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Bone marrow adipoq+ cell population controls bone mass via
sclerostin in mice
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Dear editor,
The comorbidity of obesity and osteoporosis illustrates the

communication and coordination of adipose and bone tissues.
Leptin and adiponectin derived from adipocytes regulate osteo-
blast formation and function to impact bone mass through direct
and indirect mechanisms.1 It is known that bone marrow
adipocytes (BMA) can control bone mass by modulating the bone
morphogenetic protein (BMP) and other signaling pathways.
BMAs can secret soluble factors, which impact osteoblasts,
osteoclasts, and osteocytes.2 Sclerostin is a potent inhibitor of
bone acquisition that antagonizes Wnt/β-catenin signaling.
Deleting sclerostin was recently reported to protect against
cardiovascular disease.3 Furthermore, neutralizing monoclonal
antibodies against sclerostin increase bone mass and are utilized
to treat osteoporosis. Previous studies revealed that global
ablation of sclerostin increased both trabecular and cortical bone
mass4 and that sclerostin produced by the osteocytes located in
the bone matrix negatively regulated bone mass in mice.5

However, it is not known whether sclerostin derived from other
cell types also contributes to bone formation.
Hence, we have explored the contribution of adiponectin-

expressing cells-derived sclerostin in control of bone mass by
ablating of Sost gene, which encodes sclerostin, using the Adipoq-
Cre that mainly targets adipose lineage cells. We found that mice
lacking sclerostin in adiponectin-expressing cells (SostAdipoq) had
similar body weight, fat mass, and organs weight compared to
their control littermates (Fig. 1a and Supplementary Fig. 1a–e). The
adipocyte size of peripheral adipose tissue was not markedly
impacted by Sost deletion (Fig. 1b). Results from the glucose
tolerance test and insulin tolerance test showed that Sost ablation
in adipoq+ cells did not affect the ability to clear blood glucose
(Supplementary Fig. 2a, b) and insulin sensitivity (Supplementary
Fig. 2c, d). These results demonstrate that sclerostin loss in
adipocytes has no marked effects on peripheral fat mass and
glucose metabolism.
Results from μCT analyses of skeleton revealed that SostAdipoq

mice did not show marked alteration in bone mass at 1 month of
age (Supplementary Fig. 3a-g). However, at 3 months of age,
SostAdipoq mice showed an increased bone mass (Supplementary
Fig. 4a–f). Moreover, at the age of 5 months, bone mass of
SostAdipoq mice was significantly increased compared to control
littermates, especially in female group (Fig. 1c). Sost deletion
significantly increased the femoral bone volume/total volume,
bone mineral density, trabecular number, and trabecular thickness
and decreased the trabecular separation without impacting the
cortical thickness (Ct.Th) (Fig. 1d, e and Supplementary Fig. 5a–d).
Note: The Ct.Th was reported to be significantly increased in the
global Sost knockout mice.4 The skull size and shape were similar
between the two groups (Supplementary Fig. 6a). Furthermore,
the spine bone mass was not affected by Sost deletion
(Supplementary Fig. 6b–g). Hematoxylin and eosin (H&E) staining

of the tibial sections revealed more trabecular bone in SostAdipoq

mice than in control littermates (Fig. 1f). We performed the calcein
double-labeling experiments and found that the tibial bone
formation was significantly accelerated in SostAdipoq mice, as
demonstrated by significant increases in the mineral apposition
rate, mineralizing surface per bone surface and bone formation
rate in SostAdipoq versus control mice (Fig. 1g, h and Supplementary
Fig. 7a, b). The increased bone mass in SostAdipoq mice could be
due to increased bone formation and/or decreased bone
resorption. Thus, we further determined the effect of sclerostin
loss on bone resorption. Tartrate-resistant acid phosphatase
staining of bone sections indicated that osteoclast formation in
SostAdipoq mice was comparable to that in control littermates
(Supplementary Fig. 8a, b). We further measured the serum levels
of collagen type I cross-linked C-telopeptide, a biomarker for bone
resorption, and observed no significant difference between the
two groups (Supplementary Fig. 8c). Osterix immunofluorescence
staining revealed more osteoblasts around the trabeculae in
SostAdipoq mice than in control littermates (Fig. 1i). We next
examined the effect of sclerostin loss on bone mass in mice with
ovariectomy (OVX). We found that Sost deletion ameliorated to
certain extent the osteoporotic phenotypes induced by estrogen
deficiency (Supplementary Fig. 9a–g).
The serum level of sclerostin protein was not significantly

different between the two genotypes (Fig. 1j). Furthermore, Sost
deletion did not change the serum levels of leptin and
adiponectin, which are known to impact bone mass (Fig. 1k, l).
Collectively, these results suggest the notion that it is unlikely
that the high bone mass in SostAdipoq mice is due to systemic
sclerostin loss. For this reason, we next analyzed the bone
marrow tissues of both genotypes. Consistent with results from
peripheral fat mass analyses, perilipin staining in bone marrow
was comparable, indicating that Sost deletion does not affect the
adipocyte number and size in bone marrow tissue (Supplemen-
tary Fig. 10). We found that Sost inactivation promoted the
formation of the bone morrow-derived colony-forming units-
fibroblast (CFU-F) (Fig. 1m, n) and colony-forming units-
osteoblast (CFU-OB) (Fig. 1o, p). IF staining showed that the
expression level of active-β-catenin protein was increased in KO
bone compared to that in control bone (Supplementary Fig. 11).
The expression levels of osteogenic marker proteins Runx2 and
osterix (Osx) and alkaline phosphatase (Alp) activity, an early
marker of osteogenesis, were dramatically increased in primary
bone marrow stromal cell (BMSC) cultures from SostAdipoq mice
compared to those from control mice (Fig. 1q, r). Notably, the
expression levels of adipogenic factors Ppar-γ and AP2 and the
adipogenic differentiation capacity of the BMSC cultures, as
determined by Oil Red O staining, were not affected by Sost loss
(Fig. 1s, t). Thus, for the first time to our knowledge, we establish
that the bone marrow adipoq+ cell population plays an
important role in promoting BMSC osteoblast differentiation
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and bone formation (Fig. 1u). This unique cell population in the
bone marrow may be a useful target for osteoporosis treatment.
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Fig. 1 a Fat mass of control and KO male mice at the age of 5 months. N= 6 for each group. b H&E staining of epididymal White Adipose
Tissue (eWAT), subcutaneous White Adipose Tissue (subWAT), and Brown Adipose Tissue (BAT) of control and KO female mice fed normal
chow diet for 5 months. Scale bar, 50 μm. c Three-dimensional (3-D) reconstruction from micro-computerized tomography (μCT) scans of distal
femurs from 5-month-old control and KO mice. Scale bar, 500 μm. Quantification of bone volume/tissue volume (d), bone mineral density (e).
N= 10 for female control; N= 5 for female KO; N= 7 for male control; N= 6 for male KO. f H&E staining of tibial from 5-month-old female
mice. Scale bar, 100 μm. g Calcein double labeling staining. Representative images of 5-month-old control and KO tibial sections. Scale bar,
50 μm. h Quantification of the bone formation rate of trabecular bone. i IF staining of osterix. Scale bar, 50 μm. Serum levels of sclerostin (j),
leptin (k) and adiponectin (l) from 5-month-old control and KO mice. N= 8 for female control; N= 5 for female KO; N= 6 for male each group.
m, n Colony forming unit-fibroblast (CFU-F) assays and quantification. o, p Colony forming unit-osteoblast (CFU-OB) assays and quantification.
Primary BMSC was obtained from 5-month-old control and KO female mice and cultured with osteoblast differentiation medium for 7 days.
Cells were used for ALP staining (q) and Western blot analysis with the indicated antibodies (r). N= 3 biologically independent experiments.
Primary BMSCs obtained from 5-month-old control and KO female mice were cultured with adipogenic medium for 7 days. Cells were used for
Oil Red O staining (s) and Western blot analysis with the indicated antibodies (t). Scale bar, 200 μm. N= 3 biologically independent
experiments. u A schematic illustrating how an adipoq+ cell population controls bone mass by producing sclerostin in the bone marrow
microenvironment. Figure created using BioRender.com. *P < 0.05, **P < 0.01, ***P < 0.001 vs. controls. Results are expressed as mean ± SEM
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