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Applications of synthetic biology in medical and

pharmaceutical fields

Xu Yan', Xu Liu?, Cuihuan Zhao' and Guo-Qiang Chen @®'>*™

Synthetic biology aims to design or assemble existing bioparts or bio-components for useful bioproperties. During the past
decades, progresses have been made to build delicate biocircuits, standardized biological building blocks and to develop various
genomic/metabolic engineering tools and approaches. Medical and pharmaceutical demands have also pushed the development
of synthetic biology, including integration of heterologous pathways into designer cells to efficiently produce medical agents,
enhanced yields of natural products in cell growth media to equal or higher than that of the extracts from plants or fungi,
constructions of novel genetic circuits for tumor targeting, controllable releases of therapeutic agents in response to specific
biomarkers to fight diseases such as diabetes and cancers. Besides, new strategies are developed to treat complex immune
diseases, infectious diseases and metabolic disorders that are hard to cure via traditional approaches. In general, synthetic biology
brings new capabilities to medical and pharmaceutical researches. This review summarizes the timeline of synthetic biology
developments, the past and present of synthetic biology for microbial productions of pharmaceutics, engineered cells equipped
with synthetic DNA circuits for diagnosis and therapies, live and auto-assemblied biomaterials for medical treatments, cell-free
synthetic biology in medical and pharmaceutical fields, and DNA engineering approaches with potentials for biomedical

applications.
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INTRODUCTION

The concept of synthetic biology was proposed in 1910s by
Stephane Le Duc.' In this field, research strategies have been
changed from the description and analysis of biological events to
design and manipulate desired signal/metabolic routes, similar to
the already defined organic synthesis. Unlike organic synthesis
successfully developed in the early 19™ century,® synthetic
biology is restricted by DNA, RNA and protein technology within
the complexity of biological systems. Today, synthetic biology has
been developed extensively. It becomes a multidisciplinary field
aims to develop new biological parts, systems, or even individuals
based on existing knowledge. Researchers can apply the
engineering paradigm to produce predictable and robust systems
with novel functionalities that do not exist in nature. Synthetic
biology is tightly connected with many subjects including
biotechnology, biomaterials and molecular biology, providing
methodology and disciplines to these fields.

The timeline of synthetic biology developments is summarized
here (Fig. 1). In general, the history of synthetic biology can be
divided into three stages. The initial stage was found across the
20th century. Although the simplest organisms such as virus
particles, bacteria, archaea and fungi were hard to engineer in the
20th century, some achievements were still acquired in the early
explorations including the synthesis of crystalline bovine insulin,®
chemical synthesis of DNA and RNA,* decoding of genetic codes’
and the establishment of central dogma of molecular biology.®
Synthetic biology has been accumulating its strengths in this
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period, as knowledge of genome biology and molecular biology
are developed rapidly at the end of the 20th century (Fig. 1).

The development stage begins in the 21°" century. In the first
decade of the new millennium, synthetic biology is known to
every biological researcher to include inventions of bioswitches,’
gene circuits based on quorum sensing signals,? yeast cell-factory
for amorphadiene synthesis® (Table 1), BioBrick standardized
assembly'® and the iGEM conferences'' (Fig. 1). Two principles in
synthetic biology designs have been considered in this stage
including bottle-up'? and top-down'? ones, referring to the de
novo creations of artificial lives by assembling basic biological
molecules and engineering natural-existed cells to meet actual
demands, respectively. However, most circuits are well-designed
but still not enough for producing complex metabolites or sensing
multiple signals, especially the applications are not well prepared
for medical and pharmaceutical usages. Anyhow, synthetic
biology is gradually becoming a most topical area, on the eve of
rapid developments.

The fast-growing stage begins from the 2010s, the emergences of
genome editing technologies especially CRISPR/Cas9,'* low-cost DNA
synthesis,'®> next-generation DNA sequencing'® and high-throughput
screening methods,'” workflows of design-build-test-learn (DBTL)'®
and progresses in engineering biology'® (Fig. 1), have allowed
synthetic biology to enter a fast-growing period,®° both in the lab-
scale discoveries and industry-scale productions. Typically, Venter et
al. assembled an artificial chromosome of Mycoplasma mycoides and
transplanted it to M. capricolum to create new living cells.?' Besides,
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1950s

*The “central dogma”

*DNA double helix structure discovery

*Lac operon discovery
*Genetic codes

1960s

1970s

*Genetic engineering
*Sanger sequencing

*Restriction enzyme discovery
*Recombinant DNA technology

J

1980s

*PCR technology

1990s

*mRNA vaccine

*Next generation sequencing

2000s

*CAR-T technology

*Synthetic Biology was defined

*Some genetic circle was developed
*Draft sequence of the human genome
*Engineered bacteria invade cancer cells

—_/ J U \

2010s

*Biosynthesis of drugs like artemisinin, morphine )
*More complex gene circuits was designed

*Synthetic therapeutic gene circuits in mammalian cell

*Optoregulated drug release from living materials

*Programmable living material from co-cultures

+Living biointerfaces for stem-cell differentiation Y,

2020s

*Deep-learning tools for antibody discovery
* Alpha-Go: prediction of protein and RNA structure
*Reversible reprogramming of cardiomyocytes

Fig. 1 Timeline of major milestones in synthetic biology. The timeline begins at 1950s and expands to 2020s. Important events are listed in

the right panels

new methods have accelerated the discovery and engineering of
metabolite biosynthesis pathways, microbial artemisinic acid synth-
esis has been made possible,>>?* which is the first industrialized plant
metabolite produced by microbial cells. To realize the ultimate goal
of design bio-systems similar to design electronic or mechanical
systems, this is just the beginning. More efforts are needed to
generate complex and stable biocircuits for various applications in
the present of synthetic biology.

Besides scientists, investors also have realized the potentials in
this field. Financial investments help establish synthetic-biology-
related companies encouraged by the prediction that the global
market of synthetic biology valued 9.5 billion dollars by 2021,
including synthetic biology products (e.g., BioBrick parts, synthetic
cells, biosynthesized chemicals) and enabling technologies (e.g.,
DNA synthesis, gene editing),®* they are expected to reach
37 billion dollars by 2026. Most investments focus on medical
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applications.”® Scientists and capital market are all optimistic
about the future.

Started from chemical biosynthesis, synthetic biology has been
expanded to cover areas in medical treatments, pharmaceutical
developments, chemical engineering, food and agriculture, and
environmental preservations. This paper focuses on the advances
of synthetic biology in medical and pharmaceutical fields,
including cell therapies, bacterial live diagnosis and therapeutics,
production of therapeutic chemicals, nanotechnology and nano-
material applications and targeted gene engineering.

GENETIC ENGINEERING OF THERAPEUTIC CHASSIS
Engineered mammalian cells for medical applications
With the advances in synthetic biology, researchers created
various novel therapies using living cell chassis rationally designed
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Fig.2 Development of smart living cells based on synthetic biology strategies. Smart cells can sense various environmental biomarkers, from
chemicals to proteins. External signals are transducted into cells to trigger downstream responses. The products are also in the form of
chemicals to proteins for customized demands. The sensing-reponsing system is endowing cells with new or enhanced abilities. P represents

promoters

from existing signaling networks with new constructs for their
purposes, including e.g. production of medical biomolecules,
synthetic gene networks for sensing or diagnostics, and program-
mable organisms, to handle mechanisms underlying disease and
related organism/individual events (Fig. 2). We highlighted here
synthetic biology strategies in mammalian cell engineering for
metabolic disorders, tissue engineering and cancer treatments, as
well as approaches in cell therapy and the design of gene circuits.

Therapies based on chimeric antigen receptor (CAR)-T cells. CARs
are engineered receptors containing both antigen-binding and T
cell-activating domains. T cells are acquired from patients and
engineered ex vivo to express a specific CAR, and followed by
transferring into the original donor patient, where theéy eliminate
cancer cells that surface-displayed the target antigen.”® CAR-T is a
novel cell therapy began from 2000s.*” The first generation of
CARs are single-chain variable fragments (scFv) targeting CD19.%
The development of artificial CARs comprises three generations.
The first-generation CARs only contain a CD3( intracellular
domain, while the second-generation CARs also possess a co-
stimulatory domain, e.g., 4-1BB or CD3( (Fig. 3). Studies with the
third-generation chimeric antigen receptors with multiple co-
stimulatory signaling domains are also under investigation
(Fig. 3).?° Because scFvs have the ability to recognize cell surface
proteins, the targeting of tumors mediated via CAR-T cell is neither
restricted nor dependent on antigen processing and presentation.
CAR-T cells are therefore not limited to tumor escaping from MHC
loss. For cancer immunotherapy, the main advantage of employ-
ing CAR-based methods is attributed to that the scFv derived from
antibodies with affinities several orders of magnitude higher than
conventional TCRs.3® In addition, CARs can target glycolipids,
abnormal glycosylated proteins and conformational variants that
cannot be easily recognized by TCRs. Based on clinical trial results,
there is an increasing evidence that CAR-T cells have the ability to
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deliver powerful anti-tumor therapeutic effects, leading to the
recent FDA approval of CAR-T therapies directed against the CD19
protein for the treatment of acute lymphoblastic leukemia (ALL)
and large B-cell lymphoma (DLBCL).

In addition, CAR-T applications are stepping into commerciali-
zation. The first approved CAR T-cell therapy was Kymriah which is
CD19-targeted for treating DLBCL developed by Novartis and
University of Pennsylvania3' DLBCL is a typical form of non-
hodgkin lymphomas (NHL) that consist of 40% of total lympho-
mas.>? The FDA also approved Yescarta (axicabtagene ciloleucel)
in 2017 for DLBCL treatments.®® In the clinical studies, patients
with DLBCL were treated with the CD19-targeted CAR T-cells, with
25% partial responders and more than 50% complete respon-
ders3*3> Durable responses of over two years were observed,
indicating the therapeutic effects of the CAR-T cells. However,
cytokine storm, an excessive release of pro-inflammatory cyto-
kines, was observed in Yescarta treated patients (13%)3¢
indicating the safety needs to be improved.

The selection of target antigen is the determinant in CAR-T cell
therapies.®’~3° If CAR-T cells can recognize protein expressed on
non-malignant cells, severe cell toxicities could occur with the off-
target activities.** The optimal target antigen is the one that is
consistently expressed on the surface of cancer cells but not on
the surface of normal cells.3*'*? Multiple myeloma is hard to
treat via chemicals or stem cell transplantation.”*** CAR-T cell
therapies are effective for multiple myeloma in preclinical
studies.”> However, to date, no antigen has been characterized
that is strongly and constantly expressed on multiple myeloma
cells but not on somatic cells. Among the antigens used so far, a
member of the TNF superfamily proteins, B cell maturation
antigen (BCMA), is the most favorable candidate for a multiple
myeloma cell-directed CAR-T therapy target.*”***” BCMA is
expressed in cancer cells in almost all multiple myeloma patients,
the expression of this antigen on somatic cells is limited to plasma
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CD28tm

Fig. 3 Synthetic biology in the designs of chimeric antigen receptors (CAR). a The AND gate used in artificial CARs. Three typical CARs i.e.
Costimulation domain-based second-generation CAR, synNotch receptor-assisted CAR with multiple recognization mechanisms and chimeric
costimulation receptor (CCR)-based CAR are exhibited from left to right. b The artificial CARs with inhibitory CAR (iCAR) system. The system
can prevent recognizing self-antigens on somatic cells. ¢ The artificial CARs sensing different tumor antigens. Two ScFvs recognizing different
targets are tandemly fused, the engineered CAR can be triggered by multiple antigens. The figure is inspired by the paper*®®

cells and some kinds of B cells.*>*® BCMA was the first antigen for
multiple myeloma to be used in a clinical trial via a CAR-T cell
approach leading to systematic responses in patients with this
cancer.**#>* Twelve patients received BCMA CAR-T cells in the
dose-gradient clinical trial. Two patients treated with 9 x 10° CAR-
T cells’/kg body weight were obtained with good remissions,
though the treatment had toxicity related to cytokine storms.*®
Many clinical trials investigating the safety and/or efficacy of anti-
BCMA CAR-T cells are currently ongoing or finished.
Idecabtagene vicleucel (Abecma, also abbreviated as Ide-cel) is
developed by Bristol-Myers Squibb, uses the anti-BCMA 11D5-
3 scFv, the same as the 11D5-3-CD828Z CAR tested at the NCI.*
However, the co-stimulatory domain is different, the CAR used in
idecabtagene vicleucel is delivered using a lentivirus vector and
has a 4-1BB co-stimulatory domain instead of a CD28 one.*® In a
multicenter phase | trial for idecabtagene vicleucel,***' the
therapy is highly effective for treating multiple myeloma patients.
A phase Il trial named KarMMa, designed to further evaluate the
safety and ability of idecabtagene vicleucel, is undergoing.>® The
initial results of KarMMa demonstrates its deep, durable responses
in heavily pretreated multiple myeloma patients.>* Efficacy and

Signal Transduction and Targeted Therapy (2023)8:199

safety were reflected in early reports, supporting a favorable
idecabtagene vicleucel clinical benefit-risk profile across the target
dose range in primary clinical results.

Receptor engineering in medical therapies. SynNotch receptors are
a class of artificially engineered receptors that are used in medical
applications  (Fig. 3)>% Notch receptors are transmembrane
receptors participating in signal transductions,>® comprising an
extracellular domain, a transmembrane and an intracellular
domain.>> The transmembrane and intracellular domains are
usually retained in synNotch architects,*® whereas the signal-input
extracellular domain is engineered to sense scFvs and nanobo-
dies,”” providing possibilities of recognizing agents to initiate
signaling in living cells.

Also, the modular extracellular sensor architecture (MESA) was
developed intending to detect extracellular free ligands>**® based
on the synNotch idea. MESA designs have two membrane proteins
each containing an extracellular ligand-binding domain which
senses the chemicals or proteins and can be a small molecule-
binding domain or antibody based sensing module, a transmem-
brane domain and either an intracellular transcriptional factor with
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relasing ability from the complex, protease recognition sequence
or a protease. After ligand binding to the extracellular domain,
MESA receptors dimerize and induce an intracellular proteolytic
cleavage that allows the transcriptional factor dissociate for
downstream regulations. The method allows more flexible sensor
designs without limiting to Notch receptors. This system has also
been remade recently to signal transduction via a split protease®®
or split transcriptional factor patterns.®® The synNotch design has
been constructed with a series of receptors called synthetic
intramembrane proteolysis receptors (SNIPRs) containing domains
from other natural receptors other than mouse Notch protein that
are also cleavable by endogenous proteases.®’ Similiar to
synNotch, SNIPRs bind to their antigens and function via
dissociating a transcriptional factor to sense cell and immune
factors.®? For synNotch, SNIPR and MESA, the choice of ligand-
binding domains and transcriptional factor domains enables
customization of both sensing (signal input) and function (signal
output) steps when using the systems. SNIPR and MESA also
enrich the available engineering tools for the artificial receptor-
effectors. However, some limitations still remain such as high
background signals, off-target effects, the immunogenicity from
the murine Notch protein, the large size of artificial receptors and
transcriptional regulators.”®°"%3 Many efforts are needed to
improve the system.

Receptor engineering applications are commonly related to
CAR-T therapies. The receptors can be designed to target two
specific antigens, one using the synNotch and the other via a
traditional CAR. In preclinical models, T-cells engineered for
targeting dual-antigen expressing cells are established.®* TEV
protease can be fused to MESA receptors, cleaving the transcrip-
tional factor off for functionalization.®® A humanized synthetic
construct can reduce immunogenicity and minimize off-target
effects. Zhu et al. constructed a framework for human SNIPRs with
future applications in CAR-T therapies, preventing CAR-T cells from
being activated via non-tumor signals.®’ Besides the above
synthetic receptors, based on the same idea, Engelowski et al.
designed a synthetic cytokine receptor sensing nanobodies by the
fusion of GFP/mCherry nanobodies to native IL-23 intracellular
domains.®® Another receptor engineering strategy is to rewire
receptor-transduced signals to novel effector genes. Using a scFv
complementary to VEGF, the engineered receptor senses VEGF
and released dCas9 protein, then the IL-2 expression are up-
regulated. The system is successfully explored in Jurkat T cells.>®

The HEK-B cells used for diabetes treatments. -cells are existing in
pancreatic islets that synthesize and secrete insulin.%® As the only
site of insulin synthesis in mammals, B-cells sense blood glucose
using a signal transduction pathway that comprises glycolysis and
the stimulus-sensing-secretion coupling process.®”°® The secre-
tion of insulin is consisted with the following steps. Blood glucose
is transported into B-cells and metabolized via glycolysis inside
the cell, resulting in cell membrane depolarization, energy
generation and closing of K*ATP channels, which activates the
calcium channel Cav1.3 to induce calcium influx with the secretion
of insulin granules. The excessive blood-glucose concentration in
diabetes patients is from the deficiency of insulin-producing 8
cells for type 1 diabetes, or from low insulin sensitivity of body
cells for type 2 diabetes®® Using a synthetic biology-based
multiple screening approach, Xie et al. engineered human kidne

cells HEK-293 to sense blood glucose levels for insulin secretion.”®
The design combines automatic diagnosis and treatment in
diabetes therapy. The researchers demonstrated that overexpres-
sion of Cav1.3 provided the pathway for constructing a -cell-like
glucose-sensing module in somatic cells.”® The combination of
Cav1.3-controlled calcium and a synthetic Ca®*-inducible promo-
ter allowed the monitoring of glucose levels using a tuned in vivo
transcriptional response. After the construction of artificial HEK-
293-B cells, the cell line HEK-293-B for glucose-response insulin
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production which maintained glucose homeostasis for over
3 weeks, via implanting the cells intraperitoneally to mice, also
auto-corrected diabetic hyperglycemia within 3 days in T1D mice
in this study.

The advantages of HEK-293-f cells are clear. Compared to
primate pancreatic islets, HEK-293-B cells were adequately
efficient in stabilizing postprandial glucose metabolism in T1D
mice. Moreover, HEK-f3 cells are more easily for cultivation in vitro.
It is expected that the engineered human cells have the prospect
to be produced easily, cost-effectively and robustly, following
current rules and regulations for pharmaceutical manufacturing,
allowing the production of ready-to-use commercials with good
properties for product purity, stability and quality. This highly
innovative engineered cell raises the possibility that any cell type
could be rationally reprogramming to achieve customized abilities
such as blood glucose control.

The induced pluripotent stem cells (iPSCs) for medical applications.
Synthetic biology also helps in generating human stem cells via
overexpressing certain de-differentiation-related genes. One of
the applications is the induced pluripotent stem cells. iPSCs are
pluripotent stem cells generated from somatic cells.”! Pioneered
by Yamanaka's lab, the introduction of four transcriptional factors
including Oct3/4, Sox2, c-Myc, and KIf4, resulted in changing
fibroblasts to embryonic stem (ES)-like cells,”> which can re-
differentiate into blood cells, bone cells or neurons for possible
treatment of damages to various tissues and organs.”® iPSCs are
not created using human embryos, circumvented ethical concerns
in contrast with ES cells.’”* Additionally, autologous somatic cell-
derived iPSCs avoid immunological rejections.””

iPSCs are self-renewable with continuous subculture proper-
ties.”® The somatic cell samples from patients are induced into
iPSCs able to serve as an unlimited repository for medical
researches. The iPSC cell lines for Down'’s syndrome and polycystic
kidney disease are established.”””® An project termed StemBANCC
calls for collections of iPSC cell lines for drug screening.”® Various
applications combined with therapeutic chemicals and iPSC cell
lines are undergoing high-throughput drug screening and
analysis 2%

iPSCs are aimed to be used for tissue regeneration and therapy
developments. Type O red blood cells can be derived from iPSCs
to meet demands for blood transfusion.®> When cancer patients
require large quantities of NK cells in immunotherapies, the cells
can be manufactured using iPSCs to circumvent their low
availabilities.®® The anti-aging effects of iPSCs are observed during
mouse studies.®* The chemical-induced differentiation of iPSCs to
cardiomyocytes has been commonly used®® These iPSC-
cardiomyocytes are recapitulated with genetic codes in patients
whom they derived, allowing the establishment of models of long
QT syndrome and ischemic heart disease.2>®¢ Cord-blood cells can
be induced into pluripotent stem cells for treating malfunctional
mice retina,®’” re-differentiated iPSCs are employed to cure brain
lesions in mice with their motor abilities regained after the
therapy.®

iPSCs are successfully used for organ regeneration, for example,
ex vivo cardiomyocytes can be used to regenerate fetal hearts to
normal hearts via the Yamanaka's method.?* Human “liver buds”
can be generated from three different cells including iPSCs,
endothelial stem cells and mesenchymal stem cells.’® The bio-
mimicking processes made the liver buds self-packaging into a
complex organ for transplanting into rodents. It functions well for
metabolizing drugs.”’

Some iPSC applications are advanced to clinical stages. For
example, a group in Osaka University made “myocardial sheets”
from iPSCs, transplanted them into patients with severe heart
failure, the clinical research plan was approved in Japan,®? patients
are under recruiting. Additionally, two men in China received iPSC-
differentiated cardiomyocytes treatments.”> They were reported
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Reference

Applications Stages

protein tag was added to the 3’
end of the nanobody sequences.

Genetic manipulations
The five effector genes were

Microorganism type

Main features

continued

Table 3.

465

N.A.

Malaria prevention

Serratia AS1

Serratia AS1 was genetically engineered for

Engineering of symbiont

bacteria in mosquitos to control secretion of anti-Plasmodium effector proteins,

malaria

cloned in a single construct,
(MP2),-scorpine-(EPIP) 4~-Shiva1-

and the recombinant strains inhibit

(SM2),, under the control of a

single promoter.

development of Plasmodium falciparum in

mosquitoes.

466

Pre-Clinical

Prevents Vibrio cholerae

Express the gene cgsA, under

Escherichia coli Nissle 1917 to express the auto E. coli Nissle 1917

inducer molecule cholera autoinducer 1(CAI-1)

to increase the mice’s survival in cholera

infections

Engineered bacterial

control of the native constitutive virulence

promoter Pgic

communication prevents Vibrio

cholerae virulence

467

N.A.

N.A.

An anhydrotetracycline (aTc)-
inducible transcriptional

Noninvasive assessment of gut A CRISPR-based recording method (Record-seq) E. coli MG1655

function: Record-seq

to capture the transcriptional changes that

recording plasmid consisted of
FsRT-Cas1-Cas2 and CRISPR

arrays

occur in Escherichia coli bacteria as they pass

through the intestines

N.A. not applicable

SPRINGERNATURE

to be in good condition although no detailed data are revealed.”
iPSCs derived from skin cells from six patients are reprogrammed
to retinal epithelial cells (RPCs) to replace degenerated RPCs in an
ongoing phase | clinical trial.>* Similarly, phase | clinical trials are
also undergoing for thalassemia treatment using autologous iPSCs
differentiated hematopoietic stem cells,®® patients are recruiting.
Till now, no Phase Il study on stem cell-related therapy has been
conducted. The major concern is the safety of iPSCs with the
carcinogenic possibilities: teratoma has been observed in iPSCs
injected mice,”® low-induction efficiency, incomplete reprogram-
ming of genomes, immunogenicity and vector genomic integra-
tions are also issues of concerns.””>® More efforts are required for
clinical applications.

Synthetic biology in tissue engineering. Tissue engineering aims to
repair damaged tissues and restoring their normal functions. The
use of synthetic biology in tissue engineering allows control of cell
behaviors. Artificial genetic constructs can regulate cell functions
by rewiring cellular signals. As engineered cells are building blocks
in tissues with special properties to achieve smarter functions,
synthetic biology allows complex tissue engineering for new
medical studies.

By overexpression of functional genes or transcriptional factors,
stem cells can differentiate to generate specific tissue cells
successfully.”® This is a simple and common way in stem cell-
based tissue engineering. However, the gene overexpression lacks
feedback control mechanisms to avoid excess nutrient consump-
tion or cell toxicity.'® For an instance, constitutive overexpression
of the anti-apoptotic factor Bcl-2 leads to tumorigenesis
risks.'®192 CRISPR/dCas9 bioswitches or synthetic mRNAs are
found able to solve the problem via time and spatial-specific
expression of genes.'>'%* Moreover, introductions of genetic
circuits sensing small molecules or cell-surface proteins are well
studied, especially Tet repressor-based system.'% Gersbach et al.
designed a Tet-off system controlling Runx2 factors that can
regulate the in vivo osteogenic processes.'® Yao et al. employed a
Tet-on system to express Sox9 specifically in engineered rat
chondrocytes, Sox9 is a key factor maintaining chondrocyte
viability, activating the protein expressions for type Il collagen and
aggrecan in cartilage tissue engineering.'®”” Chondrocyte degrada-
tion was inhibited after Dox (Tet system inducer) injection in
implanted cell scaffolds.'®” The Tet-on system is also used for
overexpressing interleukin-1 receptor antagonist (IL-1Ra) gene to
modulate inflammatory cytokines during the chondrogenesis
processes in cartilage repairs'®® (Table 2). Tet-switches have aided
elapsed time controllable gene expressions for tissue engineering.

The optogenetic induction systems are also used in the
control of cell behaviors in tissue engineering. Light inducible
proteins are able to respond to UV and far-infrared lights,
making light induction applicable.”® Various optogenetic
circuits are constructed by fusing light-sensitive motifs to
well-characterized transcriptional factors."'®"'" Spatial-specific
gene activation has been successfully employed to guide the
arrangement of cells."'? Sakar et al. used blue light-induced
channel rhodopsin-2 to achieve dynamic and region-specific
contractions of tissues.''® The optogenetic control of engi-
neered murine-derived muscle cells offers remote gene
activation or silencing via the light-sensitive membrane Na™
channel and ion-inducible downstream elements for tissue
engineering.

Inspired by successes of CAR-T cells, G protein-coupled
receptors (GPCRs) are engineered to sense artificial ligands for
tissue engineering."' Park et al. successfully designed and
used a GPCR sensing clozapine-N-oxide (CNO) in primary cells
for the control of cell migration in response to CNO
concentration gradients."’ This technology could make a
valuable module for wound healing and cell regeneration.
Synthetic biology makes possible to program cells to

Signal Transduction and Targeted Therapy (2023)8:199



multicellular structures in a self-assembly manner.''® Toda
et al. employed synNotch methods to engineer cell adhesion
signals in a population of mouse fibroblasts that were turned
into multilayers and polarized according to the synNotch
receptor types.'"”

Besides cells, biomaterials are commonly used in tissue engineer-
ing, served as scaffolds and bio-mimicked organs.'’® the auto-
modulation characteristics of biomaterials in response to stimuli or
chemical compounds are useful in biomaterial-based tissue
engineering. Baraniak et al. engineered the B16 cell line with a
green fluorescent protein (GFP) reporter induced by RheoSwitch
Ligand 1 (RSL1), which was coated on poly(ester urethane) films,
allowing GFP activation for up to 300 days on the film.""® Deans
et al. constructed an isopropyl-3-d-thiogalactoside (IPTG)-induced
Lac-off system in Chinese hamster ovary (CHO) cells, and IPTG
encapsulated in poly(lactide-co-glycolide) (PLGA) scaffolds or PEG
beads was released in a sustainable manner. The reporter gene
indicated that the induction lasted over 10 days in mouse models
implanted subcutaneously into the dorsal region,'® the GFP
fluorescence level was observed to be controlled by its locations.'?’
The spatial-induced gene expression regulation has become a
design-of-concept in many applications like cartilage repair and
in vivo 3D cell scaffolds.

In summary, expressions of biological circuits could generate
functionalized cells for tissue engineering. Multiple synthetic biology
designs e.g. time and spatial-dependent gene expression, induction
and autoregulation systems and smart biomaterials are available in
this field. The state-of-the-art development still remains with many
obstacles from moving truly synthetic tissues into clinic, but at least
some foundations are settled for future studies.

Engineered bacterial cells for therapeutical applications
Synthetic biology approaches have promoted genetically engi-
neered bacteria for novel live therapeutics (Fig. 2).*? Bacteria
containing synthetic gene circuits can control the timing,
localization and dosages of bacterial therapeutic activities sensing
specific disease biomarkers and thus develop a powerful new
method against diseases.'?> Synthetic biology-based engineering
methods allow to program living bacterial cells with unique
therapeutic functions, offering flexibility, sustainability and pre-
dictability, providing novel designs and toolkits to conventional
therapies.'** Here some advances are presented for engineered
bacterial cells harboring gene circuits capable of sensing and
transduction of signals derived from intracellular or extracellular
biomarkers, also the treatments and diagnosis based on these
signaling pathways. The concept of bacterial cell-based live
therapeutics and diagnostics are rapidly growing strategies with
promises for effective treatments of a wide variety of human
diseases.

Engineered bacterial cells in cancer diagnosis and treatments.
Some anaerobic/facultative anaerobic bacterial cells are good
candidates for tumor treatments. They can target the anaerobic
microenvironment of tumors, they also have the tumor lysis-
inducing and trigger inflammation abilities useful in fighting
against solid tumors.'?> Engineered microbes can become suitable
tools for cancer in vivo diagnosis. Danino et al. engineered E. coli
with LacZ reporter gene, the bacterium produces LacZ when in
contact with tumor cells. Subsequently, mice were injected with
chemiluminescence substrates for LacZ (Table 3). The lumines-
cence is enriched in the urine to generate red color."*® The
method is more sensitive than microscopes as it can detect
tumors smaller than 1 cm. Similarly, Royo et al. constructed a
salicylic acid-induced circuit converting 5-fluorocytosine to toxic
products in attenuated Salmonella enterica for tumor killing.'*’
Salmonella enterica localized in tumor tissues after the injection,
with the additional providing of salicylic acid (inducer) and
5-fluorocytosine (substrate), tumor cells were eliminated via the
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formation of 5-fluorouracil from the bacterial cells.

