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G protein-coupled receptors in neurodegenerative diseases and
psychiatric disorders
Thian-Sze Wong1,2, Guangzhi Li3, Shiliang Li 4,5, Wei Gao1,5, Geng Chen1, Shiyi Gan1, Manzhan Zhang4,5, Honglin Li 4,5✉,
Song Wu3,6✉ and Yang Du 1✉

Neuropsychiatric disorders are multifactorial disorders with diverse aetiological factors. Identifying treatment targets is challenging
because the diseases are resulting from heterogeneous biological, genetic, and environmental factors. Nevertheless, the increasing
understanding of G protein-coupled receptor (GPCR) opens a new possibility in drug discovery. Harnessing our knowledge of
molecular mechanisms and structural information of GPCRs will be advantageous for developing effective drugs. This review
provides an overview of the role of GPCRs in various neurodegenerative and psychiatric diseases. Besides, we highlight the
emerging opportunities of novel GPCR targets and address recent progress in GPCR drug development.
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INTRODUCTION
The nervous system employs membrane receptors to detect
extracellular stimuli and transmit signals across the cell mem-
brane. As the largest membrane protein family, G protein-coupled
receptors (GPCRs) allow the nervous system to respond accurately
to external stimuli and internal states. GPCRs are structurally
similar transmembrane proteins containing seven transmembrane
(TM) α-helices linked by three extracellular loops and three
intracellular loops.1 The unique ligand binding pockets formed by
the 7TM regions allow the receptor to engage with various stimuli,
including neurotransmitters, nucleotides, amines, peptides, cyto-
kines, and hormones in the extracellular environment (Fig. 1).2

Through expressing GPCRs with different ligand-recognizing
abilities, the nervous system could filter and select particular
signals to respond.3 Furthermore, the intrinsic ligand selectivity of
neuronal GPCRs allows crosstalk and proper integration between
signal transduction pathways. GPCRs drive signal transduction via
two major modulators: heterotrimeric G protein and arrestins.
Characterizing the physiological functions of GPCRs in the nervous
system and pathological mechanisms in disease models could
accelerate GPCR-targeted drug development.
The progressive dysfunction of neural tissues in the central and

peripheral nervous systems is the hallmark feature of neurode-
generative diseases. Neurodegenerative diseases are increasing in
the elderly population.4 It is estimated that neurodegenerative
diseases affect over 50 million people across the globe.5

Alzheimer’s disease, Huntington’s disease, Parkinson’s disease,
and Multiple sclerosis are representative examples. Currently,
there is no effective cure. The pathogenesis and underlying
mechanisms of neurodegenerative diseases remain poorly

understood. At present, symptom control is the primary treatment
objective.6 It is estimated that neurodegenerative diseases will
become the second most common cause of death.7

Alzheimer’s disease and dementias are in the top-ten ranking
leading cause of death globally.8 Deposition of the insoluble and
phosphorylated β-amyloid peptide (derived from amyloid precursor
protein) in the brain parenchyma of Alzheimer’s disease patients
affects functions/regeneration of various forms of neurons.9 The
resulting widespread neuron damage affects synaptic communication
leading to cognitive deficits, regional brain shrinkage, and brain
atrophy;10 Huntington’s disease could appear in childhood or
adolescence. Aberrant expansion of DNA segment containing CAG
trinucleotide repeats in the huntingtin gene is a hallmark feature.11

Large CAG repeat is associated with early symptoms manifestation.12

Symptoms include poor coordination, chorea (involuntary dance-like
movements), slow movement, seizures, and slurred speech; Parkin-
son’s disease affects motion control. Rigidity, tremor, and slow
movement (bradykinesia) are frequently observed. Risk factors include
genetic polymorphism, chronic inflammation, and metabolic dis-
orders.13 Multiple sclerosis is a relapsing-remitting disease caused by
an autoimmune attack in the central nervous system. Damage of
myelin sheath in multiple areas by immune cells causes cognitive
impairment, fatigue, muscle weakness, tremor, and vision problems.14

Brain disorders are frequently associated with mental/psychia-
tric illnesses.15 Mental illness is burdening the healthcare system
with enormous unmet medical needs.16,17 Serious mental illness is
closely linked to reduced life expectancy due to a higher risk of
cardiovascular morbidity and mortality.18 Common mental ill-
nesses include anxiety, depression, bipolar disorder, attention
deficit hyperactivity disorder, and schizophrenia. Both children
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and adolescents are vulnerable to mental illnesses. Mental health
condition is interlinked with physical health. The generation of
suicide ideation/attempts and self-destructive thoughts are closely
related to psychiatric diseases.19 Patients with degenerative
diseases could also present emotional symptoms adding complex-
ity to disease diagnosis and management. Recent studies reveal
that hospitalized patients with COVID-19 and survivors display
different levels of neuropsychiatric complications and the under-
lying mechanisms remain to be explored.20

GPCRs are one of the most intensively exploited targets for drug
development. Approximately 35% of the FDA-listed drugs act
through GPCRs.21,22 With our increasing understanding of the
neuronal relay functions of GPCRs in the nervous system, many
GPCRs are perceived as promising druggable targets for
neurodegenerative and psychiatric diseases. This review sum-
marizes the multifaceted role of GPCRs in chronic neurodegen-
erative conditions exemplified by Alzheimer’s disease,
Huntington’s disease, Parkinson’s disease, and Multiple sclerosis.
The emerging role of GPCRs on psychiatric illnesses, including
Schizophrenia, Bipolar disorder, Depression, Attention deficit
hyperactivity disorder, and Tourette’s disorder, are discussed. We

also highlight the emerging opportunities for the previously
unexplored GPCRs and provides examples of pharmaceutical
development of GPCR-targeted therapeutics.

G PROTEIN-COUPLED RECEPTORS SIGNALING
Synaptic transmission can be classified into two types: fast and slow
synaptic transmission.23 In fast synapses, GPCRs such as glutamate
and GABA (γ-aminobutyric acid) receptors generate membrane
depolarizing signals in less than 1/1000 s. In slow synapses, biogenic
amines, peptides, and amino acid receptors generate signals in
hundreds of milliseconds to minutes.23 GPCRs are structurally similar
membrane proteins (Fig. 1). They elicit different intracellular signal
pathways by interacting with heterotrimeric G proteins (α, β, and γ).
GPCRs can be stabilized by an array of neurotransmitters and
neurological modulators, including ions, hormones (peptide or non-
peptide), vitamins, metabolites (ATP, fatty acids, etc.), natural products,
and pharmacological ligands.24 A plethora of GPCR signaling events
are involved in developing neuropsychiatric disorders. Understanding
the downstream signaling events of disease-associated GPCR is
essential for designing efficacious therapy.

Fig. 1 Structure features of active GPCR. a Orthosteric pocket forms by the helical core of 5-HT2A receptor (marine blue, PDB 6WHA).
b Solvent-accessible surface. Hydrophobic surface (red); hydrophilic surface (white). c Activated GPCR opens cytosolic pocket for G protein
coupling. d Heterotrimeric G protein, Monomeric Gαi, Gβγ. d Activated 5-HT2A receptor forms a cytoplasmic pocket which allows G-protein
coupling
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Table 1. Reported GPCR structures

Class Receptors Total
number

PDB ID (receptor alone) PDB ID (G protein coupled receptor)

A ADRB3 1 7DH5

AGTR1 6 6OS0, 6OS1, 6OS2, 6DO1, 4ZUD, 4YAY

AGTR2 7 7JNI, 7C6A, 6JOD, 5XJM, 5UNH, 5UNG, 5UNM

HTR1A 3 7E2X, 7E2Y, 7E2Z

HTR1B 5 7C61, 5V54, 4IAR, 4IAQ 6G79

HTR1D 1 7E32

HTR1E 1 7E33

HTR1F 1 7EXD

HTR2A 13 7WC4, 7WC5, 7WC6, 7WC7, 7WC8, 7WC9, 7VOD,
7VOE, 6WGT, 6WH4, 6A94, 6A93

6WHA

HTR2B 8 6DRY, 6DS0, 6DRZ, 6DRX, 5TUD, 5TVN, 4NC3, 4IB4

HTR2C 2 6BQG, 6BQH

ACM1 6 6ZFZ, 6ZG9, 6ZG4, 6WJC, 5CXV 6OIJ

ACM2 10 5ZKB, 5ZKC, 5ZK3, 5ZK8, 5YC8, 4MQT, 4MQS,
3UON

6U1N, 6OIK

ACM3 5 5ZHP, 4U14, 4U15, 4U16, 4DAJ

ACM4 2 6KP6, 5DSG

ACM5 1 6OL9

APJ 2 6KNM, 5VBL

BKRB1 1 7EIB

BKRB2 1 7F2O

C5AR1 3 6C1Q, 6C1R, 5O9H

CCKAR 8 7F8X, 7F8U, 7F8Y 7EZM, 7EZH, 7EZK, 7MBX, 7MBY

CCR1 3 7VLA, 7VL8, 7VL9

CCR2 3 6GPS, 6GPX, 5T1A

CCR5 11 7F1T, 6MET, 6MEO, 6AKY, 6AKX, 5UIW, 4MBS 7F1Q, 7F1R, 7F1S, 7O7F

CCR6 1 6WWZ

CCR7 1 6QZH

CCR9 1 5LWE

CNR1 8 7V3Z, 6KQI, 5XRA, 5XR8, 5U09, 5TGZ 6KPG, 6N4B

CNR2 4 6KPC, 5ZTY 6KPF, 6PT0

CXCR2 3 6LFL 6LFM, 6LFO

CXC-R4 6 4RWS, 3ODU, 3OE0, 3OE6, 3OE8, 3OE9

DRD1 11 7JOZ, 7CKW, 7CKX, 7CKY, 7CKZ, 7CRH,
7LJC, 7LJD, 7JV5, 7JVP, 7JVQ

DRD2 5 7DFP, 6LUQ, 6CM4 7JVR, 6VMS

DRD3 3 3PBL 7CMV, 7CMU

DRD4 3 6IQL, 5WIV, 5WIU

EDNRB 8 6LRY, 6K1Q, 6IGL, 6IGK, 5XPR, 5X93, 5GLH, 5GLI

FFAR1 4 5KW2, 5TZY, 5TZR, 4PHU

FPR1 2 7WVU, 7T6T

FPR2 9 6LW5 7WVV, 7WVX, 7WVW, 7WVY, 7T6V, 7T6S, 7T6U, 6OMM

GALR1 1 7WQ3

GALR2 1 7WQ4

CCKBR 2 7F8V, 7F8W

GHSR 7 7F83, 6KO5 7W2Z, 7NA7, 7NA8, 7F9Y, 7F9Z

GNRHR 1 7BR3

GPBAR1 3 7CFM,7CFN, 7BW0

HRH1 2 3RZE 7DFL

LPAR1 6 4Z34, 4Z35, 4Z36 7TD0, 7TD1, 7TD2

LSHR 4 7FIJ 7FIG, 7FII, 7FIH

LT4R1 2 7K15 7VKT

MC4R 8 6W25 7PIV, 7PIU, 7F53, 7F54, 7F55, 7F58, 7AUE
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Table 1. continued

