
ARTICLE OPEN

Biomarker and genomic analyses reveal molecular signatures
of non-cardioembolic ischemic stroke
Lingling Ding 1,2,3, Yu Liu2, Xia Meng2, Yong Jiang2,3, Jinxi Lin2, Si Cheng2, Zhe Xu2, Xingquan Zhao1,2,3, Hao Li2,
Yongjun Wang1,2,3,4,5,6 and Zixiao Li1,2,3,7,8✉

Acute ischemic stroke (AIS) is a major cause of disability and mortality worldwide. Non-cardioembolic ischemic stroke (NCIS), which
constitutes the majority of AIS cases, is highly heterogeneous, thus requiring precision medicine treatments. This study aimed to
investigate the molecular mechanisms underlying NCIS heterogeneity. We integrated data from the Third China National Stroke
Registry, including clinical phenotypes, biomarkers, and whole-genome sequencing data for 7695 patients with NCIS. We identified
30 molecular clusters based on 63 biomarkers and explored the comprehensive landscape of biological heterogeneity and
subpopulations in NCIS. Dimensionality reduction revealed fine-scale subpopulation structures associated with specific biomarkers.
The subpopulations with biomarkers for inflammation, abnormal liver and kidney function, homocysteine metabolism, lipid
metabolism, and gut microbiota metabolism were associated with a high risk of unfavorable clinical outcomes, including stroke
recurrence, disability, and mortality. Several genes encoding potential drug targets were identified as putative causal genes that
drive the clusters, such as CDK10, ERCC3, and CHEK2. We comprehensively characterized the genetic architecture of these
subpopulations, identified their molecular signatures, and revealed the potential of the polybiomarkers and polygenic prediction
for assessing clinical outcomes. Our study demonstrates the power of large-scale molecular biomarkers and genomics to
understand the underlying biological mechanisms of and advance precision medicine for NCIS.
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INTRODUCTION
Acute ischemic stroke (AIS) is a heterogeneous syndrome
characterized by a high risk of recurrence, mortality, and disability;
hence, reducing the burden of ischemic stroke remains a global
challenge.1,2 Non-cardioembolic ischemic stroke (NCIS), which
constitutes the majority of AIS cases, is mainly caused by
arteriosclerosis and atherosclerosis.3,4 Despite the guidelines for
secondary prevention and optimal control of risk factors, the 10-
year risk of stroke recurrence is ~27% in patients with NCIS,
indicating the urgent need for new therapeutic strategies.4,5

Recently, increasing evidence on the pathophysiological mechan-
isms of NCIS has emerged, which can facilitate the development
of new therapy strategies.6,7 However, it remains a challenge to
stratify patients with NCIS using molecular biomarkers, and
personalized treatment strategies are lacking.
Circulating biomarkers can be used to discern the biological and

pathological mechanisms of NCIS. Lipids, glycemic traits, and liver
and kidney function tests are frequently used to monitor disease
conditions and are key prognostic factors for AIS.8 In particular,
inflammation and gut microbial metabolites are emerging
nontraditional risk factors.6,7,9 Although the genetic basis of some
biomarkers has been extensively studied,10,11 most biomarkers
have not been well defined in large-scale ischemic stroke-affected
population datasets. In addition, there remains a lack of

comprehensive insight into the mechanism underlying the
biological heterogeneity of NCIS. Deep phenotypic profiling based
on circulating biomarkers and genetic data can expand our
understanding of the specific characteristics of NCIS and aid in the
development of new therapies.12

A major challenge in translating molecular findings into
therapeutic innovations is reclassifying patients with stroke into
subpopulations based on molecular biomarkers. Despite advances
in bioinformatics, capturing the heterogeneous phenotypes of
populations with distinct molecular mechanisms, therapeutic
effects, and prognoses remains difficult. Machine learning
approaches are particularly useful when dealing with complex,
high-throughput, and multidimensional biomedical data and can
be examined to identify further biological associations. In
particular, dimensionality reduction and clustering analysis are
unbiased, hypothesis-free, data-driven approaches that facilitate
the identification of homogeneous subclusters within a hetero-
geneous dataset; this approach is becoming increasingly popular
in precision medicine to reclassify phenotypes of complex
diseases and probe common biomolecular interactions and
pathophysiological patterns that correlate with diseases.
In the Third China National Stroke Registry (CNSR-III) study, we

collected 59 clinical phenotypes, 63 circulating biomarkers, and
whole-genome sequence data from 7,695 individuals with NCIS.
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We applied a data-driven dimensionality reduction approach to
identify the biologically and clinically relevant subpopulations.
This study aimed to establish evidence of biological and genetic
heterogeneity among these heterogeneous subpopulations of
NCIS by integrating genomic data with circulating biomarker data,
thereby facilitating the development of high-precision treatment
strategies and serving as a theoretical basis for future precision
medicine studies using molecular profiling to guide individualized
therapy in patients with AIS.

RESULTS
We analyzed data from the Third China National Stroke Registry
(CNSR-III), a nationwide, multicenter, prospective observational
registry study of patients with AIS or transient ischemic attack
(TIA) enrolled at 201 hospitals in China between August 01, 2015
and March 31, 2018. The mean age of the patients was 62.2
(SD= 11.3) years and 31.7% of the patients were female. To
explore the biology of ischemic stroke and identify new
therapeutic opportunities, we performed a comprehensive mole-
cular and genomic characterization of these patients. Patients with
TIA, cardioembolism (CE), or stroke caused by a specific etiology
such as Moyamoya disease, Fabry disease, and other uncommon
diseases that had specific biomarkers and genetic variants were
excluded from the analysis. Patients who presented with cancer or
infection before stroke, those without multiple circulating
biomarkers, and those who did not undergo whole-genome
sequencing (WGS) were also excluded. After data quality control
of WGS (30× coverage), 7,695 individuals with NCIS were included
in this study (Fig. 1a, b, Supplementary Table 1).

Prognostic biomarkers for NCIS
To profile the molecular characteristics and prognostic markers in
NCIS, we excluded seven biomarkers that were missing in 25% or
more of the samples and 11 biomarkers with correlation

coefficients >0.7. A total of 63 circulating biomarkers were
included in this study, including electrolytes (n= 3), blood
constituents (n= 8), coagulation function (n= 6), liver function
(n= 8), renal function (n= 4), inflammation (n= 10), lipid
metabolism (n= 12), homocysteine metabolism (n= 4), gut
microbial metabolites (n= 7), and glucose metabolism (n= 1)
(Fig. 1a, Supplementary Tables 2-3).
We performed cumulative risk assessments for each biomarker

and identified 12 high-risk biomarkers for stroke recurrence in the
population, including the inflammatory factors interleukin-6 (IL-6),
Lp-PLA2-activity, high-sensitivity C-reactive protein (hs-CRP),
neutrophils, chitinase-3-like protein 1 (YKL-40), and basophils; D-
dimer; fasting plasma glucose (FPG); the gut microbial metabolites
choline, butyrobetaine, and trimethyllysine (TML); renal function
index (UMA); and the four low-risk biomarkers albumin, apolipo-
protein AII, folic acid, and N,N,N-trimethyl-5-aminovaleric acid
(TMAVA). In addition, we identified 25 biomarkers significantly
(P < 0.05) associated with a high risk of poor functional outcome
(modified Rankin Scale (mRS) 3–6) and 19 biomarkers significantly
(P < 0.05) associated with a high risk of mortality (Fig. 1c–e).

Hierarchical clustering identifies molecular clusters with
prognostic relevance
To determine whether the stroke-affected population can be risk-
stratified based on specific circulating biomarkers, we used
hierarchical clustering by Euclidian distance to reveal molecular
clusters and found that these individuals could be grouped into 30
clusters based on 63 biomarkers (Fig. 2a). The biomarkers that
were enriched in each cluster and differed significantly from those
in other clusters are shown in Table 1.
To further understand the classification, we compared the

differences in clinical phenotypes in these clusters. We found that
the risk factors and comorbidity were diverse across 30 clusters
(Fig. 2b, Table 1, Supplementary Table 4). Cluster 5 (marked by
UMA) and cluster 29 (marked by FPG) had a large proportion of

Fig. 1 Study design and analysis of 63 biomarkers for non-cardioembolic ischemic stroke (NCIS). a Research framework. b Study flow. c Risk of
stroke recurrence for 63 circulating biomarkers. Hazard ratio (HR), 95% confidence interval (CI) were calculated by adjusted Cox proportional
hazards regression. d Risk of mortality at 1 year, assessed with 63 circulating biomarkers. HR (95% CI) were calculated by adjusted Cox
proportional hazards regression. e Risk of poor functional outcome (defined as a modified Rankin Scale (mRS) score >2) at 3months using 63
circulating biomarkers. Adjusted odds ratios were calculated using logistic regression. All models were adjusted for sex, age, alcohol
consumption, smoking, history of stroke, dyslipidemia, hypertension, diabetes mellitus, and coronary heart disease. (Red line: P < 0.05)
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Fig. 2 Clustering analysis reveals subpopulations associated with clinical phenotypes and outcomes of non-cardioembolic ischemic stroke
(NCIS). a A heatmap illustrating 30 clusters based on 63 circulating biomarkers. b Characterization of clinical phenotypes and medication use
across clusters. c Cumulative risk of stroke recurrence at 1 year for the 30 clusters. d Cumulative risk of mortality at 1 year for the 30 clusters.
e Cumulative risk of poor functional outcome at 3months for the 30 clusters. f Kaplan–Meier curves of time to stroke recurrence within 1-year
post-stroke for the 30 clusters. g Uniform manifold approximation and projection (UMAP) of 30 molecular clusters. h t-distributed stochastic
neighbor embedding (t-SNE) of 30 molecular clusters. i Incidence of poor functional outcome in patients with or without aspirin therapy
(*P < 0.05). j Incidence of stroke recurrence in patients with or without aspirin therapy (*P < 0.05)

Biomarker and genomic analyses reveal molecular signatures of. . .
Ding et al.

3

Signal Transduction and Targeted Therapy           (2023) 8:222 



Table 1. Clinical characteristics of patients in 30 clusters

Cluster Total
number

Female (%) Marked biomarker Risk factors and family history Comorbidity and
complications

Etiology Prognosis

C1 53 22.64% hs-CRP History of stroke (39.6%) Pulmonary infection
(37.7%)

LAA
(35.8%)

High risk

C2 70 28.57% D-dimer DVT (5.7%) LAA
(42.9%)

High risk

C3 194 23.20% Monocytes,
neutrophils

LAA
(35.1%)

High risk

C4 308 26.95% IL-6 Age (median 67, IQR 60–76) Pulmonary infection
(18.8%), hemorrhagic
transformation (3.9%)

LAA
(38.6%)

High risk

C5 49 34.69% UMA History of stroke (30.6%), type 2
diabetes (81.6%), hypertension (89.8%),
family history of diabetes (16.3%),
hypertension (30.6%), and stroke
(20.4%)

Urinary tract infection
(20.4%), renal
insufficiency (6.1%)

High risk

C6 88 18.18% TMAO Liver disease (11.4%) SAO
(36.4%)

Moderate risk

C7 153 20.92% Cystatin C,
creatinine

Age (median 68, IQR 61–76) history of
stroke (32.7%), hypertension (86.9%),
CHD 24.8%

Urinary tract infection
(15%), renal insufficiency
(0.7%)

LAA
(33.3%)

High risk

C8 81 27.16% MMA Family history of hypertension (28.4%) UE
(54.3%)

Moderate risk

C9 183 7.65% HCY Smoking (52.5%) Moderate risk

C10 211 18.96% Folic acid UE (55%) Low risk

C11 677 16.54% APTT,
INR,
prothrombin time

SAO
(30.9%)

Low risk

C12 991 54.79% Adiponectin
HDL

Low risk

C13 569 36.03% Adiponectin,
HDL,
YKL-40

BMI (median 2.67, IQR 21.78–25.53) Low risk

C14 125 24.80% TML,a

carnitine,a

butyrobetaine,a

betaine,a

cholinea

SAO
(34.4%)

Moderate risk

C15 101 56.44% RDWCV,
MCV,a

hemoglobin,a

MCHCa

LAA
(34.7%)

Moderate risk

C16 128 39.06% Apolipoprotein-AI UE
(61.7%)

Low risk

C17 128 37.50% ALT,
AST

Liver disease (32%) UE
(50.8%)

High risk

C18 158 9.49% GGT Smoking (57%), drinking (45.6%), Liver
disease (19.6%)

Moderate risk

C19 178 44.38% LDL-R,
apo-E,
triglyceride

Hyperlipemia (59.6%) SAO
(31.5%)

Low risk

C20 89 33.71% MCP-1 LAA
(33.7%)

Moderate risk

C21 135 35.56% IL-1Ra Moderate risk

C22 264 31.44% Vitamin B12 PAD (13.3%) LAA
(30.3%)

High risk

C23 359 20.06% Basophils,
eosinophils

Smoking (47.9%) Moderate risk

C24 827 22.37% TMAVA,
TML

Low risk

C25 114 41.23% Lp(a) UE
(52.6%)

Moderate risk
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patients with type 2 diabetes (81.6% and 86.9%, respectively) and
those receiving hypoglycemic drugs (79.6% and 80.4%, respec-
tively). Cluster 18 (marked by GGT) showed a high prevalence of
drinking (45.6%). Cluster 17 (marked by AST and ALT) and cluster
18 had a large proportion of patients with liver disease. Cluster 1
(marked by hs-CRP) showed the highest risk of pulmonary
infection (37.7%). Cluster 5 and cluster 7 (marked by cystatin C
and creatinine) showed a high risk of urinary tract infection (20.4%
and 15%, respectively). Cluster 1 and cluster 4 (marked by IL-6)
showed a relatively high risk of hemorrhagic transformation in the
hospital.
The identified subpopulations had different risks of clinical

outcomes, indicating that distinct molecular profiles played a
significant role in the pathophysiology and prognosis of ischemic
stroke. There were several important biological subpopulations
within the dataset that showed a high risk of unfavorable
outcomes. These subpopulations were defined as clusters 1, 4, 5,
7, 17, and 26. Two of these subpopulations were characterized by
inflammatory factors such as hs-CRP of cluster 1 and IL-6 of cluster
4. Renal function characterized the subpopulations of cluster 5,
identified by UMA, and cluster 7, identified by cystatin C and
creatinine. Cluster 17, identified by aspartate aminotransferase
(AST) and alanine aminotransferase (ALT), was characterized by
liver function. Cluster 26, identified by low-density lipoprotein
(LDL), was characterized by lipid metabolism. Conversely, the
subpopulations characterized by folic acid (cluster 10),
apolipoprotein-E (Apo-E) (cluster 19), and prothrombin time
(cluster 11) had a relatively low risk of unfavorable outcomes
(Fig. 2c–f, Table 1, and Supplementary Tables 5–11).

Dimensionality reduction of biomarkers reveals fine-scale
population structures in NCIS
Our initial hierarchical clustering approach revealed important
clusters defined on a molecular basis; however, hierarchical
clustering did not reveal relationships between individuals across
clusters. To further investigate the heterogeneity of subpopula-
tions at greater resolution, identified by circulating biomarkers, we
visualized the biomarkers using uniform manifold approximation
and projection (UMAP) and t-distributed stochastic neighbor
embedding (t-SNE) (Fig. 2g, h). We observed an overlap of the
biomarker components and clusters derived from hierarchical
clustering, which was consistent with the molecular profiles that
classified the subpopulations. In the low-dimensional space, the

similar data points were positioned closer together. We found that
biomarkers of the same functional modules were adjacent in
space. For example, the subpopulations associated with inflam-
mation, such as cluster 1 (identified by hs-CRP) and cluster 4
(identified by IL-6), were adjacent to each other. The subpopula-
tions characterized by renal function biomarkers, UMA (cluster 5),
cystatin C, and creatinine (cluster 7), were also located adjacent to
each other. Similarly, the subpopulations characterized by lipid
metabolism, cluster 16 (Apo-AI) and cluster 19 (Apo-E), were
located adjacent to each other (Supplementary Figs. 1–3). The
low-dimensional embedding of biomarkers indicated that the
subtle structural differences of AIS population can be determined
based on the specific biomarker in the reduced dimension.

Subpopulations capture specific genetic variations and pathways
associated with NCIS
Next, we sought to understand the common genetic basis for
variation in molecular clusters. Biomarkers and genome-wide
single nucleotide polymorphism (SNP) data were used to estimate
the proportion of variation attributable to each cluster. Common
genetic variants accounted for 0–13.58% of the interindividual
variation within clusters (Fig. 3a, Supplementary Table 12). To
identify variants specific for each molecular cluster, we conducted
genome-wide association studies (GWAS) across 30 clusters and
performed pathway enrichment analysis of biological terms and
gene ontology (GO) biological processes for each cluster. We
identified 36 loci for 30 molecular clusters that satisfied a genome-
wide significance threshold of P= 5.0 × 10−8 (Supplementary
Table 13). After applying multiple testing correction to the
number of clusters, 20 loci showed significant associations
(P < 5.0 × 10−8/30= 1.67 × 10−9). Seven SNPs were predicted as
“deleterious” or “damaging” in missense variants with P-
values < 1 × 10−5 (Supplementary Table 14). For example, CLCN6
(rs1023252, SIFT score= 0, deleterious_low_confidence) and
C1orf167 (rs61773952, SIFT score= 0.01, deleterious; PolyPhen-2
score= 0.974, probably damaging) could affect protein function in
cluster 9, which has been implicated in cardiovascular disease.13

The genes in cluster 9 were enriched for positive regulation of the
apoptotic process [GO: 0043065]. The rs4148323 locus (UGT1A1,
SIFT score= 0.05, PolyPhen-2 score= 0.625, possibly damaging)
could affect protein function in cluster 27, which encodes UDP-
glucuronosyltransferase involved in the glucuronidation pathway
that transforms small lipophilic molecules, such as bilirubin and

Table 1. continued

Cluster Total
number

Female (%) Marked biomarker Risk factors and family history Comorbidity and
complications

Etiology Prognosis

C26 149 42.28% LDL Hyperlipemia (62.4%) LAA
(32.2%)

High risk

C27 144 9.72% DBIL,
IBIL

LAA
(31.9%)

Moderate risk

C28 707 16.55% BMI 25.39 (23.56, 27.60) Low risk

C29 214 37.38% FPG Type 2 diabetes (86.9%), family history
of diabetes (20.6%)

UE (50%) Moderate risk

C30 248 41.13% Apo-AII,
apo-B

Moderate risk

hs-CRP high-sensitivity C-reactive protein, IL-1Ra Interleukin-1 receptor antagonist, IL-6 interleukin-6, UMA urine microalbumin, TMAO trimethylamine-N-oxide,
MMA methylmalonic aciduria, HCY homocysteinemia, APTT activated partial thromboplastin time, INR international normalized ratio, HDL high-density
lipoprotein, YKL-40 chitinase-3-like protein 1, TML trimethyllysine, RDWCV coefficient of variation of RBC distribution width, MCV mean corpuscular volume,
MCHC mean corpuscular hemoglobin concentration, Apo-AI apolipoprotein-AI, ALT alanine aminotransferase, AST aspartate aminotransferase, GGT γ-Glutamyl
transpeptidase, LDL-R low-density lipoprotein receptor, Apo-E apolipoprotein-E, MCP-1 monocyte chemoattractant protein-1, TMAVA N,N,N-trimethyl-5-
aminovaleric acid, LP(a) lipoprotein (a), LDL low-density lipoprotein, DBIL direct bilirubin, IBIL indirect bilirubin, FPG fasting plasma glucose, Apo-AII
apolipoprotein AII, Apo-B apolipoprotein-B, IQR interquartile range, CHD coronary heart disease, BMI body mass index, PAD peripheral arterial disease, DVT deep
venous thrombosis, LAA large artery atherosclerosis, UE undetermined etiology, SAO small artery occlusion
a Low serum level
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Fig. 3 Genetic characteristics of the 30 molecular clusters identified in the cohort. a Proportion of variation attributed to the genotyped
single-nucleotide polymorphisms (SNPs) and biomarkers for each cluster. b Genetic correlation between biomarkers (yellow box: P < 0.01,
purple: FDR < 0.05). c Genetic correlations of the molecular clusters with the biomarkers. d Heritability and functional enrichment of the
molecular clusters. e Colocalization of the molecular clusters and biomarkers
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drugs. Cluster 27 enriched with genes for flavonoid glucuronida-
tion [GO: 0052696] and aspirin ADME [R-HSA-9749641].

Heritability and genetic correlations among biomarkers and
subpopulations
The genetic effects on circulating biomarkers could offer novel
insights into the mechanisms underlying the genetics of
molecular clusters and relevant phenotypes. Therefore, we
estimated the SNP-based heritability to further understand the
molecular cluster mechanisms, computed pairwise genetic corre-
lations (rg) across 30 molecular clusters and 63 biomarkers using
bivariate linkage disequilibrium score regression (LDSC) (Fig. 3b, c),
and identified shared genetic backgrounds for correlated biomar-
kers and molecular clusters. For example, cluster 7 was genetically
correlated with cystatin C (rg= 1; P= 0.005), cluster 9 was
genetically correlated with homocysteinemia (HCY) (rg= 1;
P= 0.006), and cluster 15 had genetic correlations with mean
corpuscular volume (MCV) (rg= -0.923; P= 6.81 × 10−11) and
hemoglobin (rg= -0.469; P= 0.030). Heritability analysis suggests
that clusters share, in part, a common genetic basis with
biomarkers.
To identify the heritability enrichment in functional elements

across cluster, we applied a stratified LDSC to test for annotation-
specific heritability enrichment. Partitioning of functional genomic

elements showed enrichment of heritability in regulatory ele-
ments, including CpG for cluster 1, histone H3 lysine 27 acetylation
(H3K27ac) for cluster 8, 5' UTR for cluster 5, 3' UTR for cluster 24,
transcription start site (TSS) for cluster 16, and super-enhancers for
clusters 10 and 27 (Fig. 3d). Functional enrichment analysis
revealed a significant contribution of conserved and regulatory
regions to AIS.

Colocalization of biomarker quantitative trait locus with GWAS risk
loci identified
Genetic effects on circulating biomarkers may offer novel insights
into the mechanisms underlying the genetics of molecular
clusters. Through colocalization with clusters, biomarker quantita-
tive trait locus (QTLs) may help identify causal genes and disease
pathways. We obtained GWAS summary statistics for 63 biomar-
kers and 30 clusters and scanned all genome-wide significant
GWAS loci overlapping in our results (Fig. 4). At a more relaxed
genome-wide significant threshold (P < 1 × 10−5), nine GWAS loci
with high support (PP4 > 0.8) and five with medium support
(0.5 < PP4 ≤ 0.8) were identified in the colocalization between 63
circulating biomarkers and 30 molecular clusters.
Among the high- and medium-confidence (PP4 > 0.8 and

PP4 > 0.5, respectively) colocalization results, we identified the
genetic effects of circulating biomarkers and relevant molecular

Fig. 4 Genetics of 30 molecular clusters and 63 biomarkers. Circos plot showing the genome-wide significant variants for 30 molecular
clusters (P < 1 × 10−5) and 63 biomarkers (P < 5 × 10−8). Each dot corresponds to a trait-associated locus, while each radial line connects dots
for colocalization of biomarker-QTLs with cluster-GWAS risk loci
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clusters. For example, rs1801133 (MTHFR) was identified as a
candidate causal variant that explained the shared association
signal between cluster 9 and HCY. In addition, we observed more
than one colocalized QTL converging on multiple biomarkers for a
molecular cluster. The pleiotropic loci included, for example,
rs111784051(TOMM40) and rs651821 (APOA5) loci, both of which
were associated with the serum levels of TG and Apo-E, and
colocalized with GWAS signals for cluster 19 (marked by LDL-R,
Apo-E, and triglyceride). Similarly, rs10929285 (AC114812) and
rs28946889 (UGT1A1) both regulated the serum levels of indirect
bilirubin (IBIL) and direct bilirubin (DBIL) and colocalized with
GWAS signals for cluster 27 (marked by IBIL and DBIL) (Fig. 3e and
Supplementary Table 15).

TWAS-significant genes associated with NCIS subpopulations
To gain additional insights into the genetic basis underlying
molecular clusters and search for driver-mediating genes that
could act as candidate therapeutic targets, we used
transcriptome-wide association studies (TWAS) to predict
tissue-specific gene expression levels for molecular clusters
and biomarkers. For 30 molecular clusters, we identified 39
TWAS signals for gene expression levels that were significantly
associated with one or more of the tissues (P < 1.0 × 10−7),
particularly in the central nervous and cardiovascular systems
(Supplementary Table 16, Supplementary Fig. 4a). We also
found that transcriptomic profiles of whole blood provided
supporting evidence for the role of specific genes that
modulated multiple clusters. The strongest signal was
observed in TSG101, which encodes a component of the
ESCRT-I complex required for the sorting of endocytic
ubiquitinated cargos into multivesicular bodies (cluster 26:
PTWAS= 3.52 × 10−16; cluster 24: PTWAS= 1.22 × 10−9; cluster
30: PTWAS= 9.45 × 10−9).
To explore the genetic overlaps between the TWAS results for

clusters and biomarkers, we investigated 183 TWAS signals for
63 biomarkers (P < 5.0 × 10−8). RC3H2 expression was asso-
ciated with cluster 21 and IL-1Ra (cluster 21:
PTWAS= 1.97 × 10−15; IL-1Ra: PTWAS= 2.38 × 10−16); RC3H2
may play an important role in inflammation.14 KCNJ13 expres-
sion was associated with both cluster 27 and biomarkers for the
liver function index (cluster 27: PTWAS= 2.5 × 10−10; TBIL:
PTAS= 2.87 × 10−65; DBIL: PTWAS= 2.25 × 10−25; IBIL:
PTWAS= 1.23 × 10−56). KCNJ13, which encodes an inwardly
rectifying potassium channel protein, is associated with the risk
of coronary artery disease.15 RELT expression was associated
with cluster 19 and LDL-R, triglyceride (cluster 19:
PTWAS= 3.28 × 10−8; LDL-R: PTWAS= 1.23 × 10−19; Triglycer-
ide: PTWAS= 4.78 × 10−14). The results revealed the GWAS loci
that may directly affect gene expression and contribute to both
biomarkers and subpopulations.

Target gene identification through eQTL colocalization of TWAS
signals provides evidence of causality
We performed TWAS fine-mapping using FOCUS to prioritize
putative causal genes that drive the clusters, which were used to
compute posterior inclusion probability (PIP) and estimate
credible sets for genes at each TWAS region and relevant tissue
types. We identified colocalized expression quantitative trait loci
(eQTLs) in 34 regions, providing suggestive evidence of causal
genes in molecular clusters. These eQTLs may provide insights
into the biological pathways in and drug targets for NCIS
populations. We identified several genes encoding potential drug
targets from human protein atlas database, with variants that
influenced the identified subpopulations. For example, the likely
causal variant CDK10 (PIP= 0.597) was associated with cluster 8,
while the likely causal variant ERCC3 (PIP= 0.669) was associated
with cluster 14, and CHEK2 (PIP= 0.774) was associated with
cluster 21 (Table 2).Ta
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Landscape of NCIS subpopulations
Nine clusters with higher risk of stroke recurrence, mortality, or
unfavorable functional outcomes when compared with other
clusters were defined as high-risk subpopulations, while eight
clusters with lower risk of stroke recurrence, mortality, or
unfavorable functional outcomes when compared with other
clusters were defined as low-risk subpopulations (Table 1). We
mapped the phenotypic and genetic characteristics of these
subpopulations to reveal their molecular landscapes and identify
potential therapeutic targets for NCIS. The characteristics of
several typical subpopulations are as follows:

High-risk subpopulations
Cluster 1—inflammation. Cluster 1 was characterized by inflam-
mation (hs-CRP). Patients in cluster 1 had a high prevalence of a
history of stroke (39.6%), symptomatic intracranial atherosclerotic
stenosis (sICAS) (39.6%), and pulmonary infection (37.7%) and a
significantly higher risk of stroke recurrence (adjusted hazard ratio
(HR) 2.601, 95% CI 1.467-4.611, P= 0.001), mortality (adjusted HR
5.495, 95% CI 2.695–11.204, P < 0.001) within 1 year as well as poor
functional outcome within 3 months (adjusted HR 4.479, 95% CI
2.237–7.214, P < 0.001). ADAMTS9-AS2 (rs4688534,
P= 2.52 × 10−58) was associated with cluster 1, which has been
reported to be associated with infarct size, immune infiltration,
and poor survival.16,17 In addition, PDPN explained most of the
signal in its region (lead SNP PGWAS= 3.93 × 10−6; conditioned on
PDPN lead SNP PGWAS= 0.118) (Supplementary Fig. 4b). For the
genomic locus 1:12779560-1:14890557, PDPN was included in the
90% credible gene set, with a posterior probability of 0.756 (Table
2).

Cluster 2—D-dimer. Cluster 2 was characterized by a high
D-dimer level, which suggested hypercoagulable states and
increased thrombosis risk. The patients in cluster 2 had a high
prevalence of deep venous thrombosis (5.7%), sICAS (41.4%) and
symptomatic extracranial atherosclerotic stenosis (sECAS) (7.1%), a
higher risk of mortality within 1 year (adjusted HR 4.867, 95% CI
2.394–9.895, P < 0.001), and poor functional outcome within
3 months (adjusted HR 3.743, 95% CI 2.300–6.347, P < 0.001). We
identified 23 independent loci associated with cluster 2 at a
genome-wide significance threshold of P < 1 × 10−5. GWAS loci
(ICA1L-WDR12-CARF-NBEAL1) on chromosome 2 (rs10190966,
lead SNPGWAS P= 1.35 × 10−7, lead SNPGWAS= 0.13) explained
0.918 of the variance in atrial appendages (Supplementary Fig. 4c).
The ICA1L-WDR12-CARF-NBEAL1 locus was also found to be
associated with lacunar stroke.18

Cluster 7—renal function. Cluster 7 was characterized by renal
function (cystatin C and creatinine) levels and had a high
prevalence of a history of stroke (32.7%), sICAS (33.34%),
hypertension (86.9%), CHD (24.8%), urinary tract infection (15%),
and renal insufficiency (0.7%). The patients in cluster 7 had a
significantly higher risk of stroke recurrence (adjusted HR 1.6491,
95% CI 1.111–2.448, P= 0.013) and mortality (adjusted HR 2.433,
95% CI 1.400–4.227, P= 0.002) at 1 year and a high risk of poor
functional outcome within 3 months (adjusted HR 2.014, 95% CI
1.052–2.312, P= 0.027) when compared with other clusters. We
found that a non-coding transcript variant of the protein-coding
gene TMEM43 (rs6798807, p= 4.9 × 10−8) was significant in cluster
7. For the GWAS loci on chromosome 3, conditioning of TMEM43
explained 0.924 of the variance (rs3796308 lead SNPGWAS

P= 4.9 × 10−8, lead SNPGWAS= 0.133) (Supplementary Fig. 4d).
For the genomic locus 3:13070799-3:14816745, FOCUS showed
that TMEM43 was included in the 90% credible gene set with a
posterior probability of 0.704 in whole blood (Table 2).

Cluster 26—lipid metabolism. Cluster 26 was characterized by
lipid metabolism (LDL, triglyceride). Patients in cluster 26 had a

significantly higher risk of disability (adjusted HR 1.836, 95% CI
1.117–2.522, P= 0.013). C8orf74 was associated with neurodeve-
lopmental disorders (rs77073793, SIFT score= 0.04, PolyPhen-2
score= 0.833, possibly damaging) and could affect protein
function in cluster 26. The genes in cluster 26 were enriched for
cell-cell adhesion (GO: 0098609) and G-protein coupled receptor
(GPCR) downstream signaling (R-HSA-388396). GPCRs expressed on
the surface of platelets play key roles in the regulation of platelet
activity and function. Pharmacological blockade of these receptors,
including P2Y1 and P2Y12, can help to prevent arterial thrombo-
sis.19 Aspirin was effective in reducing the risk of unfavorable
functional outcomes in patients in cluster 26 (Fig. 2i, j).
For the genomic locus 8:10463197-8:11278541, NEIL2 was

included in the 90% credible gene set, with a posterior probability
of 0.594 in the brain_amygdala. NEIL2 is associated with DNA
repair; the capacity for DNA repair is likely to be one of the factors
that determines the neuronal vulnerability to ischemic stress and
may influence the pathological outcome of stroke.20 The
upregulated genes in cluster 26 showed a hallmark of Notch
signaling, an important mediator of hepatic lipid metabolism and
the remodeling of blood vessels.

Low-risk subpopulations
Cluster 10—folic acid. Patients in cluster 10 (identified by folic
acid) had a significantly lower risk of disability (HR 0.541, 95% CI
0.311–0.879, P= 0.014). RC3H2 expression was associated with
cluster 10 based on its expression in the colon_sigmoid
(PTWAS= 8.15 × 10−23), while TREH expression was associated
with cluster 10 based on its expression in the colon_sigmoid
(PTWAS= 2.26 × 10−12) and adipose_subcutaneous
(PTWAS= 7.18 × 10−10). For the genomic locus 1:11778084-
1:12778482, C1orf127 was included in the 90% credible gene
set, with a posterior probability of 0.754 in the nerve_tibial.

Cluster 16—apolipoprotein A. Patients in cluster 16 (identified by
Apo-AI and Apo-AII) had a relatively low risk of stroke recurrence
at 3 months (HR, 0.119; 95% CI 0.017–0.850, P= 0.034). The
expression of MTMR14 (myotubularin-related protein 14), which is
associated with lipid phosphatase, was associated with cluster 16
based on its expression in the heart_left_ventricle
(PTWAS= 7.83 × 10−8) and whole blood (PTWAS= 7.93 × 10−8).
For GWAS loci on chromosome 3, conditioning in MTMR14
explained 0.349 of the variance (rs7618350 lead SNPGWAS

P= 1.86 × 10−7, lead SNPGWAS= 2.60 × 10−5). For the genomic
locus 12:73818454-12:76511314, NAP1L1 was included in the 90%
credible gene set, with a posterior probability of 0.535 in the
brain_hippocampus.

Cluster 24—gut microbiota metabolism. Cluster 24 was character-
ized by gut microbial metabolites (TMAVA and TML) and had a
relatively low risk of poor functional outcome (HR 0.675, 95% CI
0.493–0.808, P < 0.001). We found that CRELD2, which plays a role
in calcium ion binding activity and protein disulfide isomerase
activity (rs12170409, P= 2.25 × 10−8), was significantly associated
with cluster 24. For the genomic locus 22:49825112-22:51240820,
CRELD2 was included in the 90% credible gene set with a posterior
probability of 0.503 in adipose tissue. The genes in cluster 24 were
enriched for the regulation of the Wnt signaling pathway (GO:
0016055).

Biomarkers and SNP profiling for predicting clinical outcomes
across the NCIS subpopulations
To provide potential aid for clinicians, we examined the
applicability of biomarkers and SNP panels in predicting stroke
recurrence and poor functional outcomes, respectively. The top
500 SNPs associated with clinical outcomes and 63 biomarkers
were selected to develop the prediction models. Using these 63
circulating biomarkers, the estimated receiver operating
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characteristic area under the curve (ROC AUC) of stroke recurrence
at 1 year was 0.59, while that of poor functional outcome at
3 months was 0.72. When using SNP profiling, the model
performance increased to 0.79 ± 0.02 in predicting the risk of
stroke recurrence, with an AUC of 0.78 ± 0.02 in predicting the risk
of poor functional outcome. The SNP-based prediction models
showed a large improvement in the predictive ability compared
with the biomarker-based prediction models. As depicted in
density plots and UMAPs, the predicted probability of stroke
recurrence and poor functional outcome were diverse across the
30 clusters. There was a high proportion of patients with high
predicted probability of stroke recurrence and poor functional
outcome in cluster 1 (identified by hs-CRP), cluster 2 (identified by
D-dimer), and cluster 5 (identified by UMA) (Fig. 5).

DISCUSSION
In this study, we developed a new approach for examining the
heterogeneity of NCIS by characterizing the molecular and genetic
profiles of its subpopulations. Through a dimensional reduction
approach, we identified 30 subpopulations based on 63 circulating
biomarkers using data from 7695 patients with NCIS in the CNSR-
III dataset and provided evidence of distinct molecular clusters
characterized by different biological and pathogenic processes.
We performed GWAS and TWAS analyses to assess the genetic
associations with the molecular clusters and further explored their
associations with circulating biomarkers, clinical phenotypes, and
prognosis.
Our findings further clarify the important role of biomarkers for

inflammation, homocysteine metabolism, liver and renal function,

and gut microbiota metabolism in ischemic stroke. Subpopula-
tions characterized by the inflammation indicators hs-CRP and IL-6
showed high risk of stroke recurrence, poor functional outcome,
and mortality. Inflammatory markers such as hs-CRP and IL-6 are
considered acute-phase reactants. We found that cluster 1
(characterized by hs-CRP) showed the highest risk of pulmonary
infection. It should be noted that aspiration pneumonia may have
contributed to the risk of adverse clinical outcomes, including
stroke recurrence, disability, as well as mortality. Recently, anti-
inflammatory agents, such as colchicine, have been shown to play
a prominent role in improving cardiovascular outcomes in clinical
trials.21 Our study supports anti-inflammatory treatment as a
promising therapy for ischemic stroke. Using GWAS analysis, we
identified PDPN in a subpopulation characterized by hs-CRP.
Podoplanin (PDPN) is involved in lymphangiogenesis and platelet
aggregation.22 Previous studies have also reported that the
PDPN–CLEC-2 axis plays a role in the function of fibroblastic
reticular cell, which is critical for controlling immune activation.23

In addition, the CLEC2-PDPN axis could be a target for inhibiting
the interactions between platelets, the main cause of
thrombosis.24,25

Kidney disease is a major risk factor for cerebrovascular
disease.26 Additionally, renal insufficiency can lead to inflamma-
tion, oxidative stress, and abnormal calcium-phosphorus metabo-
lism.27,28 Subpopulations identified by biomarkers of renal
function, such as UMA, cystatin C, and creatinine, had a
significantly high risk of stroke recurrence and mortality. We
found that the expression of TMEM43 was strongly correlated with
the subpopulation characterized by renal function. TMEM43
encodes a highly conserved integral membrane protein

Fig. 5 Prediction models for clinical outcomes across the subpopulations. a Area under the ROC curve (AUC-ROC) analysis was used to predict
stroke recurrence at 1 year using top SNPs and biomarkers. UMAP labeled by (b) predicted probability and (c) incidence of stroke recurrence at
1 year. d Density plots depicting the predicted probability of stroke recurrence at 1 year across the subpopulations. e Area under the ROC
curve (AUC-ROC) estimates for the prediction of poor functional outcome (mRS > 2) at 3months using top SNPs and biomarkers. UMAP
labeled by the (f) predicted probability of poor functional outcome and (g) incidence of poor functional outcome (mRS > 2) at 3 months.
h Density plots depicting the predicted probability of poor functional outcome (mRS > 2) at 3months across the subpopulations
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(transmembrane protein 43) and is associated with cardiac and
metabolism-related pathways and diabetic kidney disease.29,30

Nevertheless, whether TMEM43 is a potential therapeutic target for
patients with NCIS remains to be confirmed.
The correlation between liver function and ischemic stroke

remains unclear.31,32 Our study fills this critical gap by analyzing
the distinct molecular signature and its related genetic variants.
The subpopulation characterized by liver enzymes of AST and ALT
was associated with high risk of unfavorable functional outcome.
Another subpopulation (cluster 27) characterized by liver function
indicators, IBIL and TBIL, was strongly associated with UGT1A1; this
gene encodes UDP-glucuronosyltransferase and correlates with
bilirubin level. We also found that genes33 in cluster 27 were
enriched for flavonoid glucuronidation, a potential therapeutic
agent in neurological protection.34,35

Homocysteine metabolism is relevant for various pathological
conditions in AIS, especially ischemia-induced damage that can
lead to the accumulation of reactive oxygen species (ROS).13,36

Our findings showed that populations characterized by homo-
cysteine metabolism impairments, manifested as increased HCY
level, had a moderate risk of unfavorable clinical outcomes, and
that candidate loci were strongly associated with these sub-
populations, including MTHFR and CLCN6. However, increased
folate intake was associated with a reduced risk of poor functional
outcome post-stroke, suggesting that increasing habitual folate
intake may have a beneficial effect with respect to stroke
incidence.37,38

We found the prognosis value of gut microbiota metabolisms
in this NCIS population, especially in the subpopulation
characterized by TMAVA and TML, which was associated with
decreased risk of poor functional outcome. The microbial
metabolite TMAO is linked to increased risk of cardiovascular
risk.39 However, there is limited evidence for other microbial
metabolites, such as TML and TMAVA. Increasing evidence
suggests that gut microbiota products may promote post-
stroke recovery.9 There may be interactions between lipids and
gut microbiota metabolism; the gut microbiome has been
implicated in the regulation of cholesterol homeostasis.40 A
variant of CRELD2 was associated with the subpopulation
marked by gut microbiota metabolism, a novel chaperone for
the receptor LDL receptor-related protein 1 (LRP1).41 CRELD2 is
also involved in the regulation of Wnt signaling pathway, which
is important for the recovery of ischemic brain injury, reversal of
blood-brain barrier (BBB) breakdown, and promotion of
neurogenesis and angiogenesis.41 The Wnt signaling pathway
may also be involved in microbiota-induced inflammation and
immune homeostasis.42

Finally, limited research has been conducted on genetic
associations with stroke-related outcomes. We constructed poly-
genic prediction models for stroke recurrence and poor functional
outcomes, which may potentially aid clinicians to determine
individual patient risks. Notably, the predicted probability of
stroke recurrence and poor functional outcomes tended to be
high in particular subpopulations. Most previous studies used
selected biomarkers and genetic variants to predict risk of
ischemic stroke in the AIS population.43,44 A recent study
demonstrated that genetic risk scores were predictive of ischemic
stroke independent of clinical risk factors in patients with
cardiometabolic disease.45 Our results highlight the benefits of
using SNP profiling panels for risk stratification in patients
with NCIS.
In conclusion, we identified 30 molecular subpopulations based

on 63 biomarkers and explored the potential biological hetero-
geneity of NCIS populations and constructed deep comprehensive
landscape in NCIS. We found that biomarkers for inflammation,
abnormal liver and kidney function, homocysteine metabolism,
lipid metabolism, and gut microbiota metabolism can be used to
stratify patients with AIS. Our findings provide novel insights into

the molecular mechanisms underlying ischemic stroke and will
help facilitate the development of novel therapeutic strategies
against AIS.

Study limitations
Our study has several limitations. First, apart from blood
biomarkers and genomic data, our study lacked multi-omics data,
such as transcriptome data, which would further delineate the
molecular mechanisms of ischemic stroke. However, we used
transcriptomic imputation from GTEx dataset and performed
TWAS to bridge SNPs, genes, and phenotypes. Second, our
clustering analysis strategy might have failed to characterize
currently unidentified populations owing to biomarker limitations.
Our analysis was based on many known risk factors that are
important for prognosis or remain controversial in patients with
NCIS. Although we identified multiple promising biomarker
candidates, additional high-quality proteomic and metabolomic
data may provide a robust approach to unravel novel molecular
profiles underlying the complex phenotypes of ischemic stroke.
Third, samples from different time points are required in future
studies, which could potentially be utilized to explore the
molecular dynamics during the disease course. Fourth, all
participants in this study were from an East Asian population
and thus, further studies are warranted to validate the applicability
of our findings to populations of different ancestries. Finally,
external validation is required to confirm the generalizability of
our results, including the molecular signatures, biomarkers, and
SNP profiling. Nevertheless, our results suggest that precision
management based on molecular signatures should be consid-
ered in patients with NCIS.

MATERIALS AND METHODS
Study participants
The CNSR-III is a prospective, multicenter cohort of 15,166 patients
with AIS or TIA recruited between August 01, 2015 and March 31,
2018, from 201 hospitals in China. The patients that participated in
the CNSR-III study were at least 18 years old and admitted to the
hospital within 7 days of AIS or TIA onset. Further details regarding
the CNSR-III study design and methodology have been previously
described.46 This study was approved by the Ethics Committees of
Beijing Tiantan Hospital (IRB number: KY2015-001-01). Written
informed consent was obtained from all participants or their
representatives.
Patients who were diagnosed with TIA, cardioembolism (CE), or

a stroke of other determined etiology were excluded from the
analysis (n= 1651). Moreover, patients who presented with cancer
(n= 100) or infection before stroke (n= 360), those without
multiple circulating biomarkers (n= 281), and those without WGS
data (n= 3827) were excluded.

Clinical phenotypic data in CNSR-III
The clinical information of the patients was collected through
in-person interviews by trained research coordinators. Stroke
severity was assessed within 24 h of hospital admission using
the National Institutes of Health Stroke Scale (NIHSS) score.
Traditional stroke subtypes were classified into five major
categories, namely large-artery atherosclerosis (LAA), small-
vessel occlusion (SVO), cardioembolism (CE), undetermined
etiology (UE), and other etiology (OE), according to the Trial of
Org 10 172 in Acute Stroke Treatment (TOAST) criteria.47 Clinical
outcomes, including recurrent stroke, all-cause mortality at 3, 6,
and 12-months post-stroke, and poor functional outcome as
defined by an mRS score >2 at 3-months post-stroke. Patients
were followed up via in-person interviews at 3 months and via
telephone interviews at 6 and 12 months by trained inter-
viewers based on a standardized interview protocol to collect
the clinical outcomes.46
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Blood sample collection and biomarker measurements
Blood samples were collected on the day of hospital enrollment
and the median time from index event onset to sample collection
was 55 h (IQR: 27–96 h). All specimens were stored at −80 °C until
further analysis; 81 serum biomarkers identified in this study were
extracted from these samples. Blood biomarker measurements
were performed at the central laboratory of Tiantan Hospital,
Beijing, China by laboratory staff who were blinded to the
patients’ characteristics and clinical outcomes. The biomarkers
that were missing in at least 25% of the samples and those with
correlation coefficients >0.7 were excluded.

WGS
Genomic DNA was extracted from peripheral white blood cells
(WBCs) using a Magnetic Blood Genomic DNA Kit (DP329,
TIANGEN Biotech Co. Ltd., Beijing, China) according to the
manufacturer’s instructions. WGS was performed on the BGISEQ-
500 platform (BGI Genomics, Shenzhen, China). The average depth
was greater than 30× for each subject. Raw sequence reads were
filtered using an in-house quality control pipeline. Samples were
genotyped using MassARRAY®Typer (V.4.1, Agena Bioscience,
California, USA). Details of the protocol have been described
previously.48

Genotyping and quality control
Standard genotyping of quality controls (QCs) was performed.
Variants with call rate <98% and minor allele frequency (MAF) <
5% were excluded from further analysis. Samples with outlying
heterozygosity for autosomal chromosomes (i.e., ±3 standard
deviations away from the sample mean) were also excluded.
Relatedness between individuals was assessed among all geno-
typed samples using an independent linkage disequilibrium-
pruned subset of SNPs, leaving no pair with r2 > 0.2 within a
window of 50 kb. No related samples were found.
Principal component analysis (PCA) was performed to identify

large-scale differences in ancestry between individuals using
PLINK.49 Genetic background outliers detected using PCA were
filtered using 1000 G subjects as the population reference panel.50

After QC filters, 7695 samples were available for subsequent
analyses.

Unsupervised hierarchical clustering based on blood biomarkers
An unsupervised hierarchical clustering analysis was performed to
identify clusters of individuals with NCIS based on 63 biomarkers
using Ward’s hierarchical agglomerative clustering method
(ward.d2) with the Euclidean distances of the z-scores.51,52 The
resulting heatmap was visualized using Java TreeView software
version 1.1.6r4. The reproducibility of clustering was assessed with
the bootstrap resampling method using the Pvclust R package.
The dendrogram for the clustering results shows the distance
between each cluster using the Ward method, in which 30 clusters
were identified. A key benefit of hierarchical clustering is its ability
to create a tree structure with detailed division of every cluster.
Thus, several clusters were obtained based on visual evaluation.

Dimensionality reduction
UMAP is a novel nonlinear dimensionality reduction method that
is capable of distinguishing neighboring clusters while retaining
the high-dimensional topology of data points in the low-
dimensional space. Visualization of the UMAP dimension reduc-
tion was based on a scatterplot in which each dot represents one
sample and is labeled with biomarkers, clinical phenotypes, and
outcomes.53,54 The t-distributed stochastic neighbor embedding
(t-SNE) analysis assigns a weight to each of the modeling variables
to create two-dimensional composite eigenvectors that represent
gradients within the data. t-SNE identifies similar variable patterns
between data points with multiple features55 and then maximizes
the gradient of data by weighting the features to show similar

data points near one another on the plot, while showing more
different points further apart. In our study, we created two-
dimensional t-SNE plots to represent the overall structure of our
data. We colored the patients according to their phenotypic
membership. These plots were created using Python 3.9 software.

Estimating the proportion of genetic variation attributed to SNPs
and biomarkers
The proportion of variation attributed to genotyped SNPs and
biomarkers in each cluster was estimated using GCTA software
with a linear mixed model (LMM).56,57 The 63 biomarkers were
used as fixed effects in the regression analysis where Vg is the
variance explained by SNPs and Vp is the total observed
phenotypic variance. The variance explained by the 63 biomarkers
was calculated from the estimation of the corresponding fixed
effect coefficient. Each cluster was evaluated using a separate
analysis.

Genome-wide association study
We performed genome-wide association analyses of the 30
clusters. To enhance the biological insights into ischemic stroke,
GWASs of 63 biomarkers and 59 clinical phenotypes in CNSR-III
were also conducted. For clusters and binary phenotypes, we
performed a first-fallback logistic regression using PLINK (v1.9). For
biomarkers and quantitative phenotypes, we applied a general-
ized linear model association analysis using PLINK (v1.9). We
applied quantile normalization for phenotype using the -pheno-
quantile-normalize option, which fit a linear model with covariates
and transformed the phenotypes to normal distribution N (0, 1)
while preserving their original rank. We reported uncorrected
association P-values from the linear regression and retained all
SNP associations with uncorrected P-values of P < 10−5. Multiple
hypothesis testing was accounted for by applying Bonferroni
correction based on the number of studied traits, resulting in a
genome-wide significance level of P < 1.67 × 10−9 (5.0 × 10−8/30)
for clusters and P < 7.9 × 10−10 (5.0 × 10−8/63) for biomarkers.
Each variant was annotated with a variant effect predictor (VEP).
‘Damaging’ variants were predicted using SIFT and PolyPhen-2.
The PolyPhen-2 score ranged from 0.0 (tolerated) to 1.0
(deleterious), while the SIFT score ranged from 0.0 (deleterious)
to 1.0 (tolerated).58,59 Novel variants were defined as those that
were not indexed in any of the databases. We then performed GO
enrichment analysis.

Heritability and genetic correlation
We conducted LD score regression using LDSC software (v.1.0.1,
https://github.com/bulik/ldsc) to obtain SNP-based heritability and
pairwise genetic correlation across 63 biomarkers, 57 clinical
phenotypes, and 30 molecular clusters of the CNSR-III population
(N= 7695). GWAS summary statistics were cleaned and prepared
as input. East Asian LD scores of high-quality common SNPs
present in the HapMap 3 reference panel (MHC region excluded)
were used as reference SNPs and weighted SNPs in the
regression.60,61

Partitioned heritability and functional enrichment for clusters
To assess the enrichment of heritability in functional annotations
and MAF bins, a stratified LD score regression was performed to
partition heritability into multiple functional categories. We
applied heritability enrichment analyses using linkage disequili-
brium score regression (LDSC) for 30 clusters and 63 biomarkers.
We used the publicly available partitioned LD scores for
predefined annotations based on the Roadmap Epigenomics
Project provided by the LDSC authors (https://
data.broadinstitute.org/alkescluster/LDSCORE). We generated the
East Asian LD score reference for each annotation using the 1000
Genomes Project Phase 3 (v5). Hierarchical clustering was
performed on the matrix of enrichment significance for the 30
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clusters and 63 biomarkers. We only used highly significant
enrichments (P < 0.05).62

GWAS colocalization analysis
To identify shared causal variants among phenotypic traits and
molecular clusters, we performed colocalization on pairwise GWAS
summary statistics of 63 biomarkers and 30 clusters. We applied
the function ‘coloc.abf’ from the ‘coloc’ packages in R, which
assume that there is one causal signal in each input variant list.
The prior probabilities were set as defaults p1= 1 × 10−4;
p2= 1 × 10−4; p12= 1 × 10−5. We considered SNPs to be sig-
nificant with P < 1 × 10−5 in the GWAS statistics of 30 clusters as
the leading SNPs. The input SNP lists were chosen as all variants
scored by the GWAS within the flanking region of 1 Mb around the
leading SNPs. We filtered the colocalization results with posterior
probability of the fourth hypothesis where PP.H4 > 0.5 and
P < 1 × 10−5 in both GWAS statistics of the pairwise traits.63,64

Transcriptome-wide association study
We applied TWAS to infer genes whose expression may be altered
by significant SNPs identified in the GWAS analysis. The gene
expression imputation model was pre-trained using UTMOST
(https://github.com/Joker-Jerome/UTMOST) with 44 tissues in the
GTEx v6p data.65 We separately performed single-tissue associa-
tion tests on the GWAS summary statistics of 63 biomarkers and
30 molecular clusters using pre-trained weights and covariance
matrices for 44 tissues. Significant gene-level associations were
established as P < 1.0 × 10−7 (0.05/17,291/30) for clusters and
P < 5.0 × 10−8 (0.05/17,291/63) for biomarkers. Genes with abso-
lute z-scores >4 were reported in this study. To determine the
extent to which GWAS signals directly affect gene expression,
conditional analyses were performed for genome-wide TWAS
signals using FUSION.

Fine-mapping of causal gene sets
To fine-map the causal genes associated with traits, we ran FOCUS
(https://github.com/bogdanlab/focus) to perform a Bayesian test
on the TWAS statistics.66 The GWAS summary statistics of 63
biomarkers and 30 clusters were used as inputs. The weight
database integrated from FUSION and PrediXcan for FOCUS was
downloaded.67 The LD scores were selected as the East Asian LD
from 1000 Genomes Phase 3. For the 30 clusters, the P-value
threshold was set to 1 × 10−5 to filter the input GWAS statistics.
For 63 biomarkers, the default P-value threshold (5 × 10−8) was
used. Causal genes with PIP > 0.5 are reported in this work.

Prediction models for clinical outcomes across subpopulations
We applied a multilayer perceptron (MLP) composed of an input
layer, output layer, and three hidden layers with 128 neurons as a
binary classifier to predict clinical outcomes, including stroke
recurrence at 1 year and poor functional outcome at 3 months.
The top 500 SNPs associated with clinical outcomes and 63
biomarkers were selected to develop the polybiomarker predic-
tion models. The hyperparameter optimization of the model was
performed by a grid search with 3-fold cross-validation. With the
optimal hyperparameters, the model was trained using cross-
validation, wherein samples were subjected to a 10-fold split, in
which 90% of the samples were used for training and 10% of the
samples were used for evaluation. The model AUC from each
cross-validation split was averaged to estimate overall classifier
performance. The probability of stroke recurrence and poor
functional outcome for each individual was generated and
visualized on the UMAP.

Statistical analysis
The chi-square test and Fisher’s exact test was used to analyze the
associations of categorical variables and one-way analysis of
variance for the association with continuous outcomes. Tukey’s

multiple comparison test was used for the post-hoc analysis of
variance (ANOVA). Survival analysis was performed using the
Kaplan–Meier method with the log-rank test to examine
statistically significant differences between clusters. Cox propor-
tional hazards regression was used to calculate HRs and 95% CIs
for each cluster with reference to all other clusters. We applied the
Cox proportional hazards model to analyze the effects of
biomarkers (e.g., continuous covariates) on clinical outcomes.
Adjusted odds ratios (ORs) and 95% CIs were calculated using
logistic regression. All models were adjusted for age, sex, alcohol
consumption, smoking, history of stroke, dyslipidemia, diabetes
mellitus, hypertension, and coronary heart disease. Statistical
significance was defined as a two-sided P-value < 0.05.
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