signaling in a series of physiological processes, including
maintaining cellular structure, relaying signals, and modulating
enzymatic activity.92 Elevated sphingolipid levels stimulated by
SARS-CoV-2 were observed in cells and mice serum. Analysis of
COVID-19 patient serum samples indicated a distinct alteration in
sphingolipid profiles. The result shows a progressive increase in
dihydrosphingosine, dihydroceramides, ceramides, sphingosine,
and a decrease in sphingosine-1-phosphate (S1P).93,94 Acid
sphingomyelinase (ASM) catalyzes the hydrolysis of sphingomye-
lin to ceramide and phosphorylcholine. Increased circulating
activity of ASM and derangement of sphingolipids were observed
in COVID-19 patients. The increase of ASM activity accurately
distinguishes the patient cohorts undergoing intensive care from
healthy controls.94 Among the various sphingolipids, the impact of
ceramide and sphingosine on SARS-CoV-2 entry is prominent.
Ceramide is converted from sphingomyelin by ASM or synthesized
de novo from palmitoyl CoA and serine. Several ASM inhibitors
including antidepressants (Amitriptyline, Imipramine, Fluoxetine,
Sertraline, and Escitalopram) or ASM-knockout potently hindered
SARS-CoV-2 entry in vivo. The suppressive effect is exerted
partially via an impaired surface ceramide level since the
replenishment of exogenous ceramide restored SARS-CoV-2
entry.95 Ceramide-enriched domain formed by released ceramide
on the cell surface promoted SARS-CoV-2 entry.96,97 Furthermore,
SARS-CoV-2 induced ACE2 clustering in ceramide-enriched
domains on the membrane of nasal epithelial cells isolated from
healthy donors. Ambroxol, an ASM inhibitor, potently suppressed
ACE2 clustering on the cell membrane and reduced viral uptake
by the epithelial cells.98 Fluoxetine, amiodarone and imipramine
exhibited profound inhibitory activity on SARS-CoV-2 entry. This
study indicated that further than removing membrane ceramide,
ASM inhibitors can induce endolysosomal cholesterol accumula-
tion and dysregulated acidification, hence blocking SARS-CoV-2
entry via the endosomal pathway.99 It is noteworthy that C16
ceramide presumably plays a central role in promoting SARS-CoV-
2 entry since an exogenous supplement of C16 ceramide restored
SARS-CoV-2 infection under ASM inhibitors treatment.98 The
precise role of ceramide needs to be further defined.
Sphingosine derives from ceramide by ceramidase catalyzation

or from S1P by S1P phosphatase catalyzation. Sphingosine plays
quite a contrary role to ceramide: while ceramide promotes SARS-
CoV-2 entry, sphingosine impedes it. Sphingosine binds with
membrane ACE2, thereby blocking the interaction between ACE2
and S protein, consequently inhibiting SARS-CoV-2 entry.100 The
above findings provide reference for therapeutic interventions
since drugs interfering with sphingolipids metabolism pathway
like antidepressants are well-tolerated and extensively applied in
clinic.101

Glycolipids are essential for SARS-CoV-2 entry, especially
sialylated glycolipids. Monosialylated gangliosides have a strong
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binding affinity with the receptor binding domain (RBD) of S
protein. GENZ-123346 is an inhibitor of UDP-glucose ceramide
glycosyltransferase (UGCG) that can deplete glycolipids from the
cell membranes. GENZ-123346 treatment caused profoundly
attenuated SARS-CoV-2 entry in vitro. Consistently, UGCG ablation
by CRISPR/Cas9 also curbed SARS-CoV-2 infection.102 Chloroquine
binds with sialic acids and gangliosides with a higher affinity than
S protein. Treatment of chloroquine or its derivative, hydroxy-
chloroquine, actively reduced SARS-CoV-2 S protein binding with
gangliosides and exhibited potent antiviral activity.103,104 More-
over, chloroquine and hydroxychloroquine can be incorporated
into endosomes, resulting in an increase of endosomal pH and
prevention of viral entry via endocytosis.105 Results from in vitro
experiments further confirmed the antiviral effect of chloroquine
and hydroxychloroquine against SARS-CoV-2.58 Nevertheless, the
clinical use of chloroquine or hydroxychloroquine is still con-
troversial due to insufficient clinical data. Although some clinical
studies showed the benefit of chloroquine and hydroxychlor-
oquine, they are not completely reliable because they are non-
peer-reviewed, unblinded, or non-randomized.106 Besides, the
cardiotoxicity of chloroquine should also be taken into considera-
tion since cardiovascular disorders are also major complications of
COVID-19. The European Medicines Agency has refused to
approve chloroquine for COVID-19. However, several clinical trials
in China proved the efficacy of chloroquine and hydroxychlor-
oquine.107–109 The use of chloroquine for the treatment of COVID-
19 has been added to the guideline (version 6) in China.
Intriguingly, a recent report identified the bile acid receptor

farnesoid X receptor (FXR) as a direct regulator of ACE2 expression.
The presence of the FXR responsive element was uncovered in the
ACE2 promoter region. Upon activation, FXR directly binds with

the ACE2 promoter, confirmed by chromatin immunoprecipita-
tion. Bile acid chenodeoxycholic acid (CDCA) is the major agonist
of FXR. Treatment of CDCA markedly upregulated ACE2 expression
and enhanced SARS-CoV-2 infection in vitro, in vivo, and in
organoids in an FXR-dependent manner. A clinically approved FXR
inhibitor, ursodeoxycholic acid (UDCA), significantly downregu-
lated ACE2 expression and exhibited potent antiviral activity
in vitro, in vivo, in organoids, and in human organs. In humans,
UDCA treatment also decreased ACE2 levels in the nasal
epithelium, a primary site for SARS-CoV-2 infection. The retro-
spective study also demonstrated that patients on UDCA were less
likely to develop moderate and severe COVID-19. Altogether, this
study demonstrates: (1) FXR directly regulates ACE2 expression; (2)
ACE2 levels closely associate with SARS-CoV-2 entry; (3) UDCA
could be used as a prophylaxis or a therapy for COVID-19.110

Viral protein modifications are functionally essential in life
cycles of coronaviruses. Targeting the post-translation modifica-
tions is promising.111–113 The lipid modification on S protein is
indispensable in SARS-CoV-2 entry. Structural analysis reveals
substantial conformational rearrangements of RBD during the
infection process: a switch from a closed conformation to an open
conformation. In a closed conformation, RBD is buried and less
accessible for ACE2 binding; while in an open conformation, RBD
exposes the receptor binding motif, enabling ACE2 binding.114–117

A hydrophobic pocket in S protein was detected, into which
linoleic acid fits well. Although the linoleic acid binding pocket is
distal from the receptor binding motif, linoleic acid binding results
in stabilization of the closed conformation of S protein and
compaction of homotrimer architecture, consequently reducing
ACE2 binding and membrane fusion.118 Another computational
simulation also showed that the presence of linoleic acid in

Fig. 2 The sphingolipids metabolism pathway. Sphingomyelin on the plasma membrane can be converted to ceramide by sphingomyelinase.
Ceramide can also be synthesized de novo from palmitoyl CoA and Serine or synthesized from sphingosine by ceramide synthase. SM
Sphingomyelin, Cer ceramide, So Sphingosine, S1P Sphingosine 1-phosphate, HDAL Hexadecenal, PE Phosphorylethanolamine, dhCer
dihydroceramide, Sa Sphinganine, KDS 3-ketodihydrosphingosine, P-CoA Palmitoyl-CoA, ASM Acid sphingomyelinase, SMS Sphingomyelin
synthase, CDase Ceramidase, CerS Ceramide synthase, SPP S1P phosphatase, SPHK Sphingosine kinase, S1PL S1P lyase, DES dihydroceramide
Δ4-saturase, KDSR 3-ketodihydroshpingosine reductase, SPT Serine palmitoyltransferase
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S protein stabilizes the closed conformation and blocks its
interaction with ACE2.119 Molecular dynamics simulation revealed
that the linoleic acid binding site is coupled to functionally
relevant regions of S protein. Removal of a ligand from the linoleic
acid binding site disturbed the dynamics of distant functionally
important regions of S protein.120

Several studies have reported that protein palmitoylation is
crucial in host-virus interaction.121–123 Viral protein palmitoylation
has a selective advantage among coronaviruses, and the
palmitoylation sites are conservative.122 SARS-CoV-2 S protein
contains a highly conserved free fatty acid binding pocket with
unknown evolutionary selection advantage.124 Quite contrary to
linoleic acid, S protein palmitoylation functionally promotes SARS-
CoV-2 entry. Palmitoylation site C15 at the N terminus and other
sites locating in the cytoplasmic tail of S protein have been
identified by two independent studies.125,126 Zinc finger DHHC
domain-containing palmitoyltransferase (ZDHHC) inhibitor
reduces S protein palmitoylation, consequently decreasing
S-mediated syncytia formation and SARS-CoV-2 pseudovirus
entry.125 Mutation of palmitoylation sites in the cytoplasmic tail
culminated in impeded SARS-CoV-2 pseudovirus entry. The
inhibitory effect could be attributed to reduced S protein
homotrimer stabilization by depalmitoylation.126 ZDHHC5 and
GOLGA7 together form an acyl-transferase complex that mediates
protein palmitoylation. The interaction between SARS-CoV-2 S
protein and ZDHH5/GOLGA7 complex has been confirmed for

S protein palmitoylation.127 Another study suggested that
S-acyltransferase ZDHHC20 and 9 mediate the palmitoylation of
SARS-CoV-2 S protein.128 Palmitoylation sites have also been
observed in the cysteine-rich domain of SARS-CoV S protein,
indicating the conservation of S protein palmitoylation.129,130

High glucose levels promote SARS-CoV-2 entry by upregulating
ACE2 expression. The major glucose metabolism pathways are
shown in Fig. 3. In vitro assay demonstrated that high glucose
levels significantly stimulated ACE2 overexpression in A549
cells.131 The correlation between elevated ACE2 expression and
diabetes mellitus was also confirmed in mice models.132 A
phenome-wide Mendelian randomization study revealed a
significant correlation between elevated ACE2 expression and
T2D.133 Furthermore, diabetes patients are often treated with ACE
inhibitors and hypoglycemic drugs that can upregulate ACE2
expression.134–137 Notably, elevated ACE2 expression has been
directly linked to reinforced viral entry. Increased ACE2 expression
in lungs, kidneys, myocardium, and pancreas can promote SARS-
CoV-2 binding.138,139 A recent study indicated that glucose
treatment induced a dramatic upregulation of ACE2 expression
in human kidney organoids, consequently promoting SARS-CoV-2
infection. More importantly, kidney cells from the biopsies of
diabetic patients were more susceptible to SARS-CoV-2 infection
compared to the kidney cells from healthy controls. From a
mechanistic view, hyperglycemia increases the stability of ACE2
mRNA, partially explaining the ACE2 overexpression.140 Therefore,

Fig. 3 Major pathways of glucose metabolism. Glycolysis, glycogenesis, phosphate pentose pathway, aerobic metabolism, and anaerobic
metabolism are included. GLUT glucose transporter, Glc glucose, G6P glucose-6-phosphate, F6P fructose-6-phosphate, FBP fructose-1,6-
biphosphate, GA3P glyceraldehyde-3-phosphate, DHAP dihydroxyacetone phosphate, 1,3BPG 1,3-biphosphoglycerate, 3PG 3-phosphogly-
cerate, 2PG 2-phosphoglycerate, PEP phosphoenolpyruvate, G1P glucose-1-phosphate, UDP-Glc uracil-diphosphate glucose, 6PGL 6-
Phosphogluconolactone, 6PG 6-phosphogluconate, Ru5P ribulose-5-phosphate, R5P ribose-5-phosphate, Xu5P xylulose-5-phosphate, S7P
Sedoheptulose-7-Phosphate, E4P erythrose-4-phosphate, HK hexokinase, GPI glucose-6-phosphate isomerase, PFK phosphofructokinase, ALD
aldolase, GADPH glyceraldehyde-3-phosphate dehydrogenase, PGK phosphoglycerate kinase, PGM Phosphoglycerate mutase, PK pyruvate
kinase, GS glycogen synthase, G6PD glucose-6-phosphate dehydrogenase, GNL gluconolactonase, 6PGDH 6-phosphogluconate
dehydrogenase, R5PI ribose-5-phosphate isomerase, RPE ribulose-5-phosphate 3-epimerase, TK transketolase, TA transaldolase, LDH lactate
dehydrogenase
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preexisting diabetes, hyperglycemia, and associated medications
predispose patients to severe COVID-19 partially via promoting
viral entry by upregulating ACE2 expression.
Viral protein glycosylation plays critical roles in mediating

protein folding, stabilization, interaction with host factors, and
immune evasion.111,141 Beside lipid modifications, S protein of
coronaviruses is also highly glycosylated.142–144 Twenty-two N-
linked glycosylation sites and several O-linked glycosylation sites
have been identified in SARS-CoV-2 S protein and confirmed by
mass spectrometry. The glycan types of the O- and N-linked
glycosylation have also been investigated.145–149 A high through-
put study revealed that mutations at the glycosylation sites could
significantly affect the infectivity of S protein pseudo-viruses. The
mutations in glycosylation sites at RBD impaired viral infectivity by
over 100-fold, suggestive of their functional significance. Further-
more, mutations in glycosylation residues affected the viral
sensitivity to antibodies. N165Q mutation increased the sensitivity
to neutralizing monoclonal antibodies, while N234Q mutation
attenuated it.150 The importance of N-glycans at N165 and N234 in
modulating conformational dynamics of S protein was also
highlighted by a computational simulation.151 STT3A is a crucial
glycosyltransferase that catalyzes N-glycosylation of S protein.
N-linked glycosylation inhibitor 1 (NGI-1) inhibits STT3A to reduce
S protein N-glycosylation. NGI-1 treatment dramatically decreased
the binding ability of recombinant S protein to ACE2 and impaired
the infectivity of SARS-CoV-2.152 Blockade of S protein
N-glycosylation by genetic approaches or kifunensine (mannosi-
dase-I alkaloid inhibitor) only had a mild impact on S protein-ACE2
binding, but markedly reduced pseudo-virus entry. It is well
known that S1-S2 site cleavage is closely associated with viral
entry.153,154 Interestingly, the inhibitory effect on reduced
N-glycans is mediated through an enhanced S1-S2 site clea-
vage.155 O-glycans of S protein were also demonstrated to
modulate S1-S2 site cleavage. UDP-Gal-NAc:polypeptide
N-acetylgalactosaminyltransferases 1 (GALNT1) catalyzes
O-glycosylation in residues proximal to the S1-S2 site.
O-glycosylation near the cleavage site significantly impeded furin
cleavage and syncytia formation. The O-glycosylation is depen-
dent on P681. P681 mutation significantly decreased furin
cleavage, O-glycosylation, and syncytia formation.156 In conclu-
sion, both N- and O-glycosylation of S protein affect SARS-CoV-2
entry, partially via disturbing furin cleavage at the S1-S2 site.
Targeting enzymes required for S protein glycosylation by
inhibitors, such as 2-deoxy-d-glucose (2-DG) or NGI-1, are
promising to be used for COVID-19 therapy.157

Virus replication
SARS-CoV-2 reorganizes the ER network and alters the morphol-
ogy of this organelle to generate viral replication compartments,
which contain predominantly DMVs, but also incorporate ER
connectors, double membrane spherules, and multi-membrane
vesicles. Results from electron tomography showed that DMVs of
SARS-CoV-2 are tethered to ER, and several DMVs are attached to
the same ER branch, implicating the derivation of DMVs from ER.22

Several independent studies indicated that SARS-CoV-2 can usurp
certain stages of the autophagy pathway for DMV formation. Class
III phosphatidylinositol 3-kinase (PI3K) mediates autophagosome
formation in the autophagy pathway. SARS-CoV-2 uses PI3K to
produce phosphatidylinositol 3-phosphate (PI3P) for DMV forma-
tion, and PI3K inhibition or genetic depletion profoundly impaired
DMV formation and viral replication.158 Several SARS-CoV-2 viral
proteins are proposed to manipulate the autophagy pathway.
ORF7a reduces lysosome acidity to prevent autophagosome
degradation. ORF3a blocks the fusion between lysosomes and
autophagosomes, consequently causing the retention of autop-
hagosomes.159,160 The degradation of autophagy-initiating protein
Beclin-1 (BECN-1) induces the fusion of autophagosomes with
lysosomes, and this process is regulated by Akt/SKP2 pathway.161

In lung samples of COVID-19 patients, phagophore-incorporated
autophagy markers LC3B-II and p62 were detected, indicating
autophagosome accumulation, which can be attributed to the
impact of SARS-CoV-2 on BECN1 levels through AKT1/SKP2
signaling.162 Research on other coronaviruses also underlines the
importance of the autophagy pathway in viral DMV forma-
tion.163,164 In DMVs, viral RNA and NSPs assemble into RTCs and
trigger RNA synthesis.165

Diverse metabolism processes, including fatty acid oxidation,
cholesterol catabolism, pentose phosphate pathway, one carbon
metabolism, and fatty acid synthesis, are manipulated to fulfill
high substrate and energy demand for the replication of (+)
ssRNA viruses.30,166–168

Phosphatidic acid (PA) is generated by acylglycerolphosphate
acyltransferase 1 and 2 (AGPAT1/2) in the ER. It was postulated
that PA subverts ER membrane to form replication organelles of
SARS-CoV.169 During SARS-CoV-2 infection, AGPAT1/2 were
recruited to RTCs and critically contribute to SARS-CoV-2 replica-
tion and DMV formation. Pharmacological inhibition of PA
synthesis impaired autophagosome-like DMV formation.170 Phos-
phatidic acid phosphatase 1 (PAP1) converts PA to diacylglycerol,
a substrate for phosphatidylethanolamine (PE) and phosphatidyl-
choline (PC) synthesis.171 Intriguingly, inhibition of PAP1 activity
suppressed SARS-CoV-2 replication. PE and PC are essential for (+)
ssRNA viral replication via driving replication organelle forma-
tion.172–176 Thus, inhibition of PAP1 or AGPATs likely curbs SARS-
CoV-2 replication via reducing cellular downstream PE and PC
levels.
Fatty acids are also essential for SARS-CoV-2 replication.

Pharmacological inhibition of fatty acid synthase impaired SARS-
CoV-2 replication, which was restored by exogenously supplied
fatty acids.177,178 The exploitation of fatty acids was also seen in
Dengue virus infection. NSP3 of Dengue virus recruits fatty acid
synthase (FASN) to the replication site and profoundly activates
FASN. The author suggests that DENV could co-opt host FASN to
establish its replication complexes.179 However, available studies
on the exact role of fatty acids in SARS-CoV-2 replication are
lacking.
Lipid droplets play a crucial role in viral replication of different

viruses including coronaviruses. Disrupting lipid droplets could be
a promising therapeutic strategy.35,180,181 Lipid droplets were
considered mere lipid storages for a long time, but current
findings expand their functions also as central hubs for lipid
homeostasis regulation and as effectors in viral infection.168,182,183

Lipid droplets are mainly composed of triacylglycerols, cholesteryl
esters, and various enzymes for lipid metabolism, surrounded by a
phospholipid monolayer.184,185 Lipid droplet generation is regu-
lated by several enzymes. FASN yields fatty acids, which are
further converted to diacylglycerols, and then to triacylglycerols
by diacylglycerol o-acyltransferase 1 and 2 (DGAT1/2). Key
enzymes responsible for cholesterol synthesis in lipid droplets
are acyl-CoA cholesterol acyltransferase 1 and 2 (ACAT1/2).186,187

Since lipid droplets are involved in the replication of many RNA
viruses, it is postulated that they probably affect SARS-CoV-2.188

Lipid droplets are found to be located in close proximity to
intracellular SARS-CoV-2 particles. In addition, A 922500, a DGAT-1
inhibitor, decreased viral load and ameliorated cytopathy.189

DGAT1/2 and lipid droplet stabilizer adipocyte differentiation-
related protein (ADRP) can assist SARS-CoV-2 replication. SARS-
CoV-2 N protein is demonstrated to upregulate DGAT1/2 expres-
sion to generate lipid droplets. N protein interacts with ADRP on
the lipid droplet surface to favor viral replication.190 Peroxisome
proliferator-activated receptor-α (PPAR-α) induces lipid droplet
degradation by β-oxidation. Palmitoylethanolamide (PEA), a PPAR-
α agonist, significantly suppressed SARS-CoV-2 replication by
decomposing lipid droplets.191 NSP6 was proposed to mediate
the contact of SARS-CoV-2 replication organelle with lipid droplets
by recruiting the lipid droplet-tethering complex DFCP-1.192
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TMEM41B, an ER-localized protein, has been identified as a
mediator for lipid mobilization from lipid droplets.193,194 TMEM41B
is a paramount host factor with diverse functions in coronavirus
replication.195,196 Two independent genome-wide screens identi-
fied TMEM41B as an important host factor for SARS-CoV-2
replication. Inhibition or genetic ablation of TMEM41B attenuated
SARS-CoV-2 replication in an early post-entry stage. Although
TMEM41B is involved in the autophagy pathway,197,198 the impact
of TMEM41B on lipid localization and trafficking from lipid
droplets mainly accounts for assisting viral replication since
knockout of TMEM41B did not compromise SARS-CoV-2 replica-
tion via suppressing the induction of autophagosomes.199,200

Collectively, the above studies suggest that TMEM41B mediates
the lipid exchange between SARS-CoV-2 replication organelle and
lipid droplets. In a genome-wide CRISPR/Cas-9 knockout screen,
TME41B was also identified as a conserved host factor required for
replication among coronaviruses.201

It is well-known that SARS-CoV-2 infection also causes a shift of
glucose metabolism to aerobic glycolysis, namely the Warburg
effect.202–204 Most viruses including coronaviruses induce Warburg
effect in favor of their replication.205 Glycolysis provides energy
and building blocks for nucleotide synthesis, which is conducive
to viral RNA replication. Other viruses are reported to hijack
glycolysis for RNA and protein synthesis.205,206 Metabolomic
analysis showed lower intracellular glucose levels and higher
lactate levels at early time points after SARS-CoV-2 infection,
suggestive of enhanced glycolysis to meet the massive demand
for viral replication.207 Proteomics study revealed an increased
protein cluster of carbon metabolism during SARS-CoV-2 infection,
and blockade of glycolysis by 2-DG prevents SARS-CoV-2
replication.208 It was also reported that SARS-CoV-2 triggered
ROS production to stabilize HIF-1α, culminating in the Warburg
effect.209 Moreover, the blockade of HIF-1α by GW6471 effectively
inhibited SARS-CoV-2 infection in airway organoids.210

The Warburg effect leads to an increase in the activity of
hexokinase (HK), which is the first rate-limiting enzyme of
glycolysis. HK catalyzes the generation of glucose-6-phosphate,
the primary material for the pentose phosphate pathway (PPP).
The PPP generates NADPH and ribose-5-phosphate to provide
material and energy for a variety of cellular events.211,212

Glucose-6-phosphate dehydrogenase (G6PD) is an important
enzyme in PPP that converts glucose-6-phosphate to
6-phosphogluconolactone. G6PD was found to be upregulated
in lungs obtained from deceased COVID-19 patients.213 The PPP
was also proposed to be involved in SARS-CoV-2 replication to
meet the high demand for ribose-5-phosphate for viral RNA
synthesis. SARS-CoV-2 infection upregulated the levels of two
constituents in the non-oxidative PPP branch: transketolase and
transaldolase 1. Benfooxythiamine, a transketolase inhibitor,
significantly curbed SARS-CoV-2 replication. 2-DG interferes with
glycolysis to reduce the material for the PPP. The combination of
2-DG and benfooxythiamine synergistically restrained SARS-
CoV-2 replication, indicating that PPP inhibition and glycolysis
inhibition can independently restrain SARS-CoV-2 replication.214

Folate is required for one-carbon unit transfer, which is
essential for purine de novo synthesis. The one-carbon metabo-
lism is shown in Fig. 4. Folate species convey one carbon unit to
mediate de novo purine synthesis.215,216 Metabolomic analysis
detected the accumulation of intermediates of de novo purine
synthesis in SARS-CoV-2-infected cells. Intracellular glucose and
folate were found to be depleted during the infection of SARS-
CoV-2, indicative of the consumption of them. Methotrexate is a
folate analog that disrupts one carbon pathway. Treatment of
methotrexate markedly reduced SARS-CoV-2 RNA levels, viral
protein expression, and virion production, highlighting the
importance of one carbon pathway and de novo purine synthesis
in SARS-CoV-2 replication.207 Notably, methotrexate is FDA-
approved for inflammatory disorders with a good safety profile.

Fig. 4 One carbon metabolism. One carbon metabolism mainly contains the folate cycle and the methionine cycle. SAM provides methyl for
methylation, then it is recycled by the methionine cycle. Folate drives the folate cycle to mediate transfer of one carbon unit and purine de
novo synthesis. THFA tetrahydrofolate, 5-MTHF 5-methyltetrahydrofolate, 10-CHO-THF 10-formyltetrahydrofolate, 5,10-CH2-THF 5,10-
methylene tetrahydrofolate, Hcy homocysteine, Met methionine, SAH S-adenosylhomocystein, SAM S-adenosylmethionine, MeT
methyltransferase, MTR methionine synthase
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Thus, methotrexate is prospective to be applied to SARS-CoV-2
therapy.
One carbon metabolism also affects SARS-CoV-2 replication by

boosting S-adenosylmethionine (SAM)-dependent methylation.
RNA capping plays a key role in viral replication by evading the
immune system, maintaining RNA stability, and initiating transla-
tion.217 RNA capping machinery is employed by different species
of coronaviruses.218–220 SARS-CoV-2 also employs RNA capping. In
SARS-CoV-2, the RNA cap is composed of a 7-methylguanosine
linked to the 5’ nucleotide of the viral RNA through a triphosphate
bridge. The cap is methylated at the N7 site of the guanosine,
using SAM as a methyl donor, forming m7GpppN-RNA, mediated
by NSP14.221 Then, SAM-dependent 2’-O-methyltransferase adds a
methyl group to the ribose 2’-O site of the nucleotide to
consequently form the cap (m7GpppNm-RNA), mediated by
NSP16.222 Folate metabolism fuels SAM production by maintain-
ing the methionine cycle. The methionine cycle is essential for the
generation of SAM through the adenylation of methionine.223

SAM cycle inhibitors or genetic ablation of main enzymes in the
SAM cycle were shown to dramatically restrict SARS-CoV-2
replication. More importantly, 3-deazaneplanocin A, an FDA-
approved drug that can disrupt SAM production, exhibited
excellent antiviral potency.224

Virion assembly
SARS-CoV-2 assembly occurs in the ERGIC.27,29 Structural proteins
are essential for this process. After replication, newly synthesized
RNA exits DMVs through molecular phores.25 A protein inside
DMVs, probably an RNA-dependent RNA polymerase (RdRp), is
hypothesized to guide the viral RNA through these pores. Viral
RNA is subsequently condensed by N protein.225 The N-RNA
complex is organized to form G-shape ribonucleoproteins (RNPs).
During assembly, N protein induces N-RNA complex phase
separation via its central disordered domain.225 SARS-CoV M
protein interacts with N protein via their highly hydrophilic and
charged carboxy groups, overlaying the N-RNA complex into the
particle.226,227 Despite functional studies on SARS-CoV-2 M protein
are still blank, considering the high homology between SARS-CoV
M protein and SARS-CoV-2 M protein, SARS-CoV-2 M protein
possibly incorporates N-RNA complex with the same strategy.228

The interaction between E and M in coronaviruses is well-
established. Co-expression of the M and E proteins is sufficient for
virion maturation and release.229–231 E and M interacts with each
other via the C-terminal domain of both proteins at the
cytoplasmic side of ERGIC.105,232 E protein is able to oligomerize
to form a pentamer and serves as a cation channel to increase pH
in ERGIC.233 S is considered less involved in the assembly process
since viral assembly without S is not affected.229 S protein clusters
through M-S interaction when the N-RNA complex is incorporated
into a newly formed particle.29 M is indispensable for S
incorporation into virions.227 Both M and E induce maturation
and S location in ERGIC.234

The process of viral release is one of the least understood stages
in the life cycle of SARS-CoV-2. Previously, it was a mainstream
theory that coronaviruses primarily egress through the biosyn-
thetic secretory pathway. However, a recent finding from
transmission electron microscopy proposes that coronavirus
including SARS-CoV-2 more likely egresses in small secretory
vesicles.235 Another study proposes a model in which corona-
viruses egress by lysosomes instead of the biosynthetic secretory
pathway. The lysosomes were deacidified with proteolytic
enzymes inactivated in cells infected by SARS-CoV-2.28 The
mechanism of SARS-CoV-2 release remains a question of debate.
Hence, there are few available studies connecting viral exit and
host lipids.
Cellular lipids play crucial roles in multiple processes of SARS-

CoV-2 assembly. M binds with lipid headgroups through their
C-terminus domain. When M homodimer is in an open

conformation, cholesterol and inositol lipids accumulate in the
vicinity of the homodimer, while phosphatidylserines accumulate
near a monomer of the homodimer. The author suggests that the
lipid-protein interplay explains membrane curvature formation
induced by M protein.236

E protein is a functional membrane morphogen. When
synthesized alone, E reconfigures intracellular membranous
organelles into elongated swirls.237 Palmitoylation of coronavirus
E protein is functionally important in viral assembly.238–240

Palmitoylation of E protein occurs in a conserved cysteine-rich
region near the transmembrane domain, which is primarily
catalyzed by the DHHC-rich domain palmitoyl acyltransferase that
resides in ER and Golgi. These integral membrane proteins transfer
palmitate residing in the DHHC motif to the cysteine residues in
the acceptor proteins.241,242 Mouse hepatitis coronavirus (MHC) E
protein has three conserved cysteine residues in their cysteine-rich
regions. Replacement of cysteine residues in MHC E protein by
alanines or glycines culminated in failed virus-like particle
secretion and disturbed virion assembly when expressed along
with N, M, and S protein.240 Triple cysteine/alanine mutations in
the cysteine-rich region led to significantly reduced MHC virus
yields in the infected cells. Furthermore, MHC E protein lacking all
three cysteines exhibited an increased rate of degradation,
indicating a compromised stability.243 In SARS-CoV, E also under-
goes intracellular post-translational modifications. Palmitoylation
of SARS-CoV E protein is functionally essential for maintaining
stability.244 Since the sequence of SARS-CoV-2 E protein is 95 %
identical to the counterpart of SARS-CoV, SARS-CoV-2 E protein
palmitoylation probably has a similar function. Molecular dynamic
simulations on SARS-CoV-2 E protein indicate that palmitoylated E
protein is more stable. In the absence of palmitoylation, the
pentameric structure of E proteins lost dynamic equilibrium, and
the pore radius of E protein drastically decreased and even
collapsed.245,246 Since both S and E proteins require palmitoylation
to maintain their functional architecture, inhibitors targeting
palmitoyl acyltransferase are of interest.

Pathogenesis
Common symptoms of COVID-19 are mild, including fever,
diarrhea, and cough, accounting for ~70% of patients.247 However,
some patients progressed to more severe syndromes. Manifesta-
tions of severe COVID-19 patients are predominantly ARDS,
thrombotic complications that mimic disseminated intravascular
coagulopathy, and multi-organ failure. The pathology of COVID-19
is complicated and not fully elucidated, involving disruption of
immune balance, systemic inflammation, complement hyperacti-
vation, etc.3,248

An abnormal elevation of pro-inflammatory cytokines (IL-2R, IL-
6, IL-8, TNF-α, et al.) and chemokines (CCL2, CCL8, CXCL9, et al.),
together with an altered lymphocyte subset profile was observed
in COVID-19 patients, reflecting the onset of autoimmune-related
disorders.249,250 Intracellular innate immunity is also disrupted by
SARS-CoV-2 for immune evasion.251 Interferon I-III (IFN I-III),
nuclear factor-κB (NF-κB), toll-like receptor 4 (TLR4), retinoic-acid
inducible gene I (RIG-1)-like receptor (RLR)/mitochondria anti-virus
signaling protein (MAVS) pathways are all reported to be
disturbed by SARS-CoV-2 with concomitant dysfunctional antiviral
immunity and abnormal cytokine secretion.252–259 In extreme
cases, the immune system over-reacts to the virus and triggers a
fatal cytokine storm which is characterized by uncontrolled
excessive pro-inflammatory cytokine release and hyperactivated
immune cells. In a cytokine storm, immune cells erroneously
attack normal host cells, causing collateral multi-tissue damages
and multi-organ failure, bringing poor prognosis and even
mortality.260–262 A cytokine storm was suggested as a major
cause of lung damage in COVID-19.263–265 Coagulopathy in COVID-
19 patients was evidenced by significantly elevated levels of
D-dimer (a biomarker of coagulopathy) and thrombocytopenia in
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hospitalized patients.7 A large proportion of severe COVID-19
patients obtained a hypercoagulable state that predisposed
patients to thrombosis. The Post-mortem of lung tissues revealed
thrombogenesis in small arteries and capillaries of the pulmonary
vasculature.266–268 The etiology of thrombosis in COVID-19 is
under investigation. Coagulopathy, complement activation, pro-
inflammatory cytokine release, platelet hyperactivation, and
endothelial dysfunction are emerging as potential major con-
tributors to thrombosis.269 Several compounds that ameliorate
inflammation response have been demonstrated to alleviate
symptoms of COVID-19. Dexamethasone is a corticosteroid widely
used to treat a range of infections by resolving inflammation and
suppressing abnormally elicited immune responses.270 In patients
who need ventilation, dexamethasone decreased the mortality
rate by approximately one-third.271 Baricitinib is a reversible JAK1/
2 inhibitor that regulates inflammation and immune responses. In
hospitalized COVID-19 patients, treatment with Barcitinib effec-
tively decreased the mortality rate.272 Given that host lipids have
immunomodulatory properties, they are supposed to be involved
in SARS-CoV-2-elicited disorders. This section focuses on the role
of host metabolism in the pathogenesis of COVID-19.
Eicosanoids are inflammation mediators originated from the

processing of arachidonic acid (AA). AA is generated by the cleavage
of membrane phospholipids by phospholipase A2 (PLA2). AA can be
processed by cyclooxygenases (COX) or lipoxygenases (LPX) to
produce prostaglandins (PGs), thromboxanes (TXs), or leukotrienes
(LTs), which all play regulatory roles in immune homeostasis (the AA
metabolism pathway is shown in Fig. 5). Analysis of bronchoalveolar
lavage fluid of COVID-19 patients showed elevated PGE2, TXB2, 12-
HHTrE, and leukotriene B4 (LTB4) levels compared to healthy
controls, and the eicosanoid levels were positively correlated with
the levels of cytokines (IL-1α, IL-6, TNF-α, IL-12p70, IL-22, and IFN-α2)
and chemokines (CCL2, CCL11, CXCL9, and CXCL10).273

In hospitalized patients, plasma PLA2 levels positively correlated
with disease severity and acute multisystem inflammatory
syndrome.274 Lipidomic analysis on plasma samples of COVID-19
patients also identified PLA2 as an indicator of severity. Deceased
patients had higher levels of PLA2 compared with survivors.275 The
correlation could be attributed to downstream products of AA
metabolism.
COX-1 and COX-2 catalyze AA to prostaglandin H2, which is

further converted to diverse bioactive prostaglandins (PGs). PGE2,
the most abundant PG, is an important mediator of a series of
physiological processes, especially initiation and regulation of
inflammation.276 SARS-CoV-2 can stimulate COX-2 overexpression
in diverse human cell lines.277 Risk factors for severe COVID-19
courses include obesity, older ages, and a sedentary lifestyle, and
all these risk factors positively correlated with patient serum PGE2
levels. Clinical research revealed that in COVID-19 patients, high
serum PGE2 levels are associated with poor prognosis. The
increased COX-2 levels were observed in living human precision-
cut lung slices, implying the causal relationship between ARDS
and PGE2. Lymphopenia characterized by a drastic reduction of
lymphocytes is generally accompanied by a poor prognosis of
COVID-19 patients.278 PGE2 can suppress PAX5, a regulator of B
cell proliferation and survival, thereby partially contributing to the
lymphopenia.279 A comparatively low level of PGE2 enhances
immunity while a high level of it compromises the immune system
by killing lymphocytes.280 Another prostaglandin PGD2, synthe-
sized by COX, also contributes to lymphopenia. PGD2 production
can be upregulated by SARS-CoV infection, which subsequently
disturbs lymphocyte priming and maturation via DP1 and DP2
signaling.281 The physiological function of PGE2 and PGD2 are
double-edged and dose dependent. Both PGE2 and PGD2 can
induce a lipid mediator class switching of eicosanoid production
by neutrophils from the 5-lipoxygenase pathway to lipoxins,

Fig. 5 Arachidonic acid metabolism. The arachidonic metabolism pathway includes three branches: 1. CYP enzymes convert arachidonic acids
to ETTs or HETEs. 2. 5-lipoxygenase catalyzes arachidonic acids to lipoxins and leukotrienes 3. The COX-1/COX-2 pathway that produces
prostaglandins. AA arachidonic acids, PGG2 prostaglandin G2, PGH2 prostaglandin H2, TXA2 thromboxane A2, PGE2 prostaglandin E2, PGI2
prostaglandin I2, PGD2 prostaglandin D2, PGF2α prostaglandin F2α, 5-HPETE 5-hydroperoxyeicosatetraenoic acid, LXB4 lipoxin B4, LXA4
lipoxin A4, LTA4 leukotriene A4, LTB4 leukotriene B4, LTC4 leukotriene C4, LTD4 leukotriene D4, LTE4 leukotriene E4, ETTs epoxyeicosatrienoic
acids, HETEs hydroxyeicosatetraenoic acids, DiHPAs dihydroxydocosapentaenoic acids, DHEQs dihydroxyeicosatetraenoic acids, DHETs
dihydroxyeicosatrienoic acids, PLA2 Phospholipase A2, COX-2 cycloxygenase-2, COX-1 cycloxygenase-1, 5-LOX 5-Lipoxygenase, 12-LOX 12-
Lipoxygenase, LTC4S LTC4 synthase, LTA4H LTA4 hydrolase, TXAS Thromboxane A synthase, PEG2I PEG2 isomerase, PGIS prostaglandin I
synthase, PGD2 I PGD2 isomerase, PGF2αR PGF2α reductase, CYP cytochrome P450, sEH soluble epoxide hydrolase
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resolvins, and protectins.282 Hence, COX inhibitors should be used
with caution.
Another COX downstream product thromboxane A2 (TXA2)

also accounts for COVID-19 pathogenesis. TXA2 is synthesized
from PGH2 predominantly by platelet COX. TXA2 induces platelet
aggregation and thrombi generation. In COVID-19 patients, P-
selectin, a marker of platelet activation expressed on the surface
of platelet, is overexpressed. Plasma thrombopoietin levels are
also upregulated, reflecting hyperactive platelet. Platelet
extracted from COVID-19 patients aggregated faster and
exhibited increased spreading on both fibrinogen and collagen.
Otherwise, both circulating platelet-neutrophil and platelet-
monocyte aggregates increased in COVID-19 patients, reflecting
platelet hyperactivation and thrombogenesis. The platelet
hyperactivation can be partially explained by MAPK activation
and increased TXA2 production.283,284

Leukotrienes are produced from AA by 5-lipoxygenase.
Leukotriene A4 (LTA4) is generated directly from AA, then converted
to LTB4 in neutrophils and monocytes. Alternatively, LTA4 can also
be converted to leukotriene C4 (LTC4) by LTC4 synthase. Outside
the cell membrane, LTC4 is catalyzed to leukotriene D4 (LTD4) and
leukotriene E4 (LTE4). LTC4, LTD4 and LTE4 are termed cysteinyl-
leukotrienes.285 Leukotrienes act as chemotactic factors for the
recruitment of lymphocytes, monocytes, and macrophages to
peripheral tissues and are intimately related to the pro-
inflammatory function of monocytes and macrophages.286–288

Considering the high neutrophil infiltration and high neutrophil/
lymphocyte ratios in tissues of COVID-19 patients, leukotrienes are
proposed to be involved.289 Moreover, single-cell analysis of
bronchoalveolar immune cells and PBMCs from COVID-19 patients
shows elevated 5-lipoxygenase expression.290,291 Leukotrienes
also trigger cytokine (TNF-α, IL-1, IL-6, CCL2, etc.) release in the
microenvironment to amplify inflammatory responses.292,293

Cysteinyl-leukotrienes activate platelet by binding with cysteinyl-
leukotrienes receptors on platelet, culminating in thromboxane
release and consequent coagulopathy as well as lung immuno-
pathology in COVID-19.248,294,295 Besides, leukotrienes provoke
atherosclerosis, plasma leakage, and ARDS, which are canonical
manifestations of severe COVID-19.288,296 Lipidomic analysis of
bronchoalveolar lavage fluid extracted from COVID-19 patients
who require mechanical ventilation shows significantly elevated
leukotrienes levels, predominantly LTB4, LTE4, and eoxin E4,
supporting the deleterious role of leukotrienes.297 However, there
are scarce studies on the precise role of leukotrienes in COVID-19
due to the difficulty in measuring leukotriene levels since they
undergo rapid physiological metabolism. Of note, inhibition of
COX could lead to an imbalance of AA metabolism and provoke
leukotriene production, which partially explains why NSAIDs are of
little benefit to severe COVID-19 patients.
Despite the benefit of inhibiting AA metabolism, inhibition of

PLA2 may also downregulate pro-resolving factors which amelio-
rate inflammation. AA is a substrate for another enzymatic
pathway, the cytochrome P450 (CYP) system. CYP system consists
of two metabolic branches: ω-hydroxylases which convert AA to
hydroxyeicosatetraenoic, and epoxygenases which convert AA to
regioisomeric epoxyeicosatrienoic acids.298 Epoxyeicosatrienoic
acids accelerate the termination of inflammation responses by
mediating an array of anti-inflammatory and pro-resolving
processes.298,299 Epoxyeicosatrienoic acids mitigate the release
of pro-inflammation cytokines and chemokines, including IL-6, IL-
1β, and MCP-1.300 In vivo, epoxyeicosatrienoic acids are constantly
hydrated to dihydroxyeicosatrienoic acids by soluble epoxide
hydrolase (sEH). Hence, inhibiting sEH can effectively upregulate
epoxyeicosatrienoic acids levels. TPPU, an inhibitor of sEH, is able
to block neutrophil infiltration to the lung, decrease pro-
inflammatory cytokine levels in serum and bronchoalveolar lavage
fluid, and ameliorate alveolar capillary leakage in an LPS-induced
acute lung injury mouse model.301 Thus, although PLA2 inhibitors

theoretically ameliorate COVID-19 by reducing downstream pro-
inflammatory mediators, they possibly also hinder pro-resolution
and anti-inflammation processes, consequently exacerbating the
condition.
Besides AA metabolism, ASM/ceramide system also mediates

inflammation and thrombogenesis during SARS-CoV-2 infection. In
patients with community-acquired pneumonia, serum phospho-
lipid levels greatly plunged, while ceramide levels increased and
ASM activity was consistently enhanced.302 Sphingolipids are
intimately associated with inflammation. In a mouse model,
genetic ablation or pharmacological inhibiting ASM activity
profoundly reduced pro-inflammatory cytokine production.303

Another study evaluated ASM serum activity in a mixed intensive
care unit (ICU) population. Higher serum ASM levels in non-
survivors and lower ASM levels in survivors were observed, and
correlated with the mortality rates in ICU patients with systemic
inflammation.275 In endothelial cells stimulated with serum from
sepsis patients, plasma ASM activity and levels were profoundly
enhanced, leading to endothelial stress response and cytotoxicity.
However, pharmacological or genetic inhibition of ASM improved
the sepsis-induced endothelial stress.304 More importantly, ASM
also works as a pathogenic mediator of ARDS.305 Severe COVID-19
is usually accompanied by a hypercoagulable state, and tissue
factors are the primary cellular initiator of coagulation.306,307 In
common conditions, tissue factors remain cryptic, and sphingo-
myelin can maintain tissue factors in the encrypted state.
However, hydrolysis of sphingomyelin by ASM activates tissue
factors, culminating in coagulation. SARS-CoV-2 spike protein
pseudovirus markedly enhanced the procoagulant ability of tissue
factors, while inhibition or silencing ASM attenuated SARS-CoV-2
pseudovirus-induced tissue factor activation.308 Given that ASM
activation plays dual roles in both viral entry and pathogenesis,
ASM inhibitions are supposed to alleviate COVID-19 severity.309

Besides viral entry, the dysregulated cholesterol metabolism also
causes deterioration of COVID-19 through modulating inflamma-
tory response. It is a prevalent phenomenon that patients with
lower pre-infection HDL levels underwent severe COVID-19 with
higher mortality rates. Cholesterol, HDL, and LDL levels are lower
in patients who underwent severe COVID-19 compared to patients
with non-severe COVID-19.310–313 Cholesterol is closely associated
with immunometabolism. Cholesterol accumulation in macro-
phages and other immune cells promotes inflammation by
amplification of Toll-like receptor (TLR) signaling, inflammasome
activation, and production of monocytes and neutrophils.314,315

Cholesterol trafficking to ER can activate NLRP3 inflammasome, a
key mediator of infection-induced inflammation, consequently
promoting inflammation and pro-inflammatory cytokine secretion.
Treatment with statins abrogated NLRP3 inflammasome assembly
and IL-1β secretion.316,317 Cellular cholesterol levels are mainly
monitored in ER membrane by liver X receptor (LXR), Sterol
regulatory element binding protein-2 (SREBP2), and erythroid 2
related factor1 (NRF1).318 When the cholesterol content in ER
decreases, SREBP-2 migrates from ER to Golgi, then it is activated
and translocated into the nucleus to trigger downstream
transcription.319 SREBP-2 serves as a hub to connect cholesterol
levels to immune response. Mechanistically, upon detecting the
decreased intracellular cholesterol level, SREBP-2 associates with
NLRP3 to form a tertiary structure that translocates to Golgi to
facilitate inflammasome assembly.320 Furthermore, SREBP-2 inter-
plays with NF-κB to mediate inflammation.321,322 Evidence
supports that SARS-CoV-2 manipulates SREBP-2 to stimulate
cytokine storm. SREBP-2 was highly elevated in the PBMCs of
COVID-19 patients, and the mRNA levels of SREBP-2 positively
correlated with disease severity. In addition, SREBP-2 C-term, the
cleaved form of SREBP-2, significantly increased in the serum of
severe and deceased COVID-19 patients. Treating with Fatostatin
A, an SREBP-2 processing inhibitor, effectively suppressed pro-
inflammatory cytokine production in the PBMCs of COVID-19
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patients. Fatostatin A can also protect human umbilical vein
endothelial cells (HUVEC) from LPS stimuli, indicative of the
vascular protective function.323 It is interesting to interrogate
whether circulating SREBP-2 C-term directly contributes to COVID-
19 progression or not. Of note, SARS-CoV-2 infection mitigates
intracellular cholesterol levels. SARS-CoV-2 likely reduces the
intracellular cholesterol to activate SREBP-2.
HDL is mainly responsible for the cellular efflux of cholesterol.

By promoting cholesterol efflux, HDL reduces cholesterol accu-
mulation in immune cells.324 HDL is proposed to have anti-
inflammatory, antioxidant, antiviral, anti-coagulant, and vascular
protective properties, working as pathogen scavengers that
potentially involves in the removal of infectious material. In
addition, HDL prevents infection of various DNA and RNA viruses
by neutralization.325–327 HDL levels negatively correlated with
COVID-19 severity and decreased with the deterioration of
patients’ conditions, indicating that high HDL levels prevent
severe COVID-19. In spite of the close association between HDL
and COVID-19 severity, detailed studies on the interplay between
COVID-19 and HDL are scarce. The relationship between
cholesterol metabolism and immunometabolism is intertwined,
and the cellular cholesterol level alteration during COVID-19 is
dynamic and not fully interpreted. Better comprehension will
optimize the use of statins for the treatment of COVID-19.
The association between COVID-19 and dysregulated glucose

metabolism is bidirectional. Pre-existing T2D or hyperglycemia are
identified as risk factors for severe COVID-19 with high mortality
rates.328,329 On one hand, glucose metabolism facilitates SARS-
CoV-2 entry and replication. On the other hand, SARS-CoV-2
infection worsens the situation of T2D or even mediates the onset
of new type 2 diabetes.204 The interplay between dysregulated
glucose profiles and poor outcomes in COVID-19 patients is
complicated and not fully known. However, SARS-CoV-2 can
impair islet function by directly infecting pancreatic cells. Human
pancreatic cells express SARS-CoV-2 entry receptors including
ACE2, TMPSSR2, and neuropilin-1 (NRP-1). SARS-CoV-2 infection
can restrict insulin secretion and induce β cell apoptosis in vitro.330

SARS-CoV-2 also infects the induced pluripotent stem cell (iPSC)-
derived pancreatic cultures containing endocrine and exocrine
cells and provokes inflammatory responses. Of note, the autopsy
of patients who died of COVID-19 confirms the SARS-CoV-2
infectivity of the pancreas.331 Approximately 17% of severe
COVID-19 patients display an increased level of amylase and
lipase (two biomarkers of pancreas injury), indicative of the caused
pancreatic injury.332 It is also proposed that the usage of steroids
during the treatment might contribute to the onset of hypergly-
cemia and diabetes.333 Considering the risk of hyperglycemia
during infection, hospital protocols should include the manage-
ment of hyperglycemia in COVID-19 patients.
Preexisting hyperglycemia or diabetes mellitus also worsens the

situation of COVID-19 patients by affecting immune responses.
Diabetes mellitus is characterized as a chronic inflammatory
status. It is well-known that diabetes mellitus affects both innate
and adaptive immunity.334 A previous clinical study shows that
subjects with impaired glucose tolerance have higher levels of
plasma inflammatory cytokines including IL-6, TNF-α, and IL-18 via
an oxidative mechanism.335 Higher glucose levels stimulate
inflammatory cytokine secretion of periphery blood mononuclear
cells (PBMCs) and impede innate immunity by inhibiting type I IFN
production.336 Another report indicates that COVID-19 patients
with diabetes mellitus have higher levels of plasma inflammatory
biomarkers including C-reactive protein, serum ferritin, IL-6, and a
higher erythrocyte sedimentation rate.337 A retrospective multi-
center study demonstrates that COVID-19 patients with diabetes
have a higher likelihood of developing lymphopenia.50 Monocytes
infected by SARS-CoV-2 produce more inflammatory cytokines,
which are further augmented by higher glucose levels. Blockade
of glycolysis by 2-DG significantly decreased the viral load and

inflammatory cytokine secretion. From a mechanistic view, the
infection induces ROS production to stabilize HIF-1α, consequently
promoting glycolysis. This metabolic alteration of monocytes
directly inhibits T cell responses, partially explaining the lympho-
penia.209 Thus, hyperglycemia and diabetes mellitus likely trigger
or exacerbate inflammation to culminate in poor prognosis of
COVID-19 patients. The impaired innate immunity caused by high
glucose levels is also conducive to SARS-CoV-2 infection.
Lactate is a byproduct of glucose metabolism and the end-

product of anaerobic glycolysis. Since SARS-CoV-2 infection
enhances glycolysis, the level of lactate concomitantly increases.
Recently, lactate is revealed to have diverse functions in regulating
T cell proliferation, immune cell metabolism, macrophage
polarization, and cytokine production.338–341 COVID-19 patients
with higher lactate levels tend to worse outcomes.342 The lactate
generation is catalyzed by lactate dehydrogenase (LDH). LDH
regulates the interconversion of pyruvate and lactate, which is a
crucial step in the anaerobic metabolism of glucose. The high LDH
levels correlate with disease progression in COVID-19
patients.328,343,344 Besides being used as an indicator of severe
COVID-19, lactate potentially contributes to disease progression.
Lactate can rewire CD4+ T cell metabolism, leading to a
deterioration of chronic inflammation diseases.340 Results from a
previous study show that high lactate levels are associated with
more prothrombotic fibrin properties and neutrophil extracellular
trap (NET) formation, which are crucial mediators of coagulopathy
in COVID-19.345,346 Moreover, lactate is an activator of HIF-1α.
Lactate preconditioning can shift cellular glucose metabolism to
glycolysis. By stabilizing HIF-1α, lactate promotes glycolysis in a
positive feedback manner, thus facilitating SARS-CoV-2 infec-
tion.347,348 Intriguingly, lactate is also a suppressor of RLR-
mediated innate immunity. Pattern recognition receptor RLRs
are RNA sensors for triggering innate immune responses against
viral infection. Lactate inhibits RLR signaling and type I IFN
production by preventing MAVS mitochondrial localization/
aggregation, and RIG-1-MAVS association. Reduction of lactate
levels by pharmacological inhibition of lactate dehydrogenases A
(LDHA) profoundly increased the resistance of mice against viral
infection by upregulating type I IFN production.349 This finding
explains the potential benefits of shifting glucose metabolism
towards glycolysis for evading innate immune responses. How-
ever, the exact role of lactate in the pathogenesis of COVID-19 is
intricate and not exhaustively studied.
Human intestines are inhabited by over 2000 species of

microbes (microbiota). It has been shown gut microbiota have
many biological functions including shaping and modulating
immune responses. Dysbiosis of gut microbiota could lead to
aberrant immune responses or autoimmune diseases.350,351 More
importantly, the composition of gut microbiota is closely related
to inflammatory cytokine secretion, which is surprisingly reminis-
cent of the inflammatory comorbidities and cytokine storm caused
by COVID-19.352 Analysis of stool samples from COVID-19 patients
revealed that the composition of microbiota in COVID-19 patients
underwent significant alterations. The abundance of probiotics
was depleted meanwhile the abundance of opportunistic patho-
gens increased. The baseline abundance of Coprobacillus, Clos-
tridium ramosum, and Clostridium hathewayi increases
with disease severity. On the other hand, the abundance of
Faecalibacterium prausnitzii inversely correlates with COVID-19
severity.353 Another study showed that COVID-19 patients had
markedly less bacterial diversity, and the impaired bacterial
diversity was associated with increased severity. This study also
identified a decreased abundance of Bifidobacterium, Faecalibac-
terium, and Roseburium, and an increased abundance of Bacter-
oides in COVID-19 patients comparing to exposed controls.354 The
levels of plasma cytokines and inflammatory markers in COVID-19
patients were closely associated with microbiota composition,
linking gut microbiota to COVID-19-induced inflammatory
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disorders and tissue damage. Several species known to play
immunoregulatory roles in human gastrointestinal tracts including
Bifidobacterium adolescentis, Eubacterium rectale, and Faecalibac-
terium prausnitzii are depleted in COVID-19 patients. However, this
study demonstrated no differences in bacterial diversity between
COVID-19 patients and healthy controls.355 Since the study of
human microbiota is still in its cradle, how SARS-CoV-2 affects
microbiota is not fully elucidated yet. COVID-19 is accompanied by
a set of sequelae even after complete disease resolution, namely
long COVID-19 or post-COVID-19 syndromes, including fatigue,
memory loss, anxiety, anosmia, and depression.356,357 Gut micro-
biota is closely related to long COVID-19. Altered microbiota
composition and decreased bacterial diversity were detected in
post-COVID-19 patients, even eight months after acute disease
resolution.358 Patients with long COVID-19 had distinct microbiota
composition compared to completely recovered patients. While
there was no significant difference in microbiota between patients
with or without antibiotic treatment, indicating that the difference
was not due to antibiotic use. Intriguingly, different post-COVID-19
syndromes were associated with different microbiota patterns. For
example, respiratory symptoms were positively correlated with
opportunistic pathogens, while neuropsychiatric symptoms and
fatigue were accompanied by changes in nosocomial pathogens.
More importantly, composition at admission can predict the onset
of post-COVID-19 syndromes, underlining the important role of
microbiota.359 Of note, microbiota composition could be modified
by dietary supplements. Some researchers suggested replenish-
ment of probiotics by a plant-based rich fiber diet or other
nutritional modulations that could be beneficial to COVID-19
patients.360–363 Otherwise, the influence on microbiota should be
taken into consideration when using antibiotics for the treatment
of COVID-19 patients. Compared with gut microbiota, lung
microbiota was less investigated. However, recent findings
support that lung microbiota also played an important role in
COVID-19 pathology. Lung microbiota is involved in respiratory
infections diseases and pneumonia.364,365 But due to the difficulty
in measuring the composition of the microbial community in
patients, the role of lung microbiota in COVID-19 is poorly
understood.
As mentioned above, long COVID-19 is manifested by a series of

post-infection syndromes even a long period after the nucleic acid
test shows a negative result. Over 200 symptoms have been
identified in long COVID-19, some of them were severe and
debilitating. For example, a meta-analysis showed that 22% of
patients had cognitive impairment 12 weeks post-infection.366

Cognitive impairment is a canonical symptom of long COVID-19.
The magnitude of cognitive impairment in long COVID-19 is equal
to 10 years of cognitive aging, and likely increases over time.367 It
is even more concerning that hospitalized and non-hospitalized
patients have similar rates of developing cognitive impairment.368

Otherwise, many patients have other sequelae including multi-
organ dysfunction, gastrointestinal disorders, respiratory distur-
bances, and cardiovascular disorders.369–371 The etiology of long
COVID-19 is multifactorial. Major contributors to long COVID-19
are proposed to be abnormally altered immune system, circular
system dysfunction, multi-organ damage, and neuroinflamma-
tion.372,373 Considering the deleterious effect of long COVID-19,
exploring the mechanism and prophylaxis is of importance. Many
long COVID-19 patients shared similar symptoms with Myalgic
encephalomyelitis/chronic fatigue syndromes (ME/CFS), a multi-
system neuroimmune disorder that generally happens after
infection. ME/CFS was manifested by chronic fatigue, cognitive
impairment, and post-exertional malaise.374,375 Therefore, ther-
apeutic strategy for ME/CFS presumably also alleviated COVID-19.
Dietary supplementation of coenzyme Q can reduce fatigue and
oxidative stress in ME/CFS.376 The effect of coenzyme Q on long
COVID-19 is being clinically tested. It is also noted that mast cell
activation was prevalent in long COVID-19 patients, implying the

causal link between mast cell activation and long COVID-19.377,378

The proposed mechanism is that aberrant mast cell activation
triggers mediators including histamine, cytokines, leukotrienes,
and prostaglandins, bringing damage to multiple tissues. Anti-
histamine treatment is the protocol for mast cell activation
syndrome. Pilot studies have demonstrated that antihistamines
can relieve long COVID-19-associated symptoms.379,380 Some
components of traditional herbs including quercetin and luteolin
are also proposed for the prevention or treatment of long COVID-
19, although there is no clinical evidence till now.381 It is
noteworthy that physical exercises exacerbate the condition of
COVID-19 patients instead of improving it. According to a survey,
regular physical exercises worsened the condition of 74.84% long
COVID-19 patients, only 0.84% patients reported improvement by
physical exercises.382 Hence, long COVID-19 patients should take
caution when practicing. Although long COVID-19 brings enor-
mous health burdens to patients, there are few clinical studies
available now.

Drug repurposing
Patients with severe COVID-19 undergoing mechanical ventilation
have a poor prognosis, and even some recovered patients have
severe sequelae, such as lung fibrosis, chronic vasculitis, hyperten-
sion, and embolism.383,384 Considering the urgency, repurposing
FDA-proved drugs with a verified safety profile is of interest. This
section focuses on the repurposing of FDA-proved drugs that
intervene in host lipid metabolism for the treatment of COVID-19
and their clinical research. The clinical trials are summarized in
Table 1.

Statins. Statins have been applied in clinic for decades with a
proven efficacy and safety for the treatment of hyperlipidemia and
as prophylaxis of atherosclerosis disease.385 HMG-CoA (3-hydroxy-
3-methyl-glutaryl-CoA) reductase (HMGCR) is a rate-limiting
enzyme for cholesterol biosynthesis. Statins are strong competi-
tive inhibitors of HMGCR and are generally used as lipid-lowering
drugs. Statins effectively reduce plasma cholesterol levels by
inhibiting cholesterol biosynthesis and lowering low-density
lipoprotein (LDL) levels.386 Since cellular cholesterol plays a critical
role in SARS-CoV-2 viral entry, statins have bright prospects for
treating COVID-19.
Clinical reports of COVID-19 patients revealed a correlation

between cholesterol metabolism and prognosis. Statistical analysis
shows that a higher serum high-density lipoprotein cholesterol
(HDLc) level predicts a lower mortality rate before infection by
SARS-CoV-2.310 Total cholesterol, LDL, and HDL levels decreased in
COVID-19 patients compared to the levels prior to infection. Total
cholesterol and LDL recovered to baseline in discharged patients
but progressively dropped in non-survival patients.387 Given that
statins manage cholesterol profiles, they could improve the
conditions of COVID-19 patients.
Aside from regulating cholesterol levels, statins have diverse

effects independent of HMGCR inhibition, including stablizing
endothelial dysfunction, regulating atherosclerosis, anti-fibrosis,
anti-thrombosis, anti-oxidantion, anti-apoptosis, and anti-
inflammation.388 The impact of statins on ARDS is controversial,
two clinical studies show no improvement in ARDS under statins
treatment versus placebo.389,390 While another study indicates a
potential benefit to ARDS patients associated with statin use.391

Meta-analysis indicates that statin practically prolongs ventilator-
free days of patients with ARDS, although it does not improve
mortality and severe sepsis.392

A retrospective study of COVID-19 patients shows that the 28-
day all-cause mortality rate was 5.2% and 9.4% in the matched
statin and non-statin groups, respectively.393 Another retro-
spective study confirms that COVID-19 patients admitted to ICU
who used atorvastatin had a slower progression to death and a
lower mortality rate.394 Meta-analysis of 19 studies involving

Metabolic alterations upon SARS-CoV-2 infection and potential therapeutic. . .
Chen et al.

12

Signal Transduction and Targeted Therapy           (2023) 8:237 



over 395,000 patients indicates that prior statin use is associated
with a lower risk of mortality and a reduced risk of severe COVID-
19.395 However, another study obtained a different result: prior
treatment of statins improves neither severity outcome nor
mortality rates. The contradictory results may be caused by the
risk of exacerbating compensatory immune signals through the
effect of statins on TLR and NF-κB.396 In addition, results from
clinical studies show that statin treatment upregulates ACE2
expression, thereby potentially facilitating SARS-CoV-2 attach-
ment and entry. Hence, whether statins practically improve
COVID-19 severity and prognosis or not remains a matter of
debate.397

ASM inhibitors. Most antidepressants belong to functional
inhibitors of acid sphingomyelinase (FIASMAs) and are widely
applied as psychotropic medications. Antidepressants, such as
fluoxetine, fluvoxamine, paroxetine, and amitriptyline, have
been widely used for decades with proven safety.398 As
discussed above, evidence supports the central role of ASM/
ceramide system during SARS-CoV-2 infection. FIASMAs, which
practically reduce ceramide levels, are promising to serve as a
therapeutic modality for COVID-19. They regulate pro-
inflammatory cytokine secretion and thereby display anti-
inflammatory properties. They also interact with ER chaperone
the Sigma-1 receptor and ER stress sensor inositol-requiring
enzyme 1α to regulate cytokine secretion and immune
response.399 Besides blocking SARS-CoV-2 viral entry, FIASMAs
can also ameliorate COVID-19 via their immune modulatory
property.400,401

The potency of FIASMAs has been validated. A multicenter
study on hospitalized severe COVID-19 patients shows a
reduced risk of intubation or death under FIASMA treatment
(37.5% FIASMA group vs 41.4% non-FIASMA group). The
correlation between taking FIASMAs and reduced likelihood of
intubation or death is not specific to one particular class of
FIASMAs.402 Another cohort study on severe COVID-19 patients
reveals that chronic prescription of FIASMA is associated with a
lower risk of mortality. In this study, amlodipine exhibited the
most prominent efficacy among FIASMAs. Patients treated with
amlodipine before the infection had a lower rate of mortality
(12.7%) than patients not treated with amlodipine before the
infection (34.9%).403 In a randomized double-blinded clinical
trial, fluvoxamine reduced the likelihood of clinical deterioration
compared to the placebo group.404 In another randomized
clinical trial, the proportion of patients observed in a COVID-19
emergency setting or transferred to a tertiary hospital due to
COVID-19 was lower in the fluvoxamine group compared with
the placebo group.405 Collectively, these clinical results support
FIASMAs as an effective modality for COVID-19.

Table 1. Summary of metabolism-modulating drugs

Drug name Clinical trial Phase

Statins

Simvastatin NCT04348695 II

NCT05542095 I

Rosuvastatin NCT04472611 III

NCT04359095 III

NCT04472611 III

NCT05594615 I

Atorvastatin NCT04631536 III

NCT04486508 III

NCT04952350 III

NCT04380402 II

NCT04813471 III

NCT04904536 III

NCT04801940 III

NCT04380402 II

NCT04466241 III

ASM inhibitors

Fluoxetine NCT04377308 IV

NCT05041907 II

NCT05283954 III

NCT04920838 III

NCT04780152 III

Fluvoxamine NCT04718480 II

NCT04342663 II

NCT04668950 III

NCT04727424 III

NCT05087381 IV

NCT04510194 III

NCT04711863 II

NSAIDs

Aspirin NCT05073718 III

NCT04368377 II

NCT04324463 III

NCT04365309 III

NCT04381936 III

NCT04808895 III

NCT04466670 II

NCT04937088 II

NCT04768179 III

Paracetamol NCT04920838 III

NCT04673214 III

NCT04416334 III

NCT04536051 III

Naproxen NCT04325633 III

Montelukast

Montelukast NCT04718285 II

NCT04695704 III

NCT05094596 IV

NCT04389411 III

Omega-3 fatty acids

Omega-3 fatty acids NCT04836052 III

NCT05121766 I

NCT04647604 II

Table 1. continued

Drug name Clinical trial Phase

NCT04495816 II
NCT04553705 III

NCT04460651 III

NCT04335032 III

NCT05711810 IV

2-DG

No available clinical trials

Metformin

Metformin
Metformin glycinate

NCT04510194
NCT04626089
NCT04625985

III
II
II
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NSAIDs. Non-steroidal anti-inflammatory drugs (NSAIDs), the
COX-1 and COX-2 inhibitors, are prospective as a therapy for
COVID-19. NSAIDs are well-tolerated anti-inflammatory drugs that
are widely used for managing acute or chronic inflammatory
diseases. A retrospective study indicates that the use of NSAIDs is
associated with a reduced risk of hospitalization of COVID-19
patients with chronic inflammatory diseases.406 Another study
obtained a similar conclusion: COVID-19 patients prescribed
ibuprofen or naproxen had a lower risk of hospitalization.407

However, the application of NSAIDs on COVID-19 remains
controversial. Some propose that NSAIDs usage upregulates ACE2
expression, thus promoting SARS-CoV-2 entry while other studies
demonstrate that NSAIDs have no impact on ACE2 expression and
will not exacerbate infection.408–411 There are also concerns that
NSAIDs could exacerbate hypercoagulation and the incidence of
thrombosis due to decreased thrombomodulin caused by NSAID
treatment.412,413 Furthermore, NSAIDs may predispose patients to
gastrointestinal and cardiovascular complications which are also
canonical symptoms of COVID-19.414

Although the World Health Organization has declared that there
is no evidence of an increased risk of disease deterioration,
considering the potential adverse effects, NSAIDs should be used
with caution on COVID-19 patients.

Montelukast. Montelukast is a cysteinyl leukotriene receptor
antagonist that blocks the binding of cysteinyl leukotrienes.
Montelukast was initially used for the treatment of chronic asthma
with excellent safety. Montelukast can effectively suppress
inflammation by inhibiting NF-κB activation and the downstream
pro-inflammatory cytokines (IL-6, TNF-α, MCP-1, et al.) secretion in
cultured human mononuclear cells and macrophages upon
stimulation.415,416 In addition, montelukast is also capable of
inhibiting platelet activation under the stimulation of serum from
COVID-19 patients by downregulating the surface expression of
tissue factors and P-selectin. As a consequence, the formation of
monocyte- and granulocyte-platelet aggregates are profoundly
inhibited.417

Montelukast also affects the viral proteins of SARS-CoV-2. A
computational simulation predicts that montelukast may bind S
protein to disturb the RBD domain.418 Montelukast sodium
hydrate binds with the C-terminus domain of SARS-CoV-2 NSP1
protein to restore host protein synthesis, which is suppressed by
NSP1.419,420

Hospitalized patients treated with montelukast experienced
significantly fewer events of clinical deterioration compared with
patients not receiving montelukast (10% vs 32%).421 Montelukast
treatment alleviated the severity of COVID-19, prevented lung
respiratory failure, and reduced mortality.422 Montelukast is
currently under phase III clinical trial (NCT04389411) for the
treatment of severe COVID-19.

Omega-3 fatty acids. Pro-resolving mediators, e.g., lipoxins,
resolvins, protectins and maresins, stimulate key cellular events
in resolution, namely cessation of neutrophil infiltration and
enhanced macrophage uptake of debris, hence actively protecting
tissues from hyperinflammation and expediting recovery from
inflammatory damage.423 Treatment with such pro-resolving
mediators accelerates the clearance of bacteria and impedes
neutrophil accumulation in the lung, thereby promoting the
resolution of bacteria-induced lung injury.275 These pro-resolving
mediators are synthesized from two Omega-3 fatty acids:
eicosapentaenoic acid (EPA) and docosahexaenoic (DHA). Both
serve as precursors in the biochemical pathways leading to
Specialized pro-resolving mediators.424 Therefore, exogenous
supplementation of omega-3 fatty acids is recommended to treat
COVID-19 via the pro-resolving process.425

Omega-3 index (O3I) reflects blood levels of EPA and DHA. It
was revealed a lower O3I as a risk factor for severe COVID-19A

study after comparison of O3I levels in hospitalized severe COVID-
19 patients with ambulatory patients with mild infection.426 A
randomized double-blinded study was conducted to investigate
the therapeutic effect of omega-3 fatty acid supplementation on
severe COVID-19 patients. The result is encouraging, it showed
that omega-3 fatty acid supplementation improved the levels of
several parameters of respiratory and renal function in critically ill
patients and increased the survival rate.427 Omega-3 fatty acids
are well-known as anti-inflammatory and pro-resolving factors and
confirmed to improve the conditions of COVID-19 patients.425,428

2-DG. 2-DG is a synthetic analog of glucose that interferes with
glycolysis. 2-DG has been used in diverse areas for decades,
including antivirus, anticancer, and antiepileptic.429–431 As men-
tioned above, SARS-CoV-2 induces the Warburg effect, and its
infection highly depends on glycolysis. The transition of glucose
metabolism to glycolysis favors SARS-CoV-2 entry, replication, and
pathogenesis. Moreover, 2-DG also inhibits the PPP pathway and
glycosylation of S protein. Hence, 2-DG is presumably promising
to ameliorate the severity of COVID-19.202,203

2-DG treatment significantly reduced the viral load of cells
infected by SARS-CoV-2 and ameliorated the CPE and cell death.
Surprisingly, the progeny SRAS-CoV-2 generated from 2-DG-
treated cells exhibited weakened infectivity.432 However, 2-DG
has potential toxicity. 2-DG can cause glucocytopenia in the
nervous system, and irregularities in the cardiovascular, respira-
tory, and immunological systems.433,434 In a randomized phase II
clinical study, 2-DG was administered as an adjunct to stand of
care (SOC). Patients treated with 90 mg/kg/day 2-DG had better
outcomes. The clinical recovery and vital signs normalization were
faster in the 90mg/kg/day 2-DG group. However, in this study,
30.3% of patients reported adverse events.435 In 2021, 2-DG was
approved by the Drug Controller General of India as an adjunct
therapy along with the SOC in hospitalized patients with mild to
severe COVID-19. The clinical data indicates that patients treated
with 2-DG+ SOC underwent a quicker symptomatic relief and
normalization of vital sign factors compared with SOC alone. The
clinical data is accessible from the trials’ registrations on the
Clinical Trial Registry of India. Notably, continuous administrations
of high 2-DG doses over a long time might cause toxicity to the
individuals. Considering the adverse effects, 2-DG should be used
with caution.

Metformin. Metformin has been used as a first-line anti-diabetic
drug for decades. Recent research reveals that metformin also
possesses anti-cancer, anti-aging, anti-inflammatory, and other
properties.436–439 Due to the prominent bioactivity of metformin,
it is also proposed for the treatment of COVID-19.
Several observational studies have confirmed the beneficial

effect of metformin on COVID-19. As mentioned above, diabetic
mellitus, dysregulated glucose metabolism, and hyperglycemia
are risk factors for severe COVID-19. A large-scale retrospective
study including over 2,800,000 COVID-19 patients with diabetes
has been conducted to evaluate the influence of different glucose-
lowering drugs. Patients prescribed metformin have markedly less
COVID-19-related mortality rates compared with those prescribed
insulin. However, several confounding factors have not been
adjusted in this study.440 Another two small-scale retrospective
studies indicate that, after adjusting confounding factors, metfor-
min use is still associated with lower mortality rates in COVID-19
patients with diabetes.441,442 Intriguingly, the beneficial effect of
metformin is shown to be gender-dependent. Metformin treat-
ment profoundly alleviates the severity in female COVID-19
patients, while the effect on male patients is minimal. Researchers
propose that this difference is probably due to the stronger
suppressive effect of metformin on TNF-α production in women
than in men, suggesting that metformin alleviates COVID-19
primarily via regulating inflammatory cytokines.443 Several clinical
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trials are currently being conducted. Those clinical studies
demonstrate that metformin treatment prevented disease pro-
gression and reduced mortality rates. However, further studies are
needed through randomized, double-blinded clinical trials.
From a mechanistic perspective, metformin presumably ame-

liorates COVID-19 via multifaceted effects. Metformin can prevent
endothelial dysfunction, reduce cytokine release, improve glucose
metabolism, and promote resolution of lung damage after acute
inflammation. All these effects are considered to be responsible
for alleviating COVID-19 severity.444–448 Considering the distinct
therapeutic effect between males and females, the anti-
inflammatory effect seems to play a major role. However, the
practical mechanism needs to be experimentally investigated.

SUMMARY AND PERSPECTIVE
In this review, we summarize the advances and provide
comprehensive knowledge of metabolic alterations induced by
SARS-CoV-2 and how they influence SARS-CoV-2 infection in
aspects of entry, replication, assembly, and pathogenesis. We also
include studies of drugs repurposed for COVID-19.
Like other coronaviruses, SARS-CoV-2 entry entails the intact

lipid rafts on cell membranes.449–451 The paramount impor-
tance of lipid rafts during SARS-CoV-2 entry was underpinned
and summarized by several researchers.75,452 The role of
cellular cholesterol metabolism is controversial and not fully
interpreted. Some researchers suggest that SARS-CoV-2 down-
regulates cellular cholesterol levels, and increased cholesterol
levels impede SARS-CoV-2 infection. However, others suggest
that cholesterol depletion restrains SARS-CoV-2 infection. The
inconsistent results could be due to different time points,
positions, treatments, methods, and so forth. The exact role of
cholesterol entails further studies. Cholesterol might influence
SARS-CoV-2 infection in post-entry stages including replication,
virion maturation, and egress, although there is currently no
available study. It would be also interesting to interrogate how
increased cellular cholesterol restrains SARS-CoV-2 infection.
Ceramides assist SARS-CoV-2 entry by forming ceramide-rich
microdomains where ACE2 clusters. Contrarily, sphingosine, the
downstream metabolite of ceramides, impedes SARS-CoV-2
entry by blocking the interaction between S protein and ACE2.
S1P is a product downstream of sphingosine. The anti-
inflammatory and anti-thrombotic properties of S1P are well-
established. S1P is postulated to ameliorate COVID-19 by
protecting endothelial barrier, although there is no available
study.453,454 Considering the intimate relationship between
COVID-19 and sphingomyelin metabolism, other components
in sphingomyelin are probably involved in different stages of
SARS-CoV-2 infection. Interrogating the ER branch of sphingo-
myelin metabolism would be of interest since SARS-CoV-2
replication organelles are also derived from ER. Lipid modifica-
tions of S protein have been intensively investigated. The
modification by linoleic acid locks the S protein in a closed
conformation and prevents viral entry, while the palmitoylation
of the S protein stabilizes the S protein homotrimer, thereby
promoting viral entry. S protein of MHV is also demonstrated to
be palmitoylated, and mutation at the palmitoylation sites
impeded MHV penetration into cells and reduced specific
infectivity, indicating the conservation of S protein palmitoyla-
tion among coronaviruses.455 Hyperglycemia or diabetes
mellitus facilitates SARS-CoV-2 entry by upregulating ACE2,
partially accounting for the worse situation of COVID-19
patients with preexisting diabetes. The glycosylation of S
protein also significantly contributes to viral entry.
Host lipids also contribute to SARS-CoV-2 replication. The

glycerophospholipid metabolism pathway facilitates SARS-CoV-2
replication by facilitating DMV formation. However, which step of
the glycerophospholipid metabolism is responsible remains

unknown. PE and PC are downstream metabolites of PA, and
both were reported to hijack RNA virus replication,173,175,176,456 but
currently there is no available data on the role of PE and PC in
SARS-CoV-2 replication. Deciphering the roles of PC and PE during
SARS-CoV-2 infection is of interest. The employment of host LDs
by SARS-CoV-2 to meet the energy and material demand for
replication was evidenced by current findings. The involvement of
LDs was well-elucidated in other RNA viruses including hepatitis C
virus, rotavirus, Zika virus, and dengue virus.181,457–460 The PPP
generates nucleotides for viral replication, partially explaining the
benefit of the Warburg effect induced by SARS-CoV-2. The onset
of the Warburg effect is also seen in other virus infection.205,461,462

One carbon metabolism provides material for SARS-CoV-2 RNA
capping, which is important for viral replication. The cap formation
is conveyed by NSPs, primarily NSP9, and NSP12.463,464 Capping at
the 5’ of viral RNA can prevent RNA degradation by innate
immune responses and facilitates viral protein translation.222 Of
note, phosphatidylinositol phosphate biosynthesis is revealed to
be essential for SARS-CoV-2 infection. SARS-CoV-2 infection is
highly dependent on phosphatidylinositol phosphate biosynth-
esis.86,87 In addition to contributing to replication compartment
formation, phosphatidylinositol phosphate biosynthesis likely
promotes SARS-CoV-2 in different stages of its life cycle. Further
studies would be of interest.
The next section depicted how host lipids assist SARS-CoV-2

assembly. M protein uses several lipid components to induce
membrane curvature. E protein palmitoylation is supported by
computational simulations, and the adduct of palmitate is able to
maintain E protein functional architecture. It was previously
hypothesized that β-coronaviruses employ the biosynthetic path-
way for egress. However, recent findings suggested
β-coronaviruses employ deacidified lysosomes for virion
release.28,465,466 Due to a paucity of comprehension of coronavirus
egress mechanism, related studies are insufficient. Considering
that the lysosomes are intimately connected to the lipid
metabolism of LDs and ER, research on the association between
host lipids and viral exit is warranted.467,468

Severe COVID-19 is manifested by ARDS, hyperinflammatory
status, thrombotic complications, and multi-organ failures. This
paper reviewed the impact of host lipids on COVID-19 pathogen-
esis. Eicosanoids of the AA pathway including prostaglandins,
thromboxanes, and leukotrienes as well as the ASM/ceramide
system are included as they affect thrombotic and inflammatory
status during SARS-CoV-2 infection. The importance of cholesterol
in COVID-19 is interpreted in this section. The bidirectional
relationship between COVID-19 and dysregulated glucose meta-
bolism was discussed. The role of lactate is also incorporated.
Recent studies indicate that many COVID-19 patients underwent
microbiota dysbiosis, and microbiota associates with COVID-19
severity via the gut-lung axis.469–471 The alteration of microbiota
composition and its important role in COVID-19 is exhaustively
discussed. However, available studies on the mechanism under-
lying the onset of long COVID-19 are few. Treatments and
prophylaxis for long COVID-19 needs to be further validated by
clinical studies.
Ultimately, several lipid-modulating and glucose-modulating

drugs repurposed for COVID-19 are overviewed. Statins, ASM
inhibitors, NSAIDs, Montelukast, Omega-3 fatty acids, 2-DG, and
metformin are summarized. Further long-term follow-up studies
are needed to characterize the benefit of these drugs for treating
COVID-19 patients. Coronaviruses have given rise to three
pandemics with huge damage to our society in the last two
decades. However, therapies with proven efficacy are still lacking
till now. Understanding the interaction between coronaviruses
and host metabolism will prompt antiviral drug development and
better disease management that would apply not only to SARS-
CoV-2 infection, but also potentially to other types of coronavirus
infections.
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