Class Receptors Total
number

PDB ID (receptor alone) PDB ID (G protein coupled receptor)

MSHR 4 7F4D, 7F4H, 7F4I, 7F4I
MTNR1A 8 6PS8, 6ME2, 6ME3, 6ME4, 6ME5 7VGY, 7VGZ, 7DB6

MTNR1B 5 6ME6, 6ME7, 6ME8, 6ME9 7VH0

NK1R 11 6J20, 6J21, 6HLP, 6HLL, 6HLO, 6E59 7P00, 7P02, 7RMI, 7RMG, 7RMH

NPY1R 3 5ZBH, 5ZBQ 7VGX

NPY2R 1 7DDZ

NTSR1 24 6YVR, 6Z4Q, 6Z4S, 6Z4V, 6Z66, 6Z8N, etc 7L0P, 7L0Q, 7L0R, 7L0S, 6UP7, 6PWC, 6OSA, 6OS9

OPRD 6 6PT2, 6PT3, 4RWD, 4RWA, 4N6H, 4EJ4

OPRK 3 6VI4, 6B73, 4DJH

OPRM 7 5C1M, 4DKL 7U2L, 7SBF, 7SCG, 6DDF, 6DDE

OPRL1 3 5DHG, 5DHH, 4EA3

HCRTR1 14 6V9S, 6TOT, 6TOS, 6TOD, 6TQ4, 6TP4, etc

HCRTR2 8 6TPG, 6TPJ, 6TPN, 5WS3, 5WQC, 4S0V 7L1U, 7L1V

OXYR 2 6TPK 7RYC

P2RY1 2 4XNV, 4XNW

P2Y12 3 4PXZ, 4PY0, 4NTJ

PAR1 1 3VW7

PAR2 3 5NDZ, 5NJ6, 5NDD

PTGDR2 3 7M8W, 6D26, 6D27

PTGER2 3 7CX2, 7CX3, 7CX4

PTGER3 2 6AK3, 6M9T

PTGER4 3 5YHL, 5YWY 7D7M

PTAFR 2 5ZKQ, 5ZKP

lpar6a 1 5XSZ

BLT1 1 5X33

S1PR1 11 3V2W, 3V2Y 7TD4, 7TD3, 7EO4, 7EO2, 7EVY, 7WF7, 7EW0, 7EW7, 7EVZ

S1PR2 1 7T6B

S1PR3 4 7C4S 7EW2, 7EW3, 7EW4

S1PR5 1 7EW1

SSR2 2 7T10, 7T11

SUCR1 3 6Z10, 6RNK, 6IBB

TBXA2R 2 6IIU, 6IIV

V2R 2 7DW9, 7BB6

GPR52 4 6LI0, 6LI1, 6LI2 6LI3

GPR88 2 7EJX, 7WZ4

GPR139 4 7VUH, 7VUJ, 7VUI, 7VUY

GPR183 2 7TUY 7TUZ

MRGX2 14 7VV6, 7VV4, 7VV0 7VDM, 7VDH, 7VUZ, 7VDL, 7VV5, 7VUY, 7VV3, 7S8M, 7S8O,
7S8L, 7S8N

MRGX4 1 7S8P

B1 CALCR 12 5UZ7, 6NIY, 7TYL, 7TYI, 7TYN, 7TYO, 7TYF, 7TYW, 7TYH, 7TYX,
7TYY, 7TZF

CALRL 6 7KNU, 7KNT 6E3Y, 6UVA, 6UUN, 6UUS

CRFR1 4 4K5Y, 4Z9G 6PB0, 6P9X

CRFR2 1 6PB1

GHRHR 2 7CZ5, 7V9M

GIPR 6 7FIY, 7VAB, 7FIN, 7DTY, 7RBT, 7RA3

GLP1R 34 5NX2, 5VEW, 5VEX, 6KJV, 6KK1, 6KK7, 6LN2 7FIM, 7VBI, 7LLL, 7LLY, 7S1M, 7S3I, 7RTB, 7DUR, 7EVM, 7KI0, 7KI1,
7DUQ, 7E14, 7LCJ, 7LCK, 7LCI, 6XOX, 6X1A, 6X18, 6X19, 7C2E, 6VCB,
6ORV,
6B3J, 7RGP, 7RG9, 7VBH

GLP2R 1 7D68

GCGR 10 4L6R, 5EE7, 5XEZ, 5XF1, 5YQZ 6LMK, 6LML, 6WHC, 6WPW, 7V35

SCTR 3 6WZG, 6WI9, 7D3S
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Human GPCR can be classified into five distinct subtypes:
rhodopsin (class A), secretin (class B1), adhesion (class B2),
glutamate (class C), and frizzled (class F).1 To date, over 750
ligand-bound or apo-GPCR structures (including 96 CNS-related
GPCRs) have been reported (Table 1). For details: https://
gpcrdb.org. The transmembrane helical core exhibits high
similarity. The helical core forms the orthosteric binding pocket
for cognate ligands. GPCR can be divided into three different
functional regions: (1) extracellular region including N-terminus,
extracellular loops (ECLs), and extracellular ends of the transmem-
brane helices are involved in ligand recognition and selectivity;25

(2) intracellular region consisting of C-terminus, intracellular loops

(ICLs) and intracellular ends of the transmembrane helices provide
docking cavity for G proteins/ arrestins and interacts with different
regulatory proteins such as GPCR kinases;26 (3) helical core in-
between extracellular and intracellular region deliver and covert
ligand signals via unique conformational change (Fig. 1b).27,28

Activated receptors generate second messengers via the G
protein. In heterotrimeric form, the G protein is inactive. After
binding to the intracellular cavity formed by GPCR, the GDP-
binding pocket on the Gα subunit of heterotrimeric G proteins is
opened, facilitating subsequent exchange for GTP.29 GTP is
physiologically more abundant as compared to GDP.30 The
nucleotide exchange is a rate-limiting step in the G protein

Table 1. continued

Class Receptors Total
number

PDB ID (receptor alone) PDB ID (G protein coupled receptor)

B2 ADGRG1 1 7SF8

ADGRL3 1 7SF7

C GABBR1 1 6W2Y

GABBR2 12 7C7S, 7C7Q, 6UO8, 6VJM, 6UOA, 6UO9, 6W2X,
6WIV, 7CUM, 7CA5, 7CA3

7EB2

GRM1 3 4OR2, 7DGE, 7DGD,

GRM2 9 7MTR, 7MTQ, 7EPE, 7EPD, 7EPB, 7EPF, 7EPA 7MTS, 7E9G

GRM3 3 7WI6, 7WI8, 7WIH

GRM4 1 7E9H

GRM5 11 4OO9, 5CGC, 5CGD, 6FFH, 6FFI, 6N4X, 6N4Y, 6N50,
6N51, 6N52, 7FD8, 7P2L, 7FD9

GRM7 1 7EPC

GP158 5 7EWL, 7SHF, 7SHE, 7EWR, 7EWP

CASR 16 7SIL, 7SIM, 7SIN, 7E6U, 7E6T, 7M3E, 7M3J, 7M3G,
7M3F, 7DD5, 7DD6, 7DD7, 7DTU,7DTW, 7DTV,
7DTT

F FZD4 1 6BD4

FZD5 1 6WW2

FZD7 1 7EVW

ADRB3 beta-3 adrenergic receptor, AGTR1 type 1 angiotensin II receptor, AGTR2 type 2 angiotensin II receptor, HTR1A 5-hydroxytryptamine receptor 1A, HTR1B
5-hydroxytryptamine receptor 1B, HTR1D 5-hydroxytryptamine receptor 1D, HTR1E 5-hydroxytryptamine receptor 1E, HTR1F 5-hydroxytryptamine receptor 1F,
HTR2A 5-hydroxytryptamine receptor 2A, HTR2B 5-hydroxytryptamine receptor 2B, HTR2C 5-hydroxytryptamine receptor 2C, ACM1 muscarinic acetylcholine
receptor M1, ACM2 muscarinic acetylcholine receptor M2, ACM3 muscarinic acetylcholine receptor M3, ACM4 muscarinic acetylcholine receptor M4, ACM5
muscarinic acetylcholine receptor M5, APJ apelin receptor, BKRB1 B1 bradykinin receptor, BKRB2 B2 bradykinin receptor, C5AR1 C5a anaphylatoxin chemotactic
receptor 1, CCKAR cholecystokinin receptor type A, CCR1 cinnamoyl-CoA reductase 1, CCR2 C-C chemokine receptor type 2, CCR5 C-C chemokine receptor type
5, CCR6 C-C chemokine receptor type 6, CCR7 C-C chemokine receptor type 7, CCR9 C-C chemokine receptor type 9, CNR1 cannabinoid receptor 1, CNR2
cannabinoid receptor 2, CXCR2 C-X-C chemokine receptor type 2, CXC-R4 C-X-C chemokine receptor type 4, DRD1 D(1A) dopamine receptor, DRD2 D(2)
dopamine receptor, DRD3 D(3) dopamine receptor, DRD4 D(4) dopamine receptor, EDNRB endothelin receptor type B, FFAR1 free fatty acid receptor 1, FPR1
fMet-Leu-Phe receptor, FPR2 N-formyl peptide receptor 2, GALR1 galanin receptor type 1, GALR2 galanin receptor type 2, CCKBR gastrin/cholecystokinin type B
receptor, GHSR growth hormone secretagogue receptor type 1, GNRHR gonadotropin-releasing hormone receptor, GPBAR1 G-protein coupled bile acid
receptor 1, HRH1 histamine H1 receptor, LPAR1 lysophosphatidic acid receptor 1, LSHR lutropin-choriogonadotropic hormone receptor, LT4R1 leukotriene B4
receptor 1, MC4R melanocortin receptor 4, MSHR melanocyte-stimulating hormone receptor, MTNR1A melatonin receptor type 1A, MTNR1B melatonin receptor
type 1B, NK1R substance-P receptor, NPY1R neuropeptide Y receptor type 1, NPY2R neuropeptide Y receptor type 2, NTSR1 neurotensin receptor type 1, OPRD
delta-type opioid receptor, OPRK kappa-type opioid receptor, OPRM mu-type opioid receptor, OPRL1 nociceptin receptor, HCRTR1 orexin/hypocretin receptor
type 1, HCRTR2 orexin receptor type 2, OXYR oxytocin receptor, P2RY1 P2Y purinoceptor 1, P2Y12 P2Y purinoceptor 12, PAR1 proteinase-activated receptor 1,
PAR2 proteinase-activated receptor 2, PTGDR2 prostaglandin D2 receptor 2, PTGER2 prostaglandin E2 receptor EP2 subtype, PTGER3 prostaglandin E2 receptor
EP3 subtype, PTGER4 prostaglandin E2 receptor EP4 subtype, PTAFR platelet-activating factor receptor, lpar6a lysophosphatidic acid receptor 6a, BLT1
leukotriene B4 receptor 1, S1PR1 sphingosine 1-phosphate receptor 1, S1PR2 sphingosine 1-phosphate receptor 2, S1PR3 sphingosine 1-phosphate receptor 3,
S1PR5 sphingosine 1-phosphate receptor 5, SSR2 somatostatin receptor type 2, SUCR1 succinate receptor 1, TBXA2R thromboxane A2 receptor, V2R vasopressin
V2 receptor, GPR52 G-protein coupled receptor 52, GPR88 probable G-protein coupled receptor 88, GPR139 probable G-protein coupled receptor 139, GPR183
G-protein coupled receptor 183, MRGX2 Mas-related G-protein coupled receptor member X2, MRGX4 Mas-related G-protein coupled receptor member X4,
CALCR calcitonin receptor, CALRL calcitonin gene-related peptide type 1 receptor, CRFR1 corticotropin-releasing factor receptor 1, CRFR2 corticotropin-releasing
factor receptor 2, GHRHR growth hormone-releasing hormone receptor, GIPR gastric inhibitory polypeptide receptor, GLP1R glucagon-like peptide-1 receptor,
GLP2R glucagon-like peptide 2 receptor, GCGR glucagon receptor, SCTR secretin receptor, ADGRG1 adhesion G-protein coupled receptor G1, ADGRL3 adhesion G
protein-coupled receptor L3, GABR1 gamma-aminobutyric acid type B receptor subunit 1, GABBR2 gamma-aminobutyric acid type B receptor subunit 2, GRM1
metabotropic glutamate receptor 1, GRM2 metabotropic glutamate receptor 2, GRM3 metabotropic glutamate receptor 3, GRM4 metabotropic glutamate
receptor 4, GRM5 metabotropic glutamate receptor 5, GRM7 metabotropic glutamate receptor 7, GP158 probable G-protein coupled receptor 158, CASR
extracellular calcium-sensing receptor, FZD4 Frizzled-4, FZD5 Frizzled-5, FZD7 Frizzled-7
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activation process.29 GTP binding prevents Gα protein from
forming heteromer with Gβγ subunit.31 The free Gα and Gβγ
subunits modulate different downstream effector pathways. By
hydrolyzing GTP to GDP, the active GTP-bound Gα subunit returns
to an inactive state and forms a complex with the Gβγ subunit
again. G proteins are classified based on their Gα subunit. There
are four different Gα protein families: Gαi/o, Gαs, Gαq/11, and
Gα12/13. Each family regulates a specific set of downstream
responses. Individual GPCR could mediate different functions in
different cellular contexts via preferential G protein coupling
(Figs. 1 and 2).

Gα proteins: Gαs and Gαi/o
Gαs (stimulatory regulator of adenylyl cyclase G protein activates
adenylyl cyclase) promotes the generation of 3’-5’-cyclic adeno-
sine monophosphate (cAMP) from ATP by adenylate cyclase.
cAMP is essential for protein kinase A (PKA)-mediated signal
transduction;32 In contrast, Gαi/o suppresses adenylyl cyclase
activity, which prevents cAMP accumulation and reduces PKA

activity. cAMP is a crucial regulator of the phosphoinositide 3-
kinase/AKT murine thymoma viral oncogene homolog (PI3K/AKT)
signaling pathway. It has been shown that PI3K/AKT is associated
with the inflammatory response in multiple neurodegenerative
diseases.33–35 cAMP is also linked to calcium dynamics in neuronal
cells and neurodegenerative diseases. Details can be found in the
comprehensive review by Sobolczyk and Boczek.36

Gα protein: Gαq/11
Gαq activates phospholipase C (PLC), which hydrolyzes phospha-
tidylinositol 4,5-biphosphate into diacylglycerol (DAG) and inositol
1,4,5-trisphosphate (IP3). DAG activates protein kinase C, which
phosphorylates various downstream signaling proteins. IP3
stimulates calcium efflux from the endoplasmic reticulum through
specific IP3 receptors. Calcium signaling is essential for the release
of neurotransmitters.37,38 For instance, dysregulation of the
dopamine D1 receptor-mediated PLC/IP3/Ca2+ pathway in the
anterior cortex of the brain is associated with mental illness in
rats.39,40 PLC/IP3/Ca2+ pathway regulates the electrical response

Fig. 2 GPCR-regulated downstream signaling pathways in neurodegenerative and psychiatric disorders. CAMK calmodulin-dependent
protein kinase, BACE1 β-site APP cleaving protein 1, TAK1 transforming growth factor-β-activated kinase, TAB1 TAK1 binding protein, PP2A
protein-phosphatase 2A, PLC phospholipase C, PDK1 phosphoinositide-dependent kinase 1, diacylglycerol (DAG), IP3 inositol triphosphate,
Akt protein kinase B, APP amyloid protein precursor, Bax B-cell lymphoma-2-associated X, Blk B lymphoid tyrosine kinase, cAMP cyclic
adenosine monophosphate, Casp9 caspase 9, CREB cAMP response element binding protein, ERK1/2 extracellular signal-regulated-kinase,
GSK3β glycogen synthase kinase 3β, Gβγ free heterotrimeric G protein beta/gamma subunits, IKBα inhibitory subunit of nuclear factor kappa-B
alpha, IKKα/β inhibitor of kappa-B kinase, MEK mitogen-activated protein, NFT neurofibrillary tangles, NF-κB nuclear factor kappa-B, PI3K
phosphoinositide 3-kinase, PKA protein kinase A, Raf1 Raf-1 proto-oncogene, serine/threonine kinase, Ras Ras Sarcoma oncoproteins, Rho Ras
homologous proteins, ROCK Rho-associated coiled-coil containing kinases, SRF serum response factor
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of the neuron.41 Impaired Ca2+ homeostasis by Aβ exposure is one
of the underlying causes of amyloid toxicity in Alzheimer’s
disease.42 In psychiatric disorders, Ca2+ signaling regulates
neuronal connectivity, synaptic plasticity, and glial functions.43

Gα protein: Gα12/13
Gα12/13 binding can stimulate Rho family GTPases.44 Rho GTPases
activate the cytosolic Rho protein by promoting GDP/GTP
exchange.45 Activated Rho is released from inhibitory protein,
migrates to the plasma membrane, and modulates multiple
downstream effectors.46 One of which is ROCK1/2 (Rho kinase).
The Rho-ROCK pathway is essential in neurodegenerative diseases,
including Alzheimer’s disease, Parkinson’s disease, amyotrophic
lateral sclerosis, and Huntington’s disease.47 ROCK activity is
closely associated with neuronal cell loss, impaired synaptic
functions, and cytoskeleton modulation in central nervous system
disorders.47 Rho/ROCK signaling modulates the activity of
transcription regulators such as AP-1, MRTF-A, YAP, NF-κB, and

serum response factor.47,48 Rho family GTPases are essential for
axon guidance, cell polarity, and synapse formation.49 It has been
shown that Rho GTPase regulates neuronal cell survival by
inhibiting AKT signaling.50

GPCR kinases (GRKs)
Activated GPCR is subjected to desensitization to protect the cell
from sustained stimulation.51 After peak response, ligand-bound
receptor activity will return to basal level.52 Receptor phosphor-
ylation by a family of GPCR kinases (GRKs), including GRK1/7,
GRK2/3, and GRK4/5/6, is an essential first step to switch off
sustained signaling.53,54 GRKs are second messenger-independent
kinases (e.g., in contrast to PKA, which is dependent on cAMP
levels). Serine/threonine residues on the GPCR carboxyl-terminal
tail are common phosphorylation sites targeted by GRKs.55 GRKs
translocate from cytoplasm to plasma membrane and initiate
receptor phosphorylation by binding to Gβγ.56,57 GRK could also
interfere with G protein binding through direct interaction.58 GRK

Fig. 3 GPCR-G protein/arrestin complexes. a Crystal structure of arrestin 1 (PDB 1CF1) showing the membrane-anchoring c-loop. b Solvent-
accessible surface. Hydrophobic surface (red); Hydrophilic surface (white). c Biased signaling of serotonin 5-HT2B receptors. Activated 5-HT2B
receptor (PDB 7SRQ) is preferentially coupled to Gαs protein (PDB 7SRR). The receptor could also couple to β-arrestin 1 (PDB 7SRS). Gαs and
β-arrestin 1 engaged on the same cavity formed by the cytoplasmic receptor interface
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level is affected by inflammatory responses in neonatal and adult
neurons.59 GRK dysfunction is associated with cognitive impair-
ment and tau hyperphosphorylation in Alzheimer-like pathol-
ogy.60 Colocalization of GRK with amyloid plaques is observed in
brain tissues of Alzheimer’s disease patients.61 Patients of
Parkinson’s disease with dementia have increased GRK3/5
transcripts.62 GRK might promote the formation of pathological
Lewy bodies in sporadic Parkinson’s disease, but the mechanism is
yet to be defined.63 In psychiatric disorders, upregulating brain
GRKs are observed in schizophrenia and major depression.64,65

Arrestins in GPCR desensitization
Active GPCR is ready for the arrestins (signal terminators) binding
after GRK phosphorylation. Arrestins can be classified into visual
arrestins (arrestin 1 and arrestin 4) and non-visual arrestins
(β-arrestin 1/2 or arrestin 2/3). Visual arrestins express exclusively
in retina photoreceptors. They regulate light-activated rhodopsin
signaling.66,67 β-arrestin 1/2 are ubiquitously expressed cytoplas-
mic proteins (Fig. 3a, b).52 β-arrestins and G proteins compete for
the receptors. They bind to the same inter-helical cavity on the
intracellular region (Fig. 3c).68 β-arrestin reduce G protein singling
by hindering interaction between receptor and heterotrimeric G
proteins. Further, β-arrestins facilitate receptor recycling by
promoting internalization and cellular trafficking.69,70 The C-edge

of arrestin protein with proximity to the membrane surface
functions membrane anchor to stabilize the arrestin-active
receptor complex (Fig. 3a).71 Recent studies illustrate the
association of β-arrestin in multiple physiological functions and
neuropsychiatric disorders.72,73 Phosphorylation of PI3K/AKT is
remarkably reduced in the β-arrestin 2-deficient adult neural stem
cells, indicating the crucial role of β-arrestin 2-PI3K/Akt pathway in
adult hippocampal neurogenesis.74,75

Biased signaling of GPCRs
G protein-biased signaling is regarded as the canonical signaling
pathway employed by GPCRs.
β-arrestin can modulate GPCR signal transduction in G protein-

independent mechanism. β-arrestin can use the receptor as a
structural component to generate an intracellular signaling complex
consisting of agonist-occupied receptor and nonreceptor tyrosine
kinases (c-Src).76 β-arrestin can maintain ERK signaling by acting as a
scaffold for ERK mitogen-activated protein kinase.77 Other down-
stream effectors of β-arrestins include phosphatases and transcrip-
tion factors.78 β-arrestins can act as a scaffold protein for specific
downstream effectors.79,80 In the mouse model, β-arrestin 2 exerts
anti-inflammatory functions by inhibiting nuclear factor kappa-B.81

Maintaining the arrestin-dependent signaling of M1 muscarinic
acetylcholine receptor can prevent the insoluble misfolded proteins

Fig. 4 Class A GPCR activation. a Prominent outward bending of TM5 and TM6 opens the cytoplasmic pocket of inactive serotonin 5-HT2A
receptor (orange, PDB 6A93) for the binding of G protein. Active 5-HT2A receptor (marine blue, PDB 6WHA). b Microswitches involved in
5-HT2A receptor activation. c Structural features of class C GPCRs. Inactive (PDB 7MTQ) and active metabotropic glutamate receptor 2 mGlu2R
(PDB 7MTR). VFT extracellular venus flytrap domain, CRD cysteine-rich domain, TMD transmembrane domain, PAM positive allosteric modulator
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accumulation in Alzheimer’s disease model which thereby slowing
down neurodegenerative disease progression.82

β-arrestin is important for astrocyte-mediated pro-inflammatory
cytokine production.83 In mouse Parkinson’s disease models,
β-arrestin 2-biased ligands suppress glia-derived inflammation
and prevent neuron loss.84 IL-1β produced by the inflammation
site is suppressed by β-arrestin 2.84 As compared to agonists
which facilitate G protein and β-arrestin signaling at the same
time, a β-arrestin-biased agonist for δ-opioid receptor can
effectively control anxiety-like behaviour by activating ERK1/2 in
the limbic structures of the brain.85 Hence, identifying therapeutic
modulators that could preferentially stabilize GPCR structure for G
proteins or β-arrestins is important for developing effective
treatments for neurodegenerative and psychiatric diseases.

Examples of GPCR-regulated modulators in disease development
β-site APP cleaving protein 1 (BACE1). The proteolytic activity of
BACE1 promotes the generation of β-amyloid (Aβ) peptides from
amyloid precursor protein in Alzheimer’s disease.86 BACE1
expression can be activated by muscarinic acetylcholine receptor
M1/M3 via PKC and MAP kinase signaling cascades.87 BACE1
activity is modulated by other GPCRs, such as the A2A and delta-
opioid receptors.33 It has been shown that selective activation of
the M2 receptor will suppress BACE1 expression via PKA-mediated
signaling events.33

cAMP-response element binding protein (CREB). GWAS analysis
indicates that genes involved in the cAMP/PKA/CREB pathway are
genetically associated with schizophrenia and bipolar disorder.88

CREB is a transcription factor activated by phosphorylation after
GPCR activation. The binding of CREB to a specific cAMP response
element (CRE) in the transcription regulatory region enhances
particular gene transcription. For instance, neurotransmitter-
activated dopamine D1 receptor on dopaminergic neurons can
elicit transcription brain derived growth factor (BDNF) and other
neurotrophins.89 In patients with bipolar disorder and schizo-
phrenia, CREB expression is remarkably reduced in the dorsolateral
prefrontal cortex and cingulate gyrus.90 While CREB protects
neuronal cells in neurogenerative diseases, constitutively active
CREB can reduce hippocampal neuron numbers and trigger
sporadic epileptic seizures.91,92 It has been shown that the CREB
modulator could enhance synaptic plasticity, which is beneficial
for schizophrenia treatment.89

DARPP-32 and PP1. DARPP-32 (dopamine- and cyclic-AMP-
regulated phosphoprotein of molecular weight 32,000) regulates
neuronal excitability levels by prolonged depolarizations and
voltage oscillations.93 DARPP-32 is the downstream target of Gi-
coupling receptors such as the D2 dopamine receptor. DARPP-32
functions as a protein phosphatase-1 (PP1) inhibitor, a eukaryotic
serine/threonine protein, upon phosphorylation at Thr-34 by PKA.
PP1 is a phosphatase with multiple physiological functions. PP1
controls clock component PER2 accumulation in neurons,
influencing circadian rhythm by light-mediated clock resetting.94

PP1 is an inducer of long-term synaptic depression in the
hippocampus.95 Dysregulation of glutamate and dopamine
signaling is common in neurodegenerative and neuropsychiatric
disorders. Quantitative modeling results suggested that DARPP-32
could integrate dopamine and glutamate signals in striatal
neurons.96 PP1 signaling reduces GABA(A) receptors in neostriatal
medium spiny neurons depending on PKA and DARPP.97

GPCRS IN NEUROPSYCHIATRIC DISEASES
Class A GPCR (rhodopsin)
Structural insights. Class A GPCR is the most heavily investigated
GPCR family for drug development. Ligand binding to the unique
pocket stabilizes GPCR in a particular conformation.98 Comparative

analysis reveals that the outward bending/rotation of intracellular
TM6 is a universal structure feature of receptor activation
throughout the GPCR superfamily (Fig. 4a).98 Hydrophobic packing
interactions between the transmembrane helices help to maintain
the active conformation of TM6.99 Apart from TM6, rearrange-
ments of other transmembrane helices, including TM3/5/7, open
the intracellular milieu to facilitate recruitment of G protein.100

Class A GPCR has a consensus binding interface for G protein
coupling.101 The receptors employ unique structure motifs as
microswitches to transmit external stimuli (Fig. 4b). D3.49R3.50Y3.51

motif (Ballesteros–Weinstein number) at the intracellular region of
TM3 forms the classic “ionic lock” with E6.30 on TM6 to constrain
the receptor in the ground state.102,103 Disruption of the ionic lock
is an activation feature of class A GPCRs.104 Side chains of Y7.53

(NPxxY motif) on TM7 and W6.48 (CWxP motif) on TM6 are
subjected to orientation rearrangement during receptor activa-
tion.105,106 The P5.50I3.40F6.44 motif, formed by a group of
hydrophobic residues on TM3/5/6, is also a crucial switch for
receptor activation.107 Polar interactions and aromatic stacking
interactions between the conserved aromatic residues are
frequently observed in the ligand binding region of activated
class A GPCRs.27

Acetylcholine receptors (muscarinic). Acetylcholine is a neuro-
transmitter employed by cholinergic neurons in the brain and
spinal cord.108 Muscarinic acetylcholine receptors in the central
and peripheral nervous systems have five distinct subtypes. M1,
M3, and M5 receptors are excitatory M1-like receptors.109 In
contrast, M2-like receptors (M2 and M4 receptors) inhibit adenylyl
cyclase activity. All the subtypes are detected in the brain. M2 and
M3 receptors are also found in peripheral tissues.110

Reduced acetylcholine signaling due to the loss of cholinergic
neurons is common in Alzheimer’s disease.111 Amyloid-β proteins
could interrupt the interaction between the M1 receptor and G
protein.112 M1 receptor-knockout mice show Alzheimer’s disease-
like pathology with age-dependent cognitive decline.113 M1
receptor function is impaired by the binding of tau protein, a
microtubule-associated protein in the extracellular matrix, which is
toxic in secreted form;114,115 Autoantibodies to recombinant
human M1 receptors are detected in patients with schizophrenic
disorders, mood disorders, and other psychiatric disorders.116,117

The M1 receptor is a promising target for schizophrenia
treatment. Allosteric modulation of M1 receptor activity could
improve cognitive performance with antipsychotic activity.118

However, substantial loss of cortical M1 receptor might affect the
efficacy of positive allosteric modulator.119

M2 receptor reduction is noted in the frontal cortex of
Alzheimer’s disease patients.120 Suppressing M2 receptor expres-
sion with siRNA alters the expression of β-site APP cleaving
protein. This transmembrane aspartic endopeptidase is involved
in beta-amyloid formation.121

M2 receptor is suspected to be related to the major depressive
disorder and bipolar disorder development.122 M2-encoding gene
is genetically associated with the cholinergic dysfunction seen in
mood disorders.122

M3 receptor level is remarkably reduced in the post-mortem
frontal cortex tissues of patients with bipolar disorder.123 However,
conflicting results are observed in another study cohort.124

Genetic variants of the M3 receptor-encoding gene are associated
with abnormal neural connectivity in schizophrenia and cannabis-
induced hallucinations.125,126

Acetylcholine elevation is observed in Parkinson’s dis-
ease.127–129 Targeting the M4 receptor with various antagonists
showed promising treatment results for Parkinson’s disease.130,131

M4 receptor is abundantly expressed in striatal neurons, which
regulates the balance between acetylcholine and dopamine
responses.132 M4 receptor promotes the development of the
dopamine hypersensitivity phenotype of schizophrenia.133 It has
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been shown that the M5 receptor can potentiate drug addiction
by reinforcing rewarded behavior.134

Adenosine receptor. Adenosine (A1A, A2A, A2B, A3A) receptors
are synaptic modulators that transmit inhibitory signals from
adenosine to excitatory synapses.135 Adenosine is also known as a
“retaliatory metabolite” as it is produced exponentially from tissue
under stress.136 Astrocytes release adenosine to modulate
synaptic transmission during hypoxia.137 A1A and A2A receptors
exhibit widespread expression in the brain.138 A1A and A3A
receptors are Gi-coupling receptors. In contrast, A2A and A2B
receptors prefer Gs for downstream signaling.
Although dopamine-replacement therapy is the mainstay

treatment for Parkinson’s disease, it remains challenging to
manage dyskinesia during replacement treatments.139 Animal
study reveals that activating the A2A receptor will reduce the
agonistic effects of dopaminergic D2 receptor-targeting drugs.140

As the A2A receptor is colocalized with D2 dopaminergic
receptors, it is suggested that interactions between A2A and D2
receptors might be involved in the pathophysiology of Parkinson’s
disease.141

Epidemiological data support that caffeine (a naturally occur-
ring methylxanthine) consumption might reduce the risk of
depression or depressive symptoms.142,143 The psychoactive
function of caffeine is mediated via the non-selective antagonistic
action on A1/A2A receptors.144 How A1/A2A receptors regulate
depression-like behaviour remains unclear.145 It should be noted
that caffeine at high doses might function other than adenosine
receptor antagonists causing insomnia and anxiety.146,147

Activated A2A receptor suppresses nitric oxide (NO) production
by inhibiting NO synthetase.12 NO signaling is associated with
various neurodegenerative diseases, including Parkinson’s disease,
amyotrophic lateral sclerosis, multiple sclerosis, amyotrophic
lateral sclerosis, and Alzheimer’s disease.148 NO is a mediator of
neuroinflammation, which triggers the microglial to release pro-
inflammatory factors.149 NO induces protein S-nitrosylation
(covalent addition of a NO group to a cysteine thiol/sulfhydryl),
imposing endoplasmic reticulum stress in neurons.150,151 As A2A
receptor activation affects synaptic plasticity and introduces
memory deficits, antagonizing the A2A receptor might be helpful
to control age-related cognitive impairments in Alzheimer’s
disease.152

Adrenergic receptor. Brain adrenergic receptors on neurons and
glia are activated by the monoamine neurotransmitter norepi-
nephrine (produced primarily in the locus coeruleus of the brain
stem) and epinephrine.153 Norepinephrine is produced from
dopamine and converted into epinephrine. Norepinephrine and
epinephrine released at synaptic junctions in the autonomic
nervous system control classical fight-or-flight response.154

Norepinephrine controls response to environmental changes by
regulating neuronal excitability.155 Epinephrine and norepinephr-
ine also affect intelligence.156 Human has 2 adrenergic receptor
subtypes: α-adrenergic (α1, α2A, α2B, α2C) receptors and
β-adrenergic (β1, β2, β3) receptors. All the subtypes can be
detected in the brain tissues.
Adrenergic receptor protects the central nervous system from

uncontrolled inflammatory responses.157 In the neonatal Lewis
rats model, norepinephrine protects neuronal damage from
inflammation.158–161 Blocking β-adrenergic receptors signaling
with beta-blockers (β-adrenergic antagonists) could exacerbate
neuroinflammation in a mouse model of Alzheimer’s disease.162

Patients of Alzheimer’s disease and Parkinson’s disease show
profound cell loss in locus coeruleus.163 Amyloid Aβ affects
norepinephrine production and alters adrenergic receptor signal-
ing in Alzheimer’s disease;164 Low norepinephrine level is linked to
mood disorders such as anxiety, depression, and attention deficit
hyperactivity disorder.156 α2-adrenergic receptors are established

targets for antidepressant therapy.165 Depressed suicide victims
showed high α2A-adrenergic receptor in the prefrontal cortex.166

Presynaptic α2-adrenergic receptor is an auto-receptor with the
highest affinity to norepinephrine. Activated α2-adrenergic
receptor inhibits norepinephrine synthesis and release.167 Thus,
antagonizing presynaptic α2-adrenergic receptors could benefit
depression treatment by enhancing norepinephrine release.168

Cannabinoid receptor. Cannabinoid signaling is involved in
nociception, neurotransmission, and neuroprotection.169 It is also
engaged in learning, memory, motor, food intake, anxiety, pain
perception, and fear memories.170 Cannabinoid receptor type 1
(CB-1) is the primary subtype in the central nervous system. In
comparison, the CB-2 receptor is mainly found in immune
tissues.171 Cannabinoid receptors in the presynaptic nerve
terminals can be activated by endogenous lipid endocannabi-
noids 2-arachidonoylglycerol (2-AG) and N-arachidonoyl-
ethanolamine (AEA; anandamide).172 2-AG is a full agonist for
cannabinoid receptors, while AEA is a weak partial agonist.173

Cannabinoid receptors can also be activated by phytocannabi-
noids such as Δ9-tetrahydrocannabinol and non-euphoric canna-
bidiol (CBD) extracted from cannabis.174,175

The CB-1 receptor is the dominant subtype in the brain.176,177

CB-1 receptor can be found in different neuronal types (e.g.,
GABAergic, glutamatergic, and serotonergic neurons) and controls
cholinergic transmission.178,179 Exogenous administration of
endocannabinoids protects neurons from β-amyloid (Aβ) neuro-
degeneration and apoptosis.180 Targeting cannabinoid receptors
can improve spasticity (increase in muscle stiffness) and central
neuropathic pain in patients with multiple sclerosis.181 Substantial
reduction of CB-1 receptor in lateral globus pallidus and
substantia nigra pars reticulata is associated with neurodegenera-
tion in Huntington’s disease.182,183 Genetic polymorphisms on the
CB-1 receptor are a risk factor for schizophrenia. CBD treatment is
effective for neuroinflammatory-derived conditions such as
epilepsy and anxiety.184

The pathological functions of the CB-2 receptor in inflammatory
conditions (e.g., Alzheimer’s disease, Parkinson’s disease, multiple
sclerosis, stress response, and depression) are under active
investigation.185,186 Inflammation is a driving factor of depression
and could counter the effects of antidepressant therapies.187 CB-2
receptor-overexpressing mice showed a significant reduction in
depressive-related behaviors.188 In contrast, pro-inflammatory
chemokines and cytokines are markedly reduced in the brain of
CB-2 receptor-deficient mice.189 CB-2 receptor can suppress
microglial activation and prevent pro-inflammatory mediators
release.190,191 In bipolar disorder, a neuropsychiatric disorder
presenting with mood fluctuation, selective activation of the CB-2
receptor can stabilize mood and reduce mood swings.192

Other receptors for endogenous cannabinoids: GPR12, GPR18, and
GPR55. GPR12 is phylogenetically related to the cannabinoid
(CB-1 and CB-2) receptors.193 GPR12 is a constitutively active
receptor.194 Apart from cannabidiol, lysophospholipid sphingosine
1-phosphate and phingosyl-phosphorylcholine are potential
endogenous ligands for GPR12.193,195 GPR12 expressed mainly in
the central nervous system (frontal cortex, piriform cortex,
thalamus, hypothalamus, hippocampus, amygdala, and olfactory
bulb).196 In mice, GPR12 expresses in the area controlling emotion
and metabolism.195 GPR12 promotes neurite outgrowth by
activating ERK1/2 signaling.197 Other functions include pain
control, neurite outgrowth, and regeneration.193 SNP microarray-
based genome-wide association study reveals a close association
between GPR12 and antipsychotic response in schizophrenia
treatment.198

GPR18 and GPR55 also act as receptors for endogenous
cannabinoids 2-AG and AEA.199,200 GPR18 and GPR55 exhibit high
structural similarity.201 GPR18 regulates polymorphonuclear cell
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infiltration and protects organs from acute immune responses.202

It has been shown that GPR18 could interact with the CB-2
receptor in activated microglia of Alzheimer’s disease model;203

GPR55 expresses predominantly in the brain.204 The receptor can
be activated by endocannabinoids, phytocannabinoids, synthetic
cannabinoid ligands, and lysophosphatidylinositol.205 GPR55
antagonist exhibits anti-inflammatory functions by modulating
GPR55-expressing immune cells such as monocytes and micro-
glia.206 Given the high expression of GPR55 in the striatum,
GPR55 signaling is suspected to be involved in motor impairment
in Parkinson’s disease.207

Dopamine receptor. Dopamine is a catecholamine neurotrans-
mitter in the brain. Dopamine/ dopamine receptors are crucial for
motor function, cognition, learning, and memory.208 There are two
receptor subtypes: D1-like (D1 and D5) and D2-like (D2, D3, and
D4).209 D1 and D2 receptors are the most abundantly expressed
dopamine receptor subtypes in the brain.210

D1 and D2 receptors are significantly reduced in asymptomatic
Huntington’s disease patients.12 In the early stage of Huntington’s
disease, dopamine signaling is associated with the development
of dance-like movements (chorea). Clinical studies show that
dopamine receptor blockers or depleting agents control motor
dysregulation, especially chorea.211 In the late stage, however, a
remarkable reduction in dopamine/ dopamine metabolite level is
observed.212 The D1 receptor is remarkably reduced in patients
presenting mild to moderate functional impairment.213 It is noted
that targeting the dopaminergic signaling cascade might lead to
rapid cognitive decline in Huntington’s disease patients.214

Disturbances in the dopaminergic system are frequently
observed in other neurodegeneration disorders, including Alzhei-
mer’s disease, Parkinson’s disease, and multiple sclerosis.215

Reduced dopamine receptors are correlated with the progression
of Alzheimer’s disease;216 Loss of dopaminergic neurons is a
hallmark feature of Parkinson’s disease. Activating D2-like
receptors (D2/3 receptors) or increasing circulating dopamine
are effective treatment strategies for symptomatic Parkinson’s
disease;217 Dopamine dysregulation contributes to the demyeli-
nating process (resulting from autoimmune attack) in multiple
sclerosis.218 Dopamine can modulate pro-inflammatory cytokines
secretion in T helper Th17 cells in uncontrolled neuroinflammatory
responses.219,220

The development of β-arrestin-biased modulators might
improve treatment outcomes and avoid side effects. Dopamine
receptor agonist exhibits mild to serious side effects.221 This is
partly caused by the activation of both G proteins and the
β-arrestin signaling cascade.222,223 Many antipsychotics could
interfere with dopamine-dependent β-arrestin 2 recruitment.83

Selective activating the D2 receptor-β-arrestin pathway with
biased agonist is beneficial to correct dopamine signaling in
schizophrenia.224

Histamine receptor. Histamine is an inflammatory biogenic amine
synthesized from L-histidine. Histamine stimulates peripheral
immune cells to release pro-inflammatory cytokines. In the central
nervous system, histamine signaling in the tuberomammillary
nucleus (TMN) controls sleep-wake, circadian and feeding
rhythms.225 Elevated histamine increases blood-brain barrier
permeability, allowing peripheral immune cells to enter and act
on brain parenchyma.226

Four different histamine (H1–H4) receptors are reported.227 H1
and H2 receptors are expressed in the brain, central nervous
system, and peripheral tissues.225 H1 receptor activation promotes
neuron differentiation. In contrast, H2 receptor activation induces
neural stem cell proliferation.228 H3 receptor is localized in the
brain.229 H3 receptor is an important therapeutic target for
cognitive disorders.230 The neurological function of the H4
receptor remains unclear.229 H4 receptor can be detected in the

non-neuronal cells of the brain.229 H4 receptor activation is
involved in the inflammatory responses regulated by mast cells,
eosinophils, and T cells.229 Histamine acts on H1 and H3 receptors
to control normal sleep/wake behavior.231

Alterations in histamine signaling are found in both neurode-
generative and psychiatric disorders.230 Due to structural similar-
ity, H1 and H4 receptors are suggested to have cross-functional
impacts on disease development. Positron emission tomography
results show that reduced H1 or H4 receptor is present in a
subgroup of Alzheimer’s disease, schizophrenic and depressed
patients.232–234 The role of histamine signaling in Alzheimer’s
disease remains controversial due to the conflicting results on
histamine levels.232 H1 receptor upregulation is associated with
myelin damage mediated by focal lymphocytes in multiple
sclerosis.235 Targeting the H3 receptor with selective antagonists
could stimulate the release of crucial neurotransmitters, including
acetylcholine, dopamine, norepinephrine, and histamine.236 H4
receptor is involved in M1-activated microglia cells (primary
inflammatory cells in the brain) driven neuroinflammation.
Attenuating H4 receptor signaling is beneficial in controlling
inflammation propagation in Parkinson’s disease.237

Melanin-concentrating hormone receptor. Melanin-concentrating
hormone (MCH) is the pro-melanin expressed by the central
nervous system.238 MCH is well documented for its function in
controlling motivated behaviours, including feeding and drink-
ing.239 Later studies suggest that MCH promotes non-REM sleep
and modulates energy homeostasis.240,241 MCH receptor 1 is a
stress modulator regulating fear and anxiety processes.242 MCH
receptor 1-signaling is responsive to physiological- or
neurochemical-controlling stress and affective states in genetically
knockout models.243 MCH is associated with behavioural disorders
and depressive symptoms observed in Huntington’s disease
patients.244 Animals without MCH receptor expression exhibit
schizophrenia-like phenotypes.245

Melatonin receptor. Melatonin (MT) or N-acetyl-5-methoxytrypta-
mine is a neuroendocrine hormone produced by the pineal gland.
MT is a regulator of the circadian rhythm (sleep-wake cycle).
Melatonin is converted from tryptophan/ serotonin in the pine-
alocytes. Melatonin also functions as an antioxidant to protect
tissues from free radical damage.246 The antioxidant activity of
melatonin is essential in tissue (such as the brain) with high
reactive oxygen species (ROS) resulting from oxygen consump-
tion.247 Peripheral tissues, such as the gut and skin, could also
secrete melatonin.248 Melatonin secretion is suppressed by
daylight through the retino‐hypothalamic tract and reaches a
peak at night. Rhythmic nocturnal secretion (secreted in the dark)
allows melatonin to distributes throughout the body via circula-
tion.
Circadian rhythm dysregulation is a common symptom

presented by patients with neurodegenerative disease due to
functional impairment of the retina-suprachiasmatic nucleus
(SCN)-pineal axis.249 In Alzheimer’s disease, melatonin and MT1
receptor level in SCN and cortex diminishes remarkably.250,251

Pathological α-synuclein aggregation (a stepwise aggregation of
presynaptic neuronal protein observed during Parkinson’s disease
development) is reduced in animal models subjected to melatonin
treatment.252,253 In multiple sclerosis and amyotrophic lateral
sclerosis, melatonin demonstrates anti-apoptotic functions and
offers neural protection from oxidative damage.254,255

Dysregulation in MT1/2 receptor signaling contributes to the
pathological development of anxiety, sleep disorders (insomnia),
and depression.256–258 In a post-mortem study on depressed
patients, hypothalamic MT1 expression increased in the hypotha-
lamic suprachiasmatic nucleus and is correlated with disease
duration.259 Melatonin treatment can alleviate symptoms of
psychiatric disorders with few side effects (even at high
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dosages).260 Exogenous melatonin may also be administered to
control anxiety.261 Melatonin is an effective medication for sleep
disturbances in depression.262 However, no solid empirical
evidence supports melatonin or melatonin receptor agonists as
the cure for depression. The use of melatonin to normalize the
disrupted circadian cycle might not be sufficient to alleviate
depression.

Sphingosine 1-phosphate (S1P) receptor. S1P is an active lysopho-
spholipid. S1P exerts its biological functions through S1P receptor
1-5.263 S1P/S1P receptor controls angiogenesis, chemotaxis, and
egress of lymphocytes (from bone marrow, thymus, and lymphoid
tissues).263 S1P receptor-expressing immune cells in lymphoid
tissues are attracted by the high S1P level in the bloodstream.264

S1P receptors on immune cells are inactivated in peripheral blood
by receptor internalization.264 S1PR1 can be found in B, T, and
dendritic cells.263 During inflammation, S1PR1 on immune cells is
upregulated.265 S1PR1 enhances inflammation by activating
neuroglia/microglia (immune cells orchestrating inflammatory
response in the central nervous system).266 S1PR1 might
contribute to the development of multiple sclerosis by promoting
chronic and acute inflammation.263,267 Unlike S1PR1, S1PR5 is
mainly detected in natural killer and dendritic cells.268 S1PR5
expression on natural killer cells is critical for its egress from lymph
nodes and bone marrow.269 Hence, targeting S1P receptors might
protect the brain from immune attacks by limiting lymphocytes
from passing through the blood-brain barrier in multiple
sclerosis.266

Opioid receptor. The opioid receptor family is composed of delta
(δ)-opioid receptor (DOR), kappa (κ)-opioid receptor (KOR), mu (μ)-
opioid receptor (MOR), and nociceptin receptor. Opioid receptor
recognizes a variety of endogenous neuropeptides, including
enkephalins, endorphins, and dynorphins.270 The endogenous
opioids are one of the neuromodulators produced by the body to
attenuate stressful states. Opioid receptor in the central and
peripheral nervous system regulates stress and pain responses.271

locus coeruleus (LC) in the brain is the stress-integrating site. The
opioid receptor can sensitize neurons in LC to corticotropin-
releasing factor (CRF), a potent psychological mediator regulating
stress-induced behaviors.272 Chronic or persistent acute stress can
alter LC functions.273 Hyperactive LC is associated with psychiatric
disorders.274 Dysregulation of the opioid receptors affects emotion
processing in patients with major depressive disorders.275 Opioid
receptor levels are related to neurocognitive deficits.276 Elevated
opioid receptors level might elicit symptoms of schizophrenia
resulting in treatment resistance.276

δ-opioid receptor and mu-opioid receptor exhibit opposite
functions in the pathogenesis of Alzheimer’s disease. δ-opioid
receptor agonist reduces expression of β-site APP cleaving
enzyme 1 (BACE1), which cleaves amyloid precursor protein to
initiate Aβ peptide production in PC12 cells (harbouring mimicked
injury of Alzheimer’s disease).277,278 On the contrary, knocking
down δ-opioid receptor increases BACE1 expression, leading to

high production of Aβ42, the essential pathogenic Aβ peptides in
Alzheimer’s disease with 42 amino acids.278 For the μ-opioid
receptor, it is noted that agonist-induced receptor activation
enhances BACE1 and Aβ42 expression.278 Hence, targeting
δ-opioid/μ-opioid receptor signaling might benefit Alzheimer’s
disease treatment; Parkinson’s disease patients have reduced
brain kappa-opioid receptor levels.279 Activating κ-opioid receptor
ameliorates Parkinsonian behaviours and restores locomotor in
marmoset with Parkinsonism.280 In addition, κ-opioid receptor
agonists can alleviate dyskinesia behaviour derived from L-DOPA
in Parkinson’s disease rats.281

Serotonin receptor. Dysregulation of serotonin (5-hydroxytrypta-
mine, 5-HT) receptors is observed in nearly all neurodegenerative
and psychiatric disorders.282,283 5-HT receptors 1 and 2 are the
most intensively studied drug targets. The receptors have various
effects with multiple subtypes and alternative splice variants.
5-HT1 and 5-HT2 receptors have different expression patterns in
the brain with similar or opposite functions.284 5-HT1 receptor has
5 subtypes: 5-HT1A, 5-HT1B, 5-HT1D, 5-HT1E and 5-HT1F
receptors. 5-HT1A receptor can be found in both serotonin
neurons and non-serotonin neurons.285 5-HT1A receptor is
associated with anxiety and mental traits in transgenic mice.285

Partial agonists targeting the 5-HT1A receptor are suggested to be
useful in controlling alcohol abuse.286 Anterior cingulate cortex
(ACC) is a brain region regulating emotion regulation, pain
perception, and cognitive control.287 Patients with bipolar
disorder, major depressive disorder, and schizophrenia have
higher 5-HT1B receptor expression in the outer ACC layers
compared to the inner ACC layers;288 5-HT2 receptor has
3 subtypes: 5-HT2A, 5-HT2B, and 5-HT2C receptors. 5-HT2
receptors are implicated in various neuropsychiatric phenotypes,
including schizophrenia, attention deficit hyperactivity disorder,
affective disorders, eating disorders, anxiety disorders, obsessive-
compulsive disorder, suicide, and Alzheimer’s disease.289

Class C (glutamate)
Structural insights. Class C GPCRs are distinguished from other
classes of GPCRs by two unique features. First, the orthosteric
ligand binding pocket is located in the large extracellular venus
flytrap domain (VFT). VFT is connected to the transmembrane
helix via the cysteine-rich domain (CRD) (Fig. 4c). Among class C
GPCRs, only the GABAB receptor lacks CRD; Second, class C GPCR
forms hetero- or homo-dimers at physiological conditions.290–294

VFT domain forms an asymmetric dimer interface to facilitate
dimer formation. Ligand engagement at either subunit is sufficient
to activate the receptor.291,294,295 The surface interface between
dimers is the potential binding site for the therapeutic mod-
ulator.292 The conformation rearrangement between ICL2 and
ICL3, and C-terminus contributes to receptor activation.296–298

γ-aminobutyric acid B receptor. γ-aminobutyric acid B (GABAB) is
an inhibitory neurotransmitter. GABAB receptor is a heterodimer
consisting of two subunits, GABAB1 and GABAB2. GABAB1

Fig. 5 GPCRs-targeting drugs for neurodegenerative diseases and psychiatric disorders. a Numbers of compounds approved for clinical use or
under clinical trials. b Summary of the action modes of GPCR-targeted agents for treatment of neuropsychiatric diseases
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Table 2. Approved drugs for neuropsychiatric disorders

Drug Structure Indication GPCRs Mechanism Ki (nM) Reference

Donepezil Alzheimer’s disease 5-HT-2A Inducer / 605

Memantine Alzheimer’s disease 5-HT-3A Antagonist / 606,607

DRD2 Antagonist;
Agonist

/

Olanzapine Schizophrenia;
depression

5-HT-2C Antagonist 2.8 608–619

HH1R Antagonist 0.087

DRD2 Antagonist 2.1

DRD3 Antagonist 39

DRD4 Antagonist 28

DRD5 Antagonist 74

ADRA1A Antagonist /

ADRA1B Antagonist /

5-HT-2A Antagonist 1.48

5-HT-3A Antagonist /

5-HT-6 Antagonist 6

DRD1 Antagonist 10

CHRM1 Antagonist 2

CHRM2 Antagonist 36

CHRM3 Antagonist 13

CHRM4 Antagonist 10

Thioridazine Alzheimer’s disease;
schizophrenia

DRD1 Antagonist 100 620–623

DRD2 Antagonist 27

5-HT-2A Antagonist 10

ADRA1B Antagonist /

ADRA1A Antagonist /

Trazodone Alzheimer’s disease;
schizophrenia;
depression;
anxiety disorders

5-HT-2A Antagonist 44.67 624,625

5-HT-2C Agonist 25

5-HT-1A Antagonist;
Partial agonist

96

HH1R Antagonist 1100

ADRA1A Antagonist /

ADRA2A Antagonist 106

5-HT-1C Antagonist;
Partial agonist

/

Amantadine Parkinson’s disease DRD2 Agonist / /

Apomorphine Parkinson’s disease DRD4 Agonist 8.9 364,626,627

DRD2 Agonist 0.62

DRD3 Agonist 2.6

DRD5 Agonist 14.79

DRD1 Agonist 4.6

ADRA2C Agonist 36.31

ADRA2B Agonist 66.07

5-HT-1A Agonist 296

5-HT-2A Agonist 120.23

5-HT-2B Agonist /

5-HT-2C Agonist 102.33

ADRA2A Agonist 141.25

5-HT-1D Agonist 1230.27

5-HT-1B Agonist 2951.21

G protein-coupled receptors in neurodegenerative diseases and psychiatric. . .
Wong et al.

13

Signal Transduction and Targeted Therapy           (2023) 8:177 



Table 2. continued

Drug Structure Indication GPCRs Mechanism Ki (nM) Reference

Benzatropine Parkinson’s disease CHRM1 Antagonist / 628–630

HH1R Antagonist /

Biperiden Parkinson’s disease CHRM1 Antagonist 0.48 630

Bromocriptine Parkinson’s disease DRD2 Agonist 10 364,631–633

DRD3 Agonist 87

5-HT-1D Agonist 10.72

ADRA2A Agonist 10.96

5-HT-1A Agonist 12.88

ADRA2C Agonist 28.18

ADRA2B Agonist 34.67

5-HT-2B Agonist /

DRD4 Antagonist /

5-HT-2A Agonist 107.15

5-HT-1B Agonist 354.81

5-HT-2C Agonist 741.31

DRD5 Agonist 454

DRD1 Agonist 672

ADRA1A Antagonist;
Agonist

/

ADRA1B Antagonist;
Agonist

1.38

ADRA1D Agonist 1.12

5-HT-7 Antagonist /

Droxidopa Parkinson’s disease ADRA1A Agonist / 634,635

ADRA1B Agonist /

ADRA1D Agonist /

ADRA2A Agonist /

ADRA2B Agonist /

ADRA2C Agonist /

ADRB1 Agonist /

ADRB2 Agonist /

ADRB3 Agonist /

Istradefylline Parkinson’s disease ADORA2A Antagonist / 365,636

ADORA1 Antagonist /

Levodopa Parkinson’s disease DRD1 Agonist / 637–640

DRD2 Agonist /

DRD3 Agonist /

DRD4 Agonist /

DRD5 Agonist /
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Table 2. continued

Drug Structure Indication GPCRs Mechanism Ki (nM) Reference

Pergolide Parkinson’s disease DRD4 Agonist 364,620,632,640–645

DRD5 Agonist

DRD1 Agonist 2020

DRD3 Agonist 4

DRD2 Agonist 4

5-HT-1A Agonist 1.8

5-HT-2B Agonist /

5-HT-2A Agonist /

5-HT-1D Agonist /

5-HT-1B Agonist /

5-HT-2C Agonist /

ADRA2 Agonist /

ADRA1A Agonist /

ADRA1B Agonist /

ADRA1D Agonist /

Pramipexole Parkinson’s disease DRD3 Agonist 0.87 370,646,647

DRD2 Agonist 21

DRD4 Agonist 8.1

5-HT-1A Agonist /

ADRA2A Agonist /

Quetiapine Parkinson’s disease;
bipolar disorder;
schizophrenia

5-HT-2A Antagonist 31 385,436,437,619,648–651

DRD2 Antagonist 69

5-HT-1A Antagonist;
Partial agonist

125

5-HT-1B Ligand 2050

5-HT-1D Ligand 560

5-HT-1E Ligand 1250

5-HT-2C Antagonist 615

5-HT-3A Ligand /

5-HT-6 Antagonist 33

5-HT-7 Ligand /

DRD5 Ligand 1513

DRD3 Ligand 320

DRD4 Ligand 1600

HH1R Antagonist 2.2

ADRA1 Antagonist /

ADRA2A Antagonist 80

ADRA2B Antagonist 90

ADRA2C Antagonist 28.7

CHRM1 Antagonist 56

CHRM2 Ligand 630

CHRM3 Antagonist 705

CHRM4 Ligand 225

CHRM5 Ligand /

DRD1 Antagonist 390

Ropinirole Parkinson’s disease DRD2 Agonist 7.2 364,370,645,652

DRD4 Agonist /

DRD3 Agonist 19

ADRA1 Antagonist /

Rotigotine Parkinson’s disease DRD2 Agonist 0.06 364,653

DRD3 Agonist 4

DRD5 Agonist 986

DRD1 Agonist 2172

DRD4 Agonist 55

ADRA2B Antagonist /

5-HT-1A Agonist /
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Table 2. continued

Drug Structure Indication GPCRs Mechanism Ki (nM) Reference

lisuride Parkinson’s disease DRD2 Agonist 0.5 364,629,633

DRD1 Antagonist 77

DRD3 Agonist 1.7

DRD4 Agonist /

DRD5 Antagonist /

ADRA2B / /

ADRA2A / /

ADRA2C / /

5-HT-1A Agonist 0.4

5-HT-2A Agonist 6918.31

5-HT-2C Agonist /

5-HT-1D Agonist /

5-HT-2B Antagonist

5-HT-1B Agonist

5-HT-7 Inactivating
antagonist

Baclofen Multiple sclerosis GABBR2 Agonist / 654,655

CXC-R4 Allosteric;
modulator

/

GABBR1 Agonist /

Cannabidiol Multiple sclerosis CB-R Antagonist / 656–658

CB-2 Antagonist /

GPR12 Inverse agonist /

GPR18 / /

GPR55 Antagonist /

5-HT-1A Agonist /

5-HT-2A Agonist /

DOR-1 / /

MOR-1 / /

5-HT-3A Antagonist /

ADORA1 Activator /

Modafinil Multiple sclerosis;
attention deficit
hyperactivity disorder

ADRA1B Partial agonist / 659

Ozanimod Multiple sclerosis S1PR1 Agonist / 660

S1PR5 Agonist /

Siponimod Multiple sclerosis S1PR1 Agonist / 661

S1PR5 Agonist /

Fingolimod Multiple sclerosis S1PR5 Agonist / 662,663

S1PR1 Agonist /

S1PR3 Agonist /

S1PR4 Agonist /
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Table 2. continued

Drug Structure Indication GPCRs Mechanism Ki (nM) Reference

Fluphenazine Tourette’s disorder;
depression

DRD2 Antagonist 1.44 629,664,665

DRD1 Antagonist 7

5-HT-2A Antagonist 3.2

5-HT-2C Antagonist 579

Haloperidol Huntington’s disease;
schizophrenia

5-HT-2C / / 613,619,623,666–669

5-HT-2A Antagonist 25

DRD1 Antagonist 6.17

DRD2 Antagonist 0.12

DRD3 Inverse agonist 2

HH1R / /

CHRM3 / /

ADRA1A / /

ADRA2A / /

ADRA2B / /

ADRA2C / /

5-HT-1A / /

5-HT-6 / /

5-HT-7 / /

MCHR1 / /

Tetrabenazine Huntington’s disease DRD2 Inhibitor / /

Amitriptyline Schizophrenia;
depression;
attention deficit
hyperactivity disorder;

5-HT-2A Antagonist / 407,670–681

5-HT-1A Inhibitor;
Inducer

450

DOR-1 Agonist /

KOR-1 Agonist /

ADRA1A Antagonist;
Inhibitor

/

ADRA1D Antagonist /

ADRA2A Antagonist;
Agonist

114

HH1R Antagonist 0.67

HH2R Blocker /

HH4R Binder 33.6

5-HT-2C Antagonist 18

ADRA1B Antagonist /

5-HT-7 Antagonist /

5-HT-1D Binder /

MOR-1 Binder /

5-HT-1B Binder /

5-HT-6 Antagonist 65

5-HT-1C Antagonist /

CHRM Ligand /

Aripiprazole Schizophrenia;
Tourette’s disorder

DRD2 Antagonist;
Partial agonist

0.2 386

5-HT-2A Antagonist;
Partial agonist

0.8

5-HT-1A Partial agonist 5.6

ADRA1A Antagonist /

ADRA1B Antagonist 34.8

DRD3 Antagonist;
Partial agonist

3.3

5-HT-1D Antagonist;
Partial agonist

68

5-HT-7 Antagonist;
Partial agonist

14

ADRA2A Antagonist 74

ADRA2C Antagonist;
Other/unknown

37

HH1R Antagonist 25.1

5-HT-1B Antagonist;
Ligand

830

5-HT-2C Antagonist;
Partial agonist

22

G protein-coupled receptors in neurodegenerative diseases and psychiatric. . .
Wong et al.

17

Signal Transduction and Targeted Therapy           (2023) 8:177 



Table 2. continued

Drug Structure Indication GPCRs Mechanism Ki (nM) Reference

5-HT-3A Antagonist /
5-HT-6 Antagonist 90

DRD1 Antagonist;
Partial agonist;
Ligand

1960

DRD4 Antagonist;
Partial agonist

168

ADRA2B Antagonist;
Ligand

102

5-HT-1E Antagonist;
Ligand

8000

DRD5 Antagonist;
Partial agonist;
Ligand

2590

5-HT-2B Inverse agonist /

5-HT-5A Ligand /

ADRB1 Ligand /

ADRB2 Ligand /

HH2R Ligand /

HH3R Ligand /

HH4R Ligand /

CHRM1 Ligand /

CHRM2 Ligand /

CHRM3 Ligand /

CHRM4 Ligand /

CHRM5 Ligand /

KOR-1 Ligand /

MOR-1 Ligand /

DOR-1 Ligand /

Aripiprazole lauroxil Schizophrenia DRD2 Partial agonist / 619,682,683

5-HT-1A Partial agonist /

5-HT-2A Antagonist /

5-HT-1B / /

5-HT-1D / /

5-HT-1E / /

DRD1 / /

DRD5 / /

DRD3 / /

DRD4 / /

5-HT-2C / /

5-HT-3A / /

5-HT-6 / /

5-HT-7 / /

HH1R Antagonist /

ADRA1A Antagonist /

ADRA1B Antagonist /

ADRA2A / /

ADRA2B / /

ADRA2C / /

CHRM1 / /

CHRM2 / /

CHRM3 / /

CHRM4 / /

CHRM5 / /

Asenapine Schizophrenia ADRA1A Antagonist / 684

ADRA2A Antagonist /

ADRA2B Antagonist /

ADRA2C Antagonist /

ADRB1 Antagonist /

ADRB2 Antagonist /

DRD4 Antagonist /

DRD3 Antagonist /

5-HT-1A Antagonist /

5-HT-1B Antagonist /

5-HT-2B Antagonist /

5-HT-2A Antagonist /

5-HT-2C Antagonist /

5-HT-2B Antagonist /

5-HT-5A Antagonist /

5-HT-6 Antagonist /
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Table 2. continued

Drug Structure Indication GPCRs Mechanism Ki (nM) Reference

5-HT-7 Antagonist /
HH1R Antagonist /

HH2R Antagonist /

DRD1 Antagonist /

DRD2 Antagonist /

Brexpiprazole Schizophrenia;
major depressive disorder
(MDD)

5-HT-1A Agonist;
Partial agonist

/ 389,390

DRD2 Agonist;
Partial agonist

/

5-HT-2A Antagonist /

ADRA2C Antagonist /

ADRA1B Antagonist /

Cariprazine Schizophrenia DRD2 Partial agonist / 685,686

DRD3 Partial agonist /

ADRA1A Antagonist /

5-HT-1A Partial agonist /

5-HT-2A Antagonist /

5-HT-2B Antagonist /

5-HT-2C Antagonist /

HH1R Antagonist /

Chlorpromazine Schizophrenia DRD2 Antagonist 1.2 622,687,688

DRD1 Antagonist 44

5-HT-1A Antagonist 116.4

5-HT-2A Antagonist 1.8

ADRA1A Antagonist /

ADRA1B Antagonist /

HH1R Antagonist 3

DRD3 Inhibitor 3

DRD4 Antagonist /

DRD5 Inhibitor 133

5-HT-2C Binder 1.4

ADRA1 Inhibitor /

ADRA2 Inhibitor /

CHRM1 Antagonist 25

CHRM3 Antagonist 47

5-HT-6 Binder 4

5-HT-7 Binder 27

HH4R Binder 50.2

Chlorprothixene Schizophrenia HH1R Antagonist 3.73 689–693

DRD2 Antagonist 2.96

DRD1 Antagonist 18

DRD3 Antagonist 4.56

5-HT-2A Antagonist

CHRM1 Antagonist 11

CHRM2 Antagonist 28

CHRM3 Antagonist 22

CHRM4 Antagonist 18

CHRM5 Antagonist /

5-HT Inhibitor /

Clozapine Schizophrenia DRD2 Antagonist 28 608,609,611,613,619,667,694–706

5-HT-2A Antagonist 1

5-HT-1A Antagonist 101

5-HT-1B Antagonist 390

5-HT-1D Antagonist 130

5-HT-1E Antagonist 430

5-HT-3A Antagonist /

5-HT-2C Antagonist 1.8

5-HT-6 Antagonist 4

5-HT-7 Antagonist 9

DRD1 Antagonist 53

DRD3 Antagonist 88

DRD4 Antagonist 9

ADRA1A Antagonist /
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Table 2. continued

Drug Structure Indication GPCRs Mechanism Ki (nM) Reference

ADRA1B Antagonist /
ADRA2A Antagonist 15

ADRA2B Antagonist 22

ADRA2C Antagonist 2.9

CHRM1 Antagonist 0.98

CHRM2 Antagonist 9

CHRM3 Antagonist 7

CHRM4 Antagonist 6

CHRM5 Antagonist /

HH1R Antagonist 0.23

HH4R Antagonist 11.9

Dexmedetomidine Schizophrenia;
bipolar disorder

ADRA2A Agonist 2.0417 707

Fluspirilene Schizophrenia DRD2 Antagonist / 630

5-HT-2A Antagonist 9.5 /

Iloperidone Schizophrenia 5-HT-2A Antagonist 0.12 708,709

DRD2 Antagonist /

DRD1 Antagonist 216

DRD3 Antagonist ./

DRD4 Antagonist /

5-HT-1A Antagonist 33

5-HT-6 Antagonist 63.1

5-HT-7 Antagonist /

ADRA1A Antagonist /

HH1R Antagonist 12.3

ADRA2C Antagonist 16.2

Loxapine Schizophrenia 5-HT-2A Antagonist 2 623,629,691,710–716

5-HT-2C Antagonist 1.69

5-HT-1A Binder 2456

5-HT-1B Binder

5-HT-1D Binder /

5-HT-1E Binder /

5-HT-3A Binder /

5-HT-5A Binder /

5-HT-6 Binder 15

5-HT-7 Binder /

ADRA1A Binder /

ADRA1B Binder /

ADRA2A Binder 150.8

ADRA2B Binder 107.6

ADRA2C Binder 79.9

ADRB1 Binder /

CHRM1 Binder 63.9

CHRM2 Binder 300

CHRM3 Binder 122

CHRM4 Binder 300

CHRM5 Binder /

DRD1 Antagonist /

DRD2 Antagonist 21

DRD3 Antagonist 22

DRD4 Antagonist 4.9

DRD5 Binder /

HH1R Binder 4.9

HH2R Binder /

HH4R Binder 3981
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Table 2. continued

Drug Structure Indication GPCRs Mechanism Ki (nM) Reference

Lumateperone Schizophrenia;
depression, bipolar

5-HT-2A Antagonist / 392

DRD2 Partial agonist /

DRD1 / /

Lurasidone Schizophrenia;
depression, bipolar

5-HT-2A Antagonist / 717,718

5-HT-1A Antagonist /

ADRA2C Antagonist /

5-HT-7 Antagonist /

ADRA2A Unknown /

DRD2 Antagonist /

Methotrimeprazine Schizophrenia;
anxiety
bipolar disorder (BD)

DRD2 Antagonist / 719

DRD1 Antagonist /

DRD5 Antagonist /

DRD3 Antagonist /

DRD4 Antagonist /

5-HT-2A Antagonist /

5-HT-2C Antagonist /

HH1R Antagonist /

CHRM1 Antagonist /

CHRM2 Antagonist /

CHRM3 Antagonist /

CHRM4 Antagonist /

CHRM5 Antagonist /

ADRA1A Antagonist /

ADRA1B Antagonist /

ADRA1D Antagonist /

ADRA2A Antagonist /

ADRA2B Antagonist /

ADRA2C Antagonist /

Paliperidone Schizophrenia 5-HT-2A Antagonist 0.43 439,608,700,720–722

5-HT-1A Antagonist 480

5-HT-2C Antagonist /

5-HT-1D Antagonist 19

5-HT-7 Inactivating
antagonist

/

HH1R Antagonist 3.4

ADRA1A Antagonist /

ADRA2A Antagonist 30

ADRA1B Antagonist /

ADRA2B Antagonist 9.4

ADRA2C Agonist 11

DRD1 Antagonist /

DRD2 Antagonist /

DRD3 Antagonist /

Prochlorperazine Schizophrenia DRD2 Antagonist / 723

HH1R Antagonist /

ADRA1 Antagonist /

ADRA2 Antagonist /
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Table 2. continued

Drug Structure Indication GPCRs Mechanism Ki (nM) Reference

Promazine Schizophrenia DRD2 Antagonist / 724–726

5-HT-2A Antagonist /

5-HT-2C Antagonist 15.87

ADRA1A Antagonist /

CHRM1 Antagonist /

HH1R Antagonist 2

Risperidone Schizophrenia;
bipolar disorder

5-HT-2A Antagonist / 727

DRD2 Antagonist /

ADRA1B Antagonist /

ADRA2B Antagonist /

ADRA1A Antagonist /

ADRA2C Antagonist /

HH1R Antagonist /

5-HT-2C Antagonist /

5-HT-1D Antagonist /

5-HT-1A Antagonist /

5-HT-7 Antagonist /

DRD1 Antagonist /

DRD2 Antagonist /

Samidorphan Schizophrenia MOR-1 Antagonist / /

KOR-1 Partial agonist /

DOR-1 Partial agonist /

Sertindole Schizophrenia DRD2 Antagonist 0.45 728–730

5-HT-2A Antagonist 0.14

5-HT-2C Antagonist 0.2

5-HT-6 Antagonist 5

ADRA1A Antagonist /

ADRA1B Antagonist /

ADRA1D Antagonist /

Sulpiride Schizophrenia DRD2 Antagonist 51 731–733

DRD3 Antagonist 8

DRD4 Antagonist /

Thioproperazine Schizophrenia DRD2 Antagonist / 622,734

ADRA1A Antagonist /

ADRA1B Antagonist /

DRD1 Antagonist /

Thiothixene Schizophrenia DRD2 Antagonist / 734

DRD1 Antagonist /

5-HT-2A Antagonist /
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Table 2. continued

Drug Structure Indication GPCRs Mechanism Ki (nM) Reference

Trifluoperazine Schizophrenia DRD2 Antagonist / 622,628,630

ADRA1A Antagonist /

Ziprasidone Schizophrenia DