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Deciphering dynamic changes of the aging transcriptome with
COVID-19 progression and convalescence in the human blood
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Dear Editor,
Overwhelming evidence suggests that age itself is a prominent

risk factor for COVID-19 morbidity and mortality.1,2 However, the
molecular basis of aging’s effect on SARS-CoV-2 susceptibility and
COVID-19 severity in adults is still not fully understood. Thus, we
hypothesized that aging-related cellular landscape alterations
influence clinical manifestations, which is critical for determining
likely intervention targets to slow the transmission of COVID-19
and reduce severe symptoms.
The overall workflow of this study is shown in Fig. 1a. To reveal

cell-type-specific characteristics of age-related genes in human
peripheral blood, we initially identified multiple gene clusters
significantly correlated with age (Supplementary Fig. 1). Among
them, 479 genes showed an increase in expression with age (age-
pos), while 455 genes decreased in expression with age (age-neg)
(Fig. 1b; Supplementary Data S1). Age-pos genes were involved in
stress response, cell migration, aging, and immune processes, while
age-neg genes were mainly correlated with transcription regulation
(Fig. 1c). Moreover, certain age-pos genes were highly expressed in
dendritic cells, NK, monocytes, and megakaryocytes, while B cells,
CD4+ T, and CD8+ T cells showed the highly enriched expression of
certain age-neg genes (Supplementary Fig. 2, 3a, b and Data S1).
For example, among the NK cell-enriched age-pos genes, KLRD1
and CCL4 showed an increase in expression with age, while among
the CD4+ T cell-enriched age-neg genes, LEF1 and CCR7 decreased
in expression with age (Supplementary Fig. 3c, d).
Using a large scRNA-seq dataset of 159 PBMC samples,3 we

discovered a significant association between age-related scores
and COVID-19 severity, stage, patient age, and sampling time
(days after symptom onset; the same applies to the full article)
(Supplementary Fig. 4a-c and Data S2). We only included age- and
sample-type-matched patients in progression stages and healthy
controls, and observed that age-pos genes were upregulated in
severe patients, while age-neg genes were significantly down-
regulated (Supplementary Fig. 4d). Furthermore, age-related score
increased (ssGSEA-pos score) or decreased (ssGSEA-neg score)
progressively from healthy controls to mild-moderate to severe
patients (Supplementary Fig. 4e). These results indicated age-
dependent effects in the susceptibility and progression of SARS-
CoV-2 infection.
We then examined changes in the proportion of cells

expressing certain age-related genes in patients with different
severity during progression stages. We focused on a subset of
age-pos genes that were highly expressed across cell-types
(Supplementary Fig. 5a and Data S3). In one T cell cluster
(T_CD8_c10-MKI67-GZMK), the proportion of cells expressing
these genes increased with disease severity during the progres-
sion stage. However, it decreased significantly during convales-
cence and returned to healthy control levels with increased
recovery time (Supplementary Fig. 5b, 6a). Conversely, CD1c+ DCs
and CD16+ monocytes showed a marked decrease in severe

patients (Supplementary Fig. 5b, 6b, c), and the proportion was
positively correlated with sampling time during convalescence
stage (Supplementary Fig. 6d). We identified 44 age-pos genes
associated with COVID-19 severity in 33 cell-types (Fig. 1d), with
43.2% of genes increasing in proportion with disease severity. For
example, the proportion of two monocyte subtypes (Mono_c1-
CD14-CCL3 and Mono_c3-CD14-VCAN) expressing CLU increased
progressively from healthy controls to severe patients, but
decreased during convalescence. And 50 days after symptom
onset, the proportion returned to levels comparable to healthy
controls (Supplementary Fig. 6e-g). We also found 12 age-neg
genes in 11 cell-types, for example, the proportion of naive CD8+

T cells expressing BACH2 or ABLIM1 was significantly decreased in
severe patients and then elevated in late convalescence
(Supplementary Fig. 7).
The critical mechanisms underlying post-acute COVID-19 syn-

drome remain elusive. To this end, a cohort of COVID-19 patients
during convalescence stage who experienced severe symptoms
was selected.3 We identified 24 age-pos genes and 12 age-neg
genes with significant correlation to sampling time (Supplemen-
tary Fig. 8a-d). Expression of these genes was comparable in late-
sampled convalescent individuals and healthy controls. Most of
these age-pos genes was frequently expressed in dendritic cells
(Supplementary Fig. 8e). LEPROTL1 was enriched in several cell-
types, especially CD8+ and CD4+ T cells (Supplementary Fig. 8f).
Similar results were found in individuals who survived moderate
symptoms (Supplementary Fig. 8a, b). These findings suggest
persistent age-related expression profile alterations during
convalescent stage.
Next, we focused on aging-related transcription factors (TFs)

modulated by SARS-CoV-2 infection. Multiple independent studies
showed significant overlap between age-related genes and COVID-
19-regulated genes4–6 (Supplementary Fig. 9a, b and Data S4). We
found significant consistency in the direction of expression changes
between age-related genes and COVID-19 regulated genes (Supple-
mentary Fig. 9c), suggesting dysfunction of age-related genes with
the onset of SARS-CoV-2 infection. Among a consensus set of genes
(Fig. 1e; Supplementary Fig. 10), we focused on three TFs, including
BACH2, CEBPB and JUN, whose activity was perturbed by both age
and SARS-CoV-2 infection. Aging and SARS-CoV-2 infection
decreased expression of BACH2, while expression of CEBPB and
JUN was increased in both older adults and patients (Fig. 1f;
Supplementary Fig. 11a, b). We collected the top 100 putative target
genes for each TF (Supplementary Data S4). GSEA showed that the
target genes of all three TFs were significantly enriched in older
adults (Fig. 1g), indicating increased activity of JUN and CEBPB as
transcriptional activators with age and decreased activity of BACH2
as a transcriptional repressor. Upregulation of TF target genes was
also observed in COVID-19 patients (Fig. 1h), suggesting that
changes in the activity of BACH2, JUN, and CEBPB during aging might
contribute to SARS-CoV-2 susceptibility. These results confirmed by
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multiple independent studies (Supplementary Fig. 11c). Additionally,
CEBPB expression in monocyte subsets and JUN expression in almost
all cell subsets were significantly correlated with severity during the
progression stage (Supplementary Fig. 11d-f).
We further built an age-related signature linked to COVID-19

severity and trajectory. Using three COVID-19 datasets,4–6 we

identified 602 upregulated overlapping genes in patients, of
which 26 increased and 11 decreased in expression with age
(Fig. 1i, j). We also found 318 downregulated overlapping genes,
including four in the age-pos group and 44 in the age-neg group
(Fig. 1i, j). SARS-CoV-2 infection shares a certain degree of
similarity with Influenza virus in transcriptional changes, but not
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with Zika virus (Supplementary Fig. 12). The 13 of these 85 co-
regulated genes were selected by two variable selection
algorithms to develop the severity scoring model, which
effectively discriminated patients with different severity in
training set5 (Fig. 1k-m; Supplementary Fig. 13). In an
independent validation cohort,3 the model also showed
excellent performance in discriminating patients in the progres-
sion stages from those in the convalescence stages (Fig. 1n, o).
In the progression stage, patients with severe symptoms had
higher scores than those with moderate symptoms (Fig. 1n, o).
The severity score of patients in convalescence stages was
correlated with sampling time (Fig. 1p). In another validation
cohort,7 patients were grouped according to disease trajectory
pseudotimes. As expected, patients in incremental phase to the
early convalescence (pseudotime 1–4) had the highest severity
scores, while the score was decreased during late convalescence
and long-term follow-up (pseudotime 5–7) (Fig. 1q).
To facilitate better utilization of the current data resources, we

introduced a web server named scAgCov (http://longlab-zju.cn/
scAgCov/) for users to query age-related genes and compare their
expression in a given cell-type among COVID-19 patients with
different severity and stages.
In summary, our study differs from previous studies8–10 on

age correlation in COVID-19 patients due to its unique biological
problem and research methodology. We focused on identifying
age-related genes linked to COVID-19 severity in specific cell-
types, using a larger scRNA-seq dataset. Our established severity
scoring model holds the potential to evaluate the risk of post-
acute COVID-19. Additionally, we introduced a web server to
facilitate researchers in accessing this valuable resource.
However, these findings are based on public resource and
require further validation through wider experiments. None-
theless, we hope this study can inform clinical decision-making
to develop personalized therapies for preventing sequela and
mortality.
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