To improve the effects of bacteria-based cancer therapies, some
studies aim to further enhance bacterial tumor tropism.'*® Some
bacteria have natural affinity for the anaerobic environment of
solid tumors, like E. coli or attenuated Vibrio cholerae, Salmonella
typhimurium, and Listeria monocytogenes.'*® However, the affinity
is not sufficient for targeted therapies, bacterial cells in vivo are
still dispersed in general. They can be augmented by introducing
synthetic surface adhesins targeted to bind cancer-specific
molecules like neoantigens or other chemicals or proteins that
are enriched in cancer cells, not accumulated in somatic cells.
Engineering of adhesins are demonstrated to be effective in
enhancing bacterial tumor reactions. The adhesins are membrane-
displayed proteins with extracellular immunoglobulin domains
that can be engineered via library directed evolution screens.
Pifero-Lambea et al. constructed a constitutive genetic circuit in E.
coli with an artificial adhesin targeting green fluorescent protein
(GFP) as the evidence of a proof of concept, it demonstrated the
abilities from that binding of the cell membrane-engineered
bacteria to GFP-expressing Hela cells are successful both in vitro
and in mice.* Importantly, the intravenous delivery of this
engineered bacteria to mice resulted in effective and efficient
colonization in xenografted solid tumors of Hela cells at a dose
100 times lower than that for a bacterial strain expressing an
irrelevant control adhesin, or for the wild-type strain, suggesting
that similarly engineered bacteria can be used to carry therapeutic
agents to tumors at low doses with marginal potential systemic
basal toxicities.'**'*' However, few tumor-targeting bacteria have
entered clinical stages. The facultative anaerobe Salmonella
typhimurium VNP2000, has been engineered for safety with anti-
tumor abilities in pre-clinical studies,'*? yet it failed in the phase |
clinical trial for marginal anti-tumor effects and dose-dependent
side effects.’”®®* Some other clinical investigations based on
bacteria Clostridia novyi-NT or Bifidobacterium longum APSOO1F
are ongoing or recruited for their phase | trials.">*

Engineered bacterial cells for diabetes diagnosis and treatments.
Bacteria have been engineered to detect glucose concentrations
for diabetes. Courbet et al. described an approach in sensing
abnormal glucose concentrations in human urine samples.'®
They encapsulated the bacterial sensors in hydrogel beads,
glucose in urine will change the color to red in beads. The
in vitro bacterial glucometer has found outperforming the
detection limit of urinary dipsticks by one order of magnitude.
Some proteins and peptides are biosynthesized in engineered
gut bacteria for diabetes treatments. The engineered probiotic L.
gasseri ATCC 33323 produced GLP-1 protein, the bacterium is
orally delivered to diabetic rats,'*® demonstrating a down-
regulation of blood glucose levels to 33%. Similarly, engineered
L. lactis FI5876 was reconstructed to biosynthesize and deliver
incretin hormone GLP-1 to stimulate B-cell insulin secretion under
conditions of high glucose concentrations. Results showed the
glucose tolerance is improved in high-fat diet mice.'*” The
probiotic L. paracasei ATCC 27092 is engineered to secret
angiotensin (1-7) [Ang-(1-7)], increasing the concentrations of
Ang-(1-7) (an anti-inflammatory, vasodilator and angiogenic
peptide phamarceutical), and reduced the side effects on retina
and kidney in diabetic mice, as the insulin production level is
increased after oral administration of the bacteria. Following the
design, oral uptake of engineered B. longum HB15 which produces
penetratin (a cell-penetrating peptide with the ability of enhan-
cing delivery of insulin), and GLP-1 fusion protein also enhanced
the production of GLP-1 in the colorectal tract.'*4'"° [, paracasei
BL23 was also successfully designed to produce monomer GLP-1
analogs displayed to the bacterial membrane via fusing GLP-1 to
peptidoglycan-anchor protein PrtP, the engineered bacteria
enhanced glycemic control in rats with diabetes. However, the
efficacy is still limited and needed further investigations.'*’ In
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addition to GLP-1, some other proteins like the immunomodula-
tory cytokine IL-10 along with human proinsulin were simulta-
neously introduced to engineered L. lactis MG1363, the
combination therapy with low-dose systemic anti-CD3 allowing
reversal of irrequlated self-autoimmune triggered diabetes in non-
obese diabetic mice."**'** This design could possibly be effective
for the treating of type 1 diabetes in human.

Engineered bacterial cells for diagnosis and treatments of gastro-
intestinal diseases. Probiotics can be used to treat inflammatory
bowel disease (IBD).'** IBD is chronic inflammation of tissues in
the digestive tract, including ulcerative colitis and Crohn’s disease.
Patients are suffering from diarrhea, pain and weight loss.
Synthetic biology approaches and ideas help bacteria acquire
more powerful abilities against gastrointestinal diseases. Pra-
veschotinunt et al. designed an engineered E. coli Nissle 1917
(EcN) that produces extracellular fibrous matrices to enhance gut
mucosal healing abilities for alleviating IBD in mice.'* Curli fibrous
proteins (CsgA) were fused with trefoil factor (TFF) domains to
promote the reconstruction of cell surface, and the bacterium
could produce fibrous matrices via the in situ protein self-
assembly of the modified curli fibers. The results revealed that the
designed EcN significantly inhibited the production of pro-
inflammatory cytokines, alleviated the weight loss of mice,
maintained colon length, demonstrating its anti-inflammation
ability in the dextran sodium sulfate (DSS)-induced acute colitis
mouse model. The design could be expanded to a general
approach for probiotic-based live therapeutics in IBD treatments.

Bacteria are feasible to be engineered to directly eliminate
pathogens for preventing infectious diseases in gastrointestinal
tracts. Pseudomonas aeruginosa is a common multidrug-resistant
pathogen difficult to treat. Engineered EcN has been employed for
the detection, prevention and treatment of gut infections by P.
aeruginosa.'*® The designed EcN was able to sense the biomarker
N-acyl homoserine lactone produced by P. aeruginosa, and
autolyzed to release a biofilm degradation enzyme dispersin and
pyocin S5 bacteriocin to eliminate the pathogen in the intestine.
Moreover, the reprogrammed bacteria displayed long-term (over
15 days) prophylactic abilities against P. aeruginosa and was
demonstrated to be more useful than treating a pre-established
infection in mouse models. 3-Hydroxybutyrate (3HB) is a
component of human ketone bodies with therapeutic effects in
colitis. Yan et al. constructed an EcN overexpressing 3HB
biosynthesis pathway.'*” Compared to wild-type EcN, the
engineered E. coli demonstrated better effects on mouse weights,
colon lengths, occult blood levels, gut tissue myeloperoxidase
activity and proinflammatory cytokine concentrations.'”” How-
ever, the studies are the preliminary results in mice, they have not
reached clinical trials yet. Further efforts are needed to evaluate
their applications in human.

Engineered bacterial cells for metabolic disorders.
microbes also have been used to target metabolic disorders.
coli was designed to treat obesity synthesizing anorexigenic lipids
precursors in mice with high-fat diet."*® Some efforts are made to
degrade toxic compounds accumulated in patients via live
bacteria. Kurtz et al. engineered an E. coli Nissle 1917 strain for
converting ammonia to L-arginine in the intestine and reducing
systemic hyperammonemia in both mouse and monkey mod-
els.’”® Isabella et al. reprogrammed E. coli Nissle 1917 to
overexpress phenylalanine degradation pathway to metabolize
excess /phenylalanine in phenylketonuria (PKU) patients. In the
Pah®"'#€n42 pKy mouse model, oral uptake of the engineered
bacterium significantly down-regulated blood phenylalanine
concentration by 38%."'

Alcoholic liver disease is the major cause of liver disorders,
widely risking the health of heavy drinkers.? The engineered
Bacillus subtilis and L. lactis could be employed to express ethanol

Engineered gut
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degradation pathway (alcohol dehydrogenase and aldehyde
dehydrogenase) for the detoxification of alcohol and alleviate
liver injury from alcohol overconsumption.'>* Moreover, the lectin
regenerating islet-derived 3 gamma (REG3G) protein is decreased
in the gastrointestinal tract during chronic ethanol uptake. L.
reuteri was designed to overexpress the interleukin-22 (IL-22)
gene, which increased REG3G abundance in the intestine, reduced
inflammation and damage in liver using an alcoholic liver disease
mouse model.'**

Synthetic biology approaches have allowed the construction
and design of engineered live biotherapeutics. Many cases are
targeting future clinical applications. The examples discussed here
indicate that, with the development of circuit designs and
understanding in microorganism hosts, researchers can construct
live biotherapeutics that function in a precise, systematic,
inducible and robust manner. However, many efforts are still
needed to weaken bacterial toxicity and increase the controll-
ability in vivo.

SYNTHETIC BIOLOGY IN THE FABRICATION OF EMERGING
THERAPEUTIC MATERIALS

Besides engineered cells, engineered nanomaterials are also
commonly used in medical fields. Nanobiotechnology aims to
solve important biological concerns similar to drug delivery,
disease diagnosis and treatment based on its unique physical,
chemical and biological properties of micro-nano scale materi-
als'>>'*® (Fig. 4). Nanomaterials possess unique mechanical,
magnetic and electronic properties, able to respond to external
signals, controlling their downstream circuits.'®” However, tradi-
tional nanomaterials are generated from physical and chemical
processes, the solvents and modifying molecules are frequently
causing bio-safety issues.'*® Recently, biological nanomaterials
have been developed exhibiting their advantages in environmen-
tally friendly, enhanced biocompatibility and bioactivity, and low
tissue toxicity under the guidance of synthetic biology.'*® Based
on synthetic biology concepts and approaches, the genetic
engineered bacteria,'®® yeast'®' and tobacco mosaic virus'®?
(TMV) can serve as bio-factories for nanomaterials.'®®> Mammalian
cell-derived vesicles and nanoparticles have suitable biocompat-
ibility, also commonly used as nanomedicines.'®* Biological
materials can be constructed and engineered with the help of
synthetic biology, extending their application scenarios in modern
disease treatments.

Synthetic biology in the artificial organelles

Following the principles of synthetic biology, biocatalysis or
trigger-sensing modulus nanoparticles can be processed to self-
assembly organelles,'®>'°® which are biomimicry of characteristics
of living cells like enzyme reaction compartmentalization and
stimuli-responses (Fig. 4). The design also provides new inputs for
constructing  artificial cells.'” Additionally, combinations of
artificial organelles and engineered living cell chassis including
CAR-T cells and engineered bacteria, the nano-living hybrid
system can exert its dual effects to enhance therapeutic results
or more strictly control of artificial systems.

Polymersomes are artificial hollow vesicles made by amphiphilic
polymers, using as shells of artificial organelles. van Oppen et al.
employed a polymersome-based system that was anchored with
cell-penetrating peptides on its outer membrane. The artificial
organelles possess inside catalase, allowing degradation of
external reactive oxidative molecules, perform as a synthetic
organelle, protecting the cells from ROS damages triggered via
H,0,, which showed abilities in uptaking by human primary
fibroblasts and human embryonic kidney cells."®® A similar design
relying on polymersomes equipped with two enzymes and related
transmembrane channels, was used to mimic cell peroxisomes.
These organelles were able to deal with both H,0, and superoxide
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radicals. The results further demonstrated the feasibility of artificial
organelle with catalase activity. Based on similar ideas, engineered
polymersomes may play a role in treating medical conditions
including Parkinson’s, Alzheimer’s, Huntington’s, metabolic dis-
eases, cancers and acatalasemia via harboring various therapeutic
proteins inside of the artificial organelles.’®'7°

Moreover, the fusion of nanobiotechnology and synthetic
biology may achieve novel functions. First, researchers can create
“artificial lives” via assembling nanoparticles following the “bottle-
up” principle. The idea can be applied in constructing biological
components using inorganic scaffolds and functional nanomater-
ials with nucleic acids and protein inside of the nanoparti-
cles."””"'72 The “top-down” principle, or engineering natural cells
for actual demands, can be used as a guidance when using
nanomaterials in living cells for chimeric biological systems to
increase the robustness, stability and sensitivity in specific medical
applications.

Constructing nanoparticle-mediated genetic circuits
Auto-responses can be achieved via internal environmental
stimulus to induce genetic switch ON/OFF'”® (Fig. 4). However,
the irreversible situation of genetic switches is a common and
difficult problem.'”*'”> To circumvent the weakness of genetic
constructs, nanoparticles are employed to sense signals for the
transductions in vivo. Light, sound, heat and magnet stimuli are
easy to respond for nanoparticles, they can be used as inducer
systems for solid tumor and diabetes treatments. Yet the spatial-
specific induction is hard for physical stimulus.'”® Overall, via
combining the advantages of genetic sensor and nanoparticles, it
is feasible to convert physical stimuli into genetic switch with
specified input signals by introducing nanoparticles for signal
transduction, and the time-spatial control of gene expressions are
realized."””

Near-infrared (NIR) light-responsible gene circuits are feasible
for in vivo therapeutical applications for their better transmission
of NIR light able to penetrate tissues and lower toxicity.'”® NIR-
sensing protein is identified in plants and bacteria, like the
bacterial phytochromes (BphPs).'”® However, NIR-sensing proteins
are generally with low brightness.'® Also, the lacking of structural
information hindered their rational engineering.'®® To circumvent
the disadvantages of NIR light-responsible protein, researchers
have use nanomaterials converting NIR light into visible light. For
example, Chen et al. employed nanoparticles doped with
lanthanide to derive 980 nm NIR light into visible light, controlling
genetic gates of opsin-expressing neurons in mice models.'8"1%
Another design uses plasmonic gold nanorods or photothermal
responsible nanoparticles to transduct NIR light into up-regulation
of temperature, then the promoters of heat-shock protein are
activated for downstream gene expression.'®'®* QOne disadvan-
tage for nanoparticles is that they must be injected into human
body, it could be solved by developing genetically engineered
nanoparticles.'®> Similar to magnetogenetics, in which biosynthe-
sized ferritin can be used as a tool to prepare exogenous
paramagnetic nanoparticles. However, the penetration depth
needs much improvements in these samples (less than 1 cm),
which is not enough for the applications of cell therapy demands
in humans. Some researchers couple light-generating microde-
vices with photosensitive engineered therapeutic cells to address
the problem (Fig. 4),'37'88 patients can control the release of
drugs via applications of their own smartphone or real-time
monitoring their health. Besides, some genetic-encoded lumines-
cent module can produce light in situ with a protein like various
luciferases, all emit the desired wavelength with corresponding
substrates. The in vivo light induces the photosensitive proteins
that trigger transgene expressions for customized demands.'®’

In addition to optogenetics, magnetogenetics emerges for
regulating the cell activities and has been applied for controlling
of nanomaterial therapies remotely and non-invasively
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(Fig. 4)."°°71%3 Magnetic fields can penetrate human body without
losses, which is a preferred characteristic in deep-tissue targeted
therapies. Previous magnetogenetics tools are mainly externally
injected magnetic nanoparticles.'*®'°%'** The nanoparticles are
usually with radius of <10 nm, toxicity free and water-soluble.'®
Heating of nanoparticles using remote magnetic fields can
activate temperature-sensitive cation channels in cells. the next-
generation tools are heterologously expressed receptor-targeted
ferritin proteins in the form of nanoparticles (iron-loaded particles)
in engineered cells, which could sense and transduce magnetic
signals to cell membrane-anchored receptors like transient
receptor potential channel 1 (TRPV1) or TRPV4.'*"'% The
membrane receptors are ion channels allowing calcium influx
with the magnet stimuli. The described gene circuit can be
manipulated to control NFAT-dependent transcriptional regulators
for downstream functional genes. Implanted engineered ther-
apeutic cells can achieve target-specific treatments and precise
control of therapeutic dosage, time and location under magnetic
fields.

However, the mechanisms of the magnetic activation of the
sensor channels are still not clear, the theories proposed are under
debate for a long time.'®> TRPV channels are activated by a variety
of signals including but not limited to mechanical forces and heat.
Recently, a new mechanism is raised to solve the problem that
how radio-frequency weak magnetic fields (1 mT) could trigger
transient responses in living cells with ferritin-anchored TRPV
channels.’”® The mechanism is the dissociation of free Fe*™ from
ferritin protein, resulting in an enhanced oxidation of membrane
lipids via increased production of reactive oxygen species
(ROS).'®® These oxidized lipids have the ability to turn on the
TRPV channels, resulting in calcium influx.'®®7'®® Recently, ROS is
reported to be involved in the treatment of combined electric and
static magnetic fields in type 2 diabetic mice to increase their
insulin sensitivity.'®® In this research, low-energy fields can induce
the expression of nuclear factor erythroid 2-related factor 2 (Nrf2),
a transcriptional regulator controlling ROS levels.'®® Moreover, the
local ROS accumulation does not have side effects in mice, it is
promising to induce gene expression via electromagnetic fields
mediated by redox states.’®® Magnetogenetics are exhibiting its
potentials in remote control and targeted therapies. However,
more efforts are needed to establish the magnetogenetic
platform. Despite improvements in recent years, the cell toxicity
and biocompatibility are two main obstacles of magnetic
nanoparticles that still challenges their in vivo applications.

Synthetic biology in drug delivery

The synthetic biology constructs are usually encapsulated in
carriers for their functions in vivo. The safety concerns of viral
vectors restrict their applications for editing human genome.*”"
Therefore, non-viral carriers are attracting more and more
attentions. Nanotechnology can aid to deliver therapeutic agents
including genetic circuits and genome engineering tools.?9>2%3
With the advances in nanotechnology, more choices are available
for targeted and controllable-release in DNA/RNA delivery
system.2%*

One of the examples, the DNA/RNA delivery system based on
liposome nanomaterials, has become an effective and potential
gene therapy method, with a variety of artificial lipid vectors
approved for clinical uses. For example, an RNAi therapeutic
agent under the trade name Onpattro, has been developed by
Alnylam Pharmaceuticals. The drug was approved in 2018 for
the treatment of polyneuropathy.?®> Liposomes are small lipid
vesicles, the size is between 50 nm and 1 um.?°¢ Liposome are
generally amphiphilic consisted with a hydrophobic tail and a
hydrophilic head, employed for delivering drugs in various
treatments.?” Because liposomes reduce drug toxicity, deliver
drugs directly to targets via site-specific injections, and envelope
drugs free from degradation, they have advantages over
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traditional drug therapies in delivery. CRISPR/Cas9-aided gene
therapies are commonly using lipid-based nanoparticles inte-
grating negatively charged mRNA, gRNA scaffolds and CRISPR
genes with positively charged liposomes via electrostatic
interactions.?%® Felgner et al. first designed and used liposomes
by enveloping DNA and delivered it to target mammalian cells
in the plasma membrane, leading to DNA expression after its
endocytosis.?’® The liposome vector not only helps therapeutic
DNAs to pass through the cell membrane barrier, but also
protects them from DNase degradation and immune responses
to maintain their activities. Partially inspired by the results that
liposomes can be applied in human therapies, liposomes also
have delivered mRNA encoding SARS-CoV-2 antigens to humans
as vaccines. Both the Moderna mRNA-1273 and BioNTech/Pfizer
BNT162b2 vaccines are encapsulated in liposomes, with their
clinical use approvals.2'

Nanotechnology can also aid synthetic biology to deliver
chemicals.?'"2'? Nanocarriers deliver chemicals minimize off-
target effects,?'>?'* enhancing therapeutic results*'>?'® compared
to traditional drug administrations. External physical stimuli can
also initiate the release of chemicals to make the system
sustainable and controllable.?’” Here, we discuss the application
of synthetic biology-guided biological chemical carriers.

The genetically encoded post-translational modified protein
can self-assemble to carry hydrophobic drugs.?'® The protein
with different structure and material properties can be easily
manipulated at the amino sequence level. Based on synthetic
biology approaches, Mozhdehi et al. designed and co-expressed
an elastin-like polypeptide and an N-myristoyl transferase in E.
coli?'® The N-myristoyl transferase enzyme modified the
polypeptide with myristoyl groups in bacteria, generating a
temperature-induced self-assembly behavior.?'® The lipid core
of the purified recombinant protein can carry hydrophobic
compounds with a prolonged drug half-life.??° The protein can
form complex assembly systems encapsulated with chemicals. Li
et al. used an in silico designed cationic chimera near-infrared
fluorescent protein and anionic carboxylate-terminated PEG to
prepare a protein-PEG nanocarrier??' The nanoprotein is
amphiphilic, resulting in the aggregation and phase separation
in aqueous solutions to form nanoparticles.”?’ The engineered
nanoparticle achieved imaging of solid tumor and metastasis
in vivo without transfections for the fluorescent nature of the
protein,??' as well as the nanoprotein served as the long-term
drug carrier, which can improve half-life and therapeutic effects
of IL1-Ra significantly.?*?

Engineered bacterial outer-membrane vesicles (OMVs) as
nanocarriers
Bacterial outer membrane vesicles (OMVs) are lipid spheres
released from Gram-negative bacterial outer membranes, they
can be used for trafficking biochemicals to other cells in the
environment.??*> The gene manipulation methods from synthetic
biology can improve bio-originated nanoparticle abilities,***
expanding the application scenarios of outer-membrane vesicles
(OMV) and engineered cells.?*>?%¢

Engineered OMV anchored with recombinant proteins are
potentially used in medical and clinical fields (Fig. 4). The general
strategy to surface display proteins in the engineering of OMV is
to fuse their genes together in the OMV expression system. Many
studies have employed the E. coli Cytolysin A (ClyA) protein as the
fusion chassis to anchor exogenous proteins to OMV mem-
branes??”7?*° In recent studies, ClyA has been reported to
successfully fuse to the domain 4 of Bacillus anthracis protective
antigen, to extracellular domain of the influenza A matrix protein 2
(M2), and to GFP without influences OMV formation.*" The
alternative strategy is to express proteins to the periplasm and
assembly to the OMV when the fusion step hampers protein
functions.”>> However, the heterologous protein is enveloped
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inside of the OMV, which is a main disadvantage of the strategy.
Bartolini et al. also employed the method to carry Chlamydia
muridarum protein HtrA in OMVs as a vaccine against Chlamydia
infections.*>%3* Some proteins from Streptococcus spp. are
expressed to the periplasm with the E. coli OmpA signal peptide
to packed them into OMVs.?>® Even though these proteins are
located inside of the OMV, they were able to activate the immune
responses,>32?3323% the generated IgG antibodies had strong
activity to specific pathogens in murine models.??>?32235 The
results indicated that antigen location is not a decisive factor in
OMV-elicited immune responses.

Besides proteins, OMVs can be engineered to carry chemicals.
LPS and capsular polysaccharides (CPS) decorating the cell
membrane of pathogens are also vaccine candidates.?*® However,
polysaccharides trigger immune responses apart from T-cells, the
immunological memory cannot be established.”*” To circumvent
the problem, polysaccharides are anchored to nanocarriers to
elicit immunological memories. Polysaccharide and capsule
synthesis genes are expressed in E. coli, packed into OMVs using
the mentioned methods. The designed OMVs are potentially used
as vaccines after further optimizations. Chen et al. employed the
O-antigen polysaccharide from Francisella tularensis, the genes
were heterologous expressed in E. coli to produce the glyco-
modified OMVs.2*3%*° Mice injected with the engineered OMVs
were protected against F. tularensis strains.>>® Another similar
design uses Streptococcus pneumoniae CPS (Sp-CPS) biosynthesis
genes. They were overexpressed in E. coli, located both on the
membrane of engineered OMVs and bacterial cells.>**2*! After the
vaccination via injecting these collected OMVs, the vaccine was
effective in opsonophagocytosis assays and IgG antibodies were
triggered against Sp-CPS.*° In general, synthetic biology
approaches have developed better engineered OMVs for immu-
notherapies,?**%** with bright prospects in drug targeted-delivery
and combined therapies.

Biomimetic medical adhesive materials

Traditional medical adhesive materials are limited in under-
water uses, which hampered their applications in body fluids.
Recently, some biomimetic designs are conducted to solve the
problem based on synthetic biology ideas (Fig. 4).>** Many
marine organisms (e.g. mussel and barnacle) have extraordin-
ary adhesive capacities to rock surfaces,>*>24¢ as they produce
L-3,4-dihydroxyphenylalanine (DOPA) as an important compo-
nent of the adhesion proteins in underwater surfaces.>*” Zhong
et al. reported a strong underwater adhesive by fusion of CsgA
curli protein and mussel foot proteins.?*® The excellent design
reconciled the biocompatibility and adhesion activity, with the
prospect of in vivo applications like tissue repairs. Zhang et al.
is inspired by natural biomaterials like bones and mussel
foots,**° they developed a Bacillus spp. extracellular matrix-
based living glue.’*® The live material is adhesive with
regeneration abilities. Engineered mammalian cells could be
constructed with adhesive proteins, serving as in vivo live
functional glues. As summarized above, the novel live
biomedical adhesives are hotspots in medical synthetic
biology. However, most studies are focused in the material
properties rather than their biocompatibility and biodegrad-
ability, adequate efforts are needed to promote the material
for clinical applications.

Genetically encoded click chemistry in medical applications

Inspired by click chemistry, isopeptide bond was engineered for
the establishment of protein-protein linkages.”>' The genetic-
encoded click chemistry is more applicable in living organisms
compared with traditional click chemistry. The SpyTag/SpyCatcher
system is an application of the natural click-like reaction among
Gram-positive bacterial pilus,2%?** using biological ways to form
stable chemical bonds between amino acids, additional
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modifications of biomacromolecules are not needed in click
chemistry-oriented proteins (Fig. 4).>>* Genetically encoded click
chemistry (or Spy chemistry) is a powerful tool for materials made
via synthetic biology.>>

Hydrogels are cross-linked hydrophilic polymer networks,
serving as carriers for biomacromolecules and stem cells due to
their biocompatibilities and extracellular matrix (ECM) like
properties.””” Hydrogel materials synthesized using chemical
polymerizations are facing bioactivity problems.?*® The protein
characteristics are decided by amino acid sequences. Protein
hydrogels are easier to synthesize and be controlled using
various DNA sequences. Yang et al. employs the SpyTag/
SpyCatcher system to synthesize a 4-arm star-like light-sensing
protein. The protein can form rapid sol-gel and gel-sol phase
transitions in response to AdoB;, and light, respectively.®®®
Biofilm-degrading glycosyl hydrolase PsIG can be enveloped
into the hydrogel, endowing the material with abilities against
multidrug-resistant bacteria in chronic infections. Sun et al.
designed a Spy-network containing multiple SpyTags and
SpyCatchers in elastin-like proteins and the leukemia inhibitory
factor. The proteins were turned into a high-mechanical
strength hydrogel, allowing mouse embryonic stem cells to
maigcoain pluri-potentials without adding other cytokines in the
gel.

Genetically encoded click chemistry has also used in the vaccine
development. Some designed proteins can self-assembly into
virus-like particles (VLPs) to surface display antigens for mimicking
pathogens.?®' Synthetic vaccines are causing more and more
attentions for their efficiency and safety compared to canonical
vaccines developed from dead or attenuated microorganisms.
Genetically encoded click chemistry is a useful approach to modify
the surface with heterologous antigens to enhance their
immunogenicity.?>?®® The easy formation of chemical bonds
based on Spy chemistry provide a customized and convenient
method to design synthetic vaccines via encoded protein self-
assembly. Liu et al. developed a synthetic vaccine using the
SpyCatcher/SpyTag chemistry via covalently ligating specific
antigens and chemicals. The result demonstrates this engineered
vaccine targets dendritic cells successfully.?®* The generated
protein-chemical hybrid vaccine remained the individual functions
and had the ability to trigger B and T cell responses. Brune et al.
engineered virus-like particles (VLPs) via exhibiting SpyCatcher on
material surfaces, further enabling the modification of VLPs with
SpyTag-expressing malarial antigens to develop novel vaccines.®®
The VLP-antigen vaccine can trigger immune responses rapidly
and efficiently via only one single immunization, indicating the
potential of this effective, simple, and modular modification
method.
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Genetic code expansion for medical and pharmaceutical
applications

A protein usually consists of 20 natural amino acids. To add non-
canonical amino acids (ncAAs) into proteins, the genetic code
expansion technology has been developed.?®® ncAAs can be used
to modify proteins via conjugation with peptides or chemicals
depending on actual demands. Employing a termination codon
(UAG/UGA/UAA), the heterologous bioorthogonal aminoacyl-tRNA
synthase (aaRS)-tRNA pairs can add ncAAs to any site in a
protein.?®’ Many different aaRS/tRNA pairs have been devel-
oped.?®®827° The high-efficiency genetic code expansion devices
allow the production of ncAA-containing protein and multiple
ncAA-inserted proteins.?’'%”? The ncAA insertions are succeed in
all main model organisms.?”>?’* Applications of the genetic code
expansion system in medical fields are summarized here.

Genetic code expansion for antibody-drug conjugates. The

antibody-drug conjugates (ADC) combine antigen-recognizing
abilities of antibodies and tumor-killing capacities of chemicals
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commonly used in tumor therapies.?”® Traditional ADC drugs are
chemical modification of cysteines or lysines in the antibodies,
which may affect the immunogenicity, stability and half-life.?”®
With the development of genetic code expansion technology, the
introduction of a functional ncAA in the antibodies are feasible.?””
The site-specific, high-efficiency conjugation between antibodies
and chemicals can be achieved. Oller-Salvia et al. developed a
novel genetic code expansion system incorporating a cyclopro-
pene derivative of lysine into antibodies.>’® The antibody
conjugates to monomethyl auristatin E (MMAE) via a rapid Diels-
Alder reaction.?’® The resulting ADC was stable and effective in
serum. Wang et al. conjugated the Lck inhibitor dasatinib to
monoclonal antibody CXCR4 using genetic code expansion
methods.>’® The ADC avoids the side reactions during the
chemical modification. The resulting dasatinib-antibody conjugate
inhibited T-cell activation with low ECs, with negligible effects on
cell viability.

Genetic code expansion in the bispecific antibodies. Bispecific
antibodies (BsAb) possess two specific antigen binding sites with
enhanced tumor-killing abilities.”®® Some BsAbs have been
approved by FDA.?®' The traditional BsAb production method
relies on fusions of proteins, resulting in steric hindrance in the
ligand-binding domains.®? Additionally, the antibody production
is at a low level with short half-life.”®> Synthesis of BsAbs via
chemical modifications meets similar questions to ADC produc-
tions.”®* Genetic code expansion methods can conjugate two
antibodies via a PEG linker to circumvent the challenges. Kim et al.
introduced a ncAA (pAcF) to the antigen-binding fragment Fab
region of anti-HER2 and anti-CD3 antibodies to form BsAb via two-
step reactions.”® Picomolar concentrations of the BsAb induced
effector-cell mediated cytotoxicity in vitro. Employing the Diels-
Alder reaction between tetrazine-containing ncAA and bicyclono-
nyne- containing ncAA, a BsAb recognizing BCMA was developed
to treat multiple myeloma,?®® successfully overcoming the drug-
resistances in patients with multiple myeloma.

Genetic code expansion for engineering adeno-associated viruses
(AAV). AAVs are small parvovirus infecting human and pri-
mates.”®” AAVs are commonly used in gene therapies to achieve
non-pathogenic, broad host range and high transfection and
expression efficiencies.”®® However, the controllability and target-
ing ability are limited, hampering their applications. Zhang et al.
used genetic code expansio to enhance the targeting ability of
AAVs, conjugating cyclic arginyl-glycyl-aspartic acid (cRGD) to the
shell protein of AAVs for targeting integrin.?®° Erickson et al.
engineered AAVs for opto-control of the infection.’®® The R585
and R588 residues in vp1 protein of AAV2 were replaced by a
light-sensitive ncAA, which hampered the interaction of vp1 and
HSPG protein, resulting in inhibiting the infection of AAV. Exposed
to UV light would remove the light-sensing moiety, recovered the
infecting abilities of AAVs.?®® The method enhances time-spatial
controllability of AAV vectors.

Genetic code expansion for prolonging a protein half-life. PEG is
commonly used in prolonging the half-life of therapeutic
proteins.?’’ However, the random-modified PEG usually influences
binding sites of therapeutic agents.?*?> Thus, genetic code
expansion may provide advantages in modifying proteins. Cho
et al. used genetic code expansion to site-specifically modify PEG
in human growth hormone, which is highly instable in clinical
applications.??®> The modified human growth hormone is also with
good batch to batch repeatability during the manufacturing
processes. Some ncAAs increase protein stabilities per se. Xuan
et al. demonstrated incorporation of a reactive isothiocyanate
group into proteins to improve the heat-stability of myoglobin.
Stable thiourea crosslinks were formed between the proteins.?**
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Similar designs using long chain thiol-containing or fluorinated
ncAAs were also verified.*>?%°

Genetic code expansion for developing novel vaccines. ncAAs
provide a wide variety of modifications of potential antigens
that are candidates for vaccines. Gauba et al. inserted ncAAs
containing nitrophenyl moiety into murine TNF-a protein for
strong antibody response even with adjuvants.”®” ncAA-
addicted genetically modified organism (GMO) is useful for
vaccine developments.?®® The inactivated or attenuated
pathogen-based vaccines usually have reduced effective-
ness.?”® Construction of a GMO strain that relies on ncAA to
survive has been conducted to amplify live-virus vaccines. By
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introducing a termination codon in the genome of influenza A
virus, HIV-1 or hepatitis D virus, the viruses can only replicate in
engineered cells with specific aaRS/tRNA pairs and ncAAs. Si
et al. inserted a termination codon in the NP protein of
influenza A viruses, leading to a stronger immunogenicity and
triggering broader immune responses.3°® Based on the same
idea, more and more live bacterial vaccines are under
development.?*® However, bacteria are more complex com-
pared to viruses. Many mutation mechanisms can help bacteria
to escape from expression terminations.>°' The termination
escapes restrict further applications with genetic code expan-
sion in bacteria. Mandell et al. constructed a bacterium that
metabolically dependent on ncAAs for survival.3®?> The
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bacterium exhibited unprecedented resistance to evolutionary
escapes, providing a hint to the development of live bacteria
vaccines.

Other medical applications of genetic code expansion. The genetic
code expansion technology can be applied for the construction of
controllable CAR-T cells. Incorporation of p-azidophenylalanine
(pAzF) into the Fab allows the identification and conjugation of
fluorescein isothiocyanate (FITC), activating the antibody for
cancer treatments.3*®> Changing the inducer FITC to a short
peptide was also proven applicable in cancer therapies.** FITC or
peptides were used as inducers of CAR-T cells that provide a more
safety-control approach for immunotherapies. The genetic code
expansion has also been applied for biosynthesis of peptide
natural products. Nisin is a complex lanthipeptide with broad-
spectrum of anti-bacterial activities. Zambaldo et al. introduced a
number of ncAAs into nisin, equipping it with novel macrocyclic
topologies with enhanced activities.>®

The genetic code expansion methods are developing rapidly,
modifying proteins both in vivo and site-specifically. The most
sophisticated organism for this method is zebrafish and mouse.*
The method should be improved to apply in more higher species.
Although more than 200 different ncAAs have been used for
genetic code expansion, most ncAAs are based on similar
structural units. Enriching structure types is another direction for
developments. In the future, genetic code expansion technology
will bring more delicate treatments for mankinds.

SYNTHETIC BIOLOGY IN THE BIOSYNTHESIS OF THERAPEUTIC
DRUGS

In the recent years, synthetic biology approaches has become
promising in sustainable and cost-effective production of pha-
marceuticals. Synthetic biology designs (Fig. 5) and constructs
biological circuits or chassis including bacteria, yeasts, cell cultures
or whole plants, for effectively producing high-value added
phamarceutical products or phamarceutical intermediates. It offers
a scalable and sustainable way for productions of bioproducts
using CO, based substrates, the production is rapid and robust,
feasible for the large-scale industrial production, bioproducts can
be manufactured without excessive cultivating and harvesting of
medicinal plants (Table 1).

As a classical field in synthetic biology, synthesis of pharmar-
ceuticals is different from other medical applications. it generally
uses yeast or bacteria as the production chassis. Synthetic biology
concepts are extensively used in microorganisms, especially the
DBTL (design-build-test-learn) (Fig. 5). DBTL cycle comprises the
molecular biology designs and constructs in the beginning, and
the experimental results are the basis for the new cycles of
designs. The single-cell systems are easier to be manipulated than
mammalian cells, In manmalian systems, the DBTL cycle can take
very long, which is also an obstacle for mammalian synthetic
biology. In the microbial synthesis of drugs, high-throughput
screening and directed evolution are commonly used to accel-
erate experimental paces. Synthetic biology in microbes points to
the direction of manmalian synthetic biology in a sense.

Biosynthesis of terpenoid drugs

Terpenoids are 5-carbon compound isoprene derivatives, also the
largest group of plant secondary metabolites comprising approxi-
mately 60% of identified natural products>®” Many of them are
bioactive medical ingradients.>°® The anti-malaria drug, artemisinin,
is sesquiterpene lactone containing an endoperoxide bridge.>*
Initially, artemisinin was extracted from the plant Artemisia annua®'®
with a very low (0.01%-1%) content,®’’ much less than the actual
medical demands. The chemical route to artemisinin is difficult and
inefficient mainly due to the multiple-chiral centers of this
molecule3'? The microbial synthesis of artemisinin prodrugs
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lowered drug cost. Biosynthesis of amorphadiene was a milestone
in synthetic biology. The recombinant E. coli synthesized initially only
24 pg caryophyllene equivalent/ml.° After continuous optimizations,
another artemisinin prodrug, namely, artemisinic acid, reached 25 g/
L produced by engineered yeast.**** The biosynthesis of artemisinic
acid is a successful example of synthetic biology.

Taxol is a diterpene extracted from Pacific yew trees, serving as an
anti-cancer agent>'? Its production mainly relies on laborious and
low-efficiency plant cell cultures.3™ Ajikumar et al. engineered E. coli
cells to produce a taxol precursor, taxadiene, at a titer of 1 g/L>3'"®

The ginsenosides are triterpene saponins found in the plant
genus Panax with cancer prevention and anti-aging effects.'®
Using the yeast cell-factory, various ginsenosides including
ginsenoside Rh2 and ginsenoside compound K are sgnthesized
with the titers of 2.2 g/L and 5.0 g/L, respectively.>'”"® Microbial
approach reduces the shortage of ginsenoside for clinical uses.

Biosynthesis of alkaloid drugs

Alkaloids are a variety of organic compounds containing at least one
nitrogen atom.>'? As a natural product, alkaloids are commonly used
as they have pharmacological activities.>*° Biosynthesis of alkaloids
circumvent the bans on growing certain plants like poppy and
marijuana.®?' The formation of chiral centers during biosynthesis
also outcompetes chemical synthesis for most chiral alkaloid
compounds>#? Galanie et al. employed engineered yeast cells to
produce thebaine and hydrocodone.*** Overexpression of 21 genes
(for thebaine) or 23 genes (for hydrocodone) led to their formations
of 66x107° g/L and 3x 1077 g/L, respectively. Nakagawa et al.
improved the process using E. coli chassis.>** The titers for thebaine
and hydrocodone were enhanced to 2.1x 102 and 4x 107> g/L,
respectively. The production of opiates reached miligram level.
Subsequent metabolic engineering are needed to promote
biosynthesized opiates to meet market demands.

Similar to the biosynthesis of artemisinic acid, cannabinoids are
natural products from cannabis, commonly used for pain killing
and anxiolytic actions.>?> (S)-Tetrahydropalmatine and cannabi-
gerolic acid are two well-known cannabinoid hard to extract from
plants.>?® The biosynthesis processes for cannabigerolic acid were
established by Luo et al. The yield from yeast reached 0.1 g/L3%’
(S)-Tetrahydropalmatine biosynthesized by yeast by Hafner et al.
reached 3.6 x 10° g/L, a successful concept-of-proof for microbial
production of complicated cannabinoids.>?®

Biosynthesis of amino acid-derivative drugs

Using amino acids as building blocks, amino acid derivatives are
also played an important role in human health.3?° This class of
compounds is usually synthesized via biological routes rather than
chemical synthesis for their multiple chirality moieties. Compared
with alkaloid and terpenoids, amino acid-derivatives are more
simple in structures with diversity.3?° Psilocybin is a L-tryptophan
derivative with effects of anti-drug-addiction, relieving depression
and anti-post-traumatic stress disorder effects.3*° E. coli or
Saccharomyces cerevisiae have been engineered to heterologously
express the synthetic pathways, forming 1.2 g/L and 0.6 g/L
psilocybin, respectively.3*®**' Dencichine, also known as B-N-
oxalyl-L-0,3-diaminopropionic acid (B-ODAP), is a plant metabolite
first isolated from Lathyrus sativus seeds. Dencichine can induce
platelet aggregation in human blood, and it is the main
effective component of the Chinese medicine Yunnan
Baiyao.3*>333 The authors optimized metabolic flux to dencichine
in E. coli to the production with final titer reaching 1.29gL "and a
yield of 0.28 g g™ glycerol.*** Microbial production of dencichine
exhibits an example of employing artificial enzymes and pathways
to produce a desired chemical in synthetic biology applications.

Biocatalytic of asymmetric synthesis

Synthetic biology can assist multiple chiral-center chemical
developments. Sitagliptin (Januvia) is a commonly used diabetes
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treatment, inhibiting DPP-4 enzyme in a competitive manner,
reducing the cleavage of GLP-1 to increase the secretion of
insulin.®*> The market of Januvia reached 1.4 billion dollars by
2021.33¢ For chemical synthesis of sitagliptin, the chiral amine is
transferred via a rhodium-based chiral catalyst with a low
stereoselectivity and the product contaminated with rhodium.>3”
A transaminase and synthetic-biology-based engineering
approach based on homologous modeling and saturation
mutagenesis, a process was developed that substantially
improved the efficiency and purity for sitagliptin synthesis.>3’

CELL-FREE SYNTHETIC BIOLOGY IN MEDICAL APPLICATIONS

Till now, efforts in synthetic biology have mainly focused on
reprogramming organisms, development of genetic circuits and
biological modules. However, because our knowledge on how life
works is limited, the complex feature of creatures hindered
progresses in synthetic biology. User-defined systems can solve
the problem. Cell-free system is prepared to perform in vitro
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biological activities free from living cells (e.g. transcription and
translation).33® As it is open, easy to control, flexible and high
tolerance to cytotoxicity,>*>**° the system has been used in
synthesizing proteins that are difficult to express or toxic in cells
(Fig. 6).>*' Moreover, cell-free systems fit well to high-throughput
screening.>*? Recently, with the development of cell-free biosen-
sing diagnosis**® and the advances in lyophilization,*** the
applications of cell-free synthetic biology have expanded into
medical and pharmaceutical fields.3*®

Cell-free synthetic biology in pharmaceutical protein synthesis

Protein and peptide drugs are target-specific mostly with high
activities and low toxicity for medical uses.>***® Many well-known
drugs are proteins or peptides like Trastuzumab (Herceptin),3*°
Adalimumab (Humira),**° Insulin Glargine (Lantus)**' and 13-valent
pneumococcal conjugate vaccine (PCV13).3%2 70% of the protein
drugs are produced using the CHO cells.>** However, some proteins
are toxic for growth of cell hosts.3** Cell-free protein synthesis (CFPS)
provides a solution to the toxicity problems3>> Additionally,
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screening of intracellular proteins are feasible in CFPS systems,3*¢
also lyophilization technologies allow the cell-free system to
maintain highly active after one-year preservation.>’

The cell-lysate based- and purified component systems are two
commonly used CFPS systems.3*® Theoretically, any organism
could be used as the source in cell-lysate based system. The most
common cell extract is from E. coli, wheat germ and yeast.>*® E. coli
lysate is frequently used for protein synthesis,>**® wheat germ
lysates for construction of protein arrays,%'>%? yeast lysates for
synthesis of glycoproteins.®®® The purified component system
comprises all purified translational-elements. Shimizu et al.
developed a cell-free system using 36 transcription/translation
related enzymes with highly purified ribosomes.>®* The system is
efficient although minimum. However, the high cost of purified
components hampers its applications. The cell-lysate based
system is the first choice of CFPS systems.

Vaccination is the most effective way for pandemic prevention.®
Cell-free systems provide a platform for rapid production of
vaccines. Kanter et al. developed a cell-free system for highly
effective production of a fusion protein consisting of a single chain
Fv antibody fragment (scFv) connected to granulocyte-macrophage
colony-stimulating factor (GM-CSF), a vaccine of B-cell lymphoma.**®
Lu et al. described a CFPS overexpressing a domain of pandemic
H1N1 influenza virus for potentially and broadly protective influenza
vaccines.>®” Besides bacterial systems, eukaryotic cell-free systems
can express complex vaccines. Tsuboi et al. successfully expressed
three malarial proteins in yeast lysate based cell-free systems, which
is hard to produce in recombinant cells.%

Antibodies are important for disease treatments and
diagnosis.?®® CFPS is commonly used during the synthesis of
antibodies. Ryabova et al. successfully produced functional
scFv fragments in E. coli lysate-based cell-free system.>’° Post-
translational modification (PTM) is the final maturation step of
proteins.>”" Glycosylation is the main form of PTM important
for maintaining the half-life and activity of protein drugs
including some antibodies.>”?3”®> CFPS can also introduce
functional PTM to proteins. Jaroentomeechai et al. used CFPS
to synthesize N-glycosylated scFv using E. coli cell-free
systems.>’* Overall, cell-free systems are useful complements
to recombinant expressing systems for their rapid and on-
demand properties.

Cell-free synthetic biology for diagnosis

Generally, detection of pathogens are based-on biosensors.3”® The
sensing elements include enzymes, transcriptional factors, anti-
bodies, organelles, whole-cells and tissues.3”°%° Although many
biosensors are rapid and sensitive, the disadvantages are
including the instability of enzymes, biosafety concerns of
whole-cell biosensors and the complexity in preparing microfluidic
sensors.2?>381 Therefore, cell-free sensors are developed. Pellinen
et al. used luciferase as the reporter, Tet repressor and MerR
regulatory proteins as the sensing elements, for the detection of
tetracycline and the toxic mercury in cell-free systems.*®? Davies
et al. constructed a cell-free protein array to screen high-
immunogenicity proteins in human serums after virus infections,
for the prophylactic uses and diagnosis.>®® In remote regions or
harsh environments, cell-free systems lyophilized and attached on
papers (or other matrices) are convenient and stable.>®* Pardee
et al. employed lyophilized cell-free sensors to rapid determina-
tion of Ebola and Zika virus3®3® Future cell-free synthetic
biology may lead to sophisticated design and synthesis of more
complicated therapeutic agents, or rapid and sensitive biosensors
for chronic disease diagnostics.

DISCUSSION AND FUTURE PERSPECTIVES
Since the rapid developments started from more than a decade
ago, synthetic biology has grown substantially and has emerged
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with many achievements, both in science and application aspects
(Fig. 1). In this review, we summarized the advanced strategies and
designs in synthetic biology for traditional pharmaceutical and
medical applications, such as engineered smart cells (Fig. 2),**" live
probiotic therapeutics,'>’ diagnostics,>®® stem cells,®®> drug produc-
tion,*®> nanocarriers*®® and artificial vaccine developments.>® The
novel approach will enrich clinical regimens, shorten drug
development cycle and lower pharmaceutical prices.

Synthetic biology approaches that most probably bring (or has
brought) dramatic changes in biomedical fields include: the use of
light for time-spartial controllable precise cell therapeutics
(optigenetics), designed bacteria to target cancer cells, engineered
cells rewiring metabolic flux in human or engineer the gut-brain-
liver axis (engineered live therapeutics). Recent studies have
shown possibilities that biosystems mentioned above are
functioning well in manmalian and exhibiting considerable
therapeutic effects in animal models or even volunteers.”
However, they are just developed in their early stages. Many
efforts are still needed to translate the lab findings to commercial
products for patients.

The personalized engineered medicine is the next-gneration
treatment strategy in the future. Smart therapeutics based on
genetic-encoded circuits that can intepret environmental signal
into effector activities will be commonly used. The auto-regulated
therapeutic cells that sense diagnostic inputs for therapeutic
outputs are one-station solutions for diagnosis, disease prevention
and treatments (Fig. 2). Some applictions like CAR-T therapies
have entered clinical stages, but most of the smart cells are not.
Many attempts have failed in the early clinical, mainly for the low
therapeutical abilities and unexpected side effects in human.
Future works should emphasis on their safety as well as the
efficacy and stability in treatments.

The combination of synthetic biology and artificial intelligence (Al)
is promising to accelerate the advances both in medical and
pharmaceutical fields, although the field is in initial stage. Al is a hit
not only in computer science, but also in biology research.**° The Al
prediction of protein structures ranks as the top one in ten scientific
breakthroughs in 2021.3°" The era of Al and big data is arriving, in-
depth learning technique is advantageous in the characterization of
complex objects**? fusion of multimodal features®* and auto-
sample generations.>** Al can be applied in the synthetic biology
field. At present, the combined applications of Al and synthetic
biology have mainly been focused on the following three aspects,
including, firstly, foresight of future research directions; collection of
related synthetic biology data, then distinguish the casual link to
analyze and evaluate the application and development directions.
This is very helpful in analysis of numerous clinical datasets.
Secondly, in the pharmaceutical applications, screening effective
drugs based on Al and bioinformatic big data, testing candidate
chemicals and simulating the therapeutic processes in disease
models. It is a high-throughput method saving much manpower.
Thirdly, development of novel drugs via reconstruction or modifica-
tion the genomes by in-depth Al learning models, synthesizing
novel compounds for drug discoveries. In the future, Al is promising
to assist medical synthetic biology in designing more complicated
systems (engineered cells or tissues) based on actual demands,
substantially decreasing labor amounts of researchers.

However, some shortages and bottlenecks are to tackle for
medical synthetic biology. Much effort is needed before the
synthetic biology-based therapy become an available clinical
option (Fig. 7). Although engineered cells containing genetic
circuits are one of the most exciting designs in recent decades,
they have limitations in actual uses of extracellular, signal-
transduction free diseases which can be treated via traditional
ways.>%° Tissue-specific engineered therapeutics are not succeed
till now. The interferences of manmalian metabolisms are remain
unknown. Solving these problems will be helpful for synthetic
biology-based clinical applications.
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Fig. 7 The present situations, technical bottlenecks and future developments of synthetic biology based gene therapies. Some diagnosis and
therapeutical approaches are available via rewiring metabolic and (or) signaling pathways in present synthetic biology. However, some
bottlenecks like safety, versatility and efficacy are needing to tackle. Besides, novel designs such as Al-aided synthetic biology and rationally

constructed live organisms and proteins are progressing

The majority of synthetic biology is still applied in microbes.
However, most of the major issues, especially in solving
human health problems, are needed for mammalian systems.
Therefore, much efforts must be made for advancing mamma-
lian synthetic biology to the next-generation therapeutic
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treatments, including the engineering of synthetic gene net-
works for disease treatments, tissue engineering or stem-cell
generation and differentiation.

Additionally, synthetic biology-based therapeutics are still
facing same social problems in ethical and legal fields similar to
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transgenic foods and stem cell therapies, although they can be
imposed of better control from stringent pathways.

Even so, the future for synthetic biology-based therapeutics are
promising, with new tools and applications developed in
biomedical fields and highly-efficient microbial pharmaceutical
production in the twenty-first century.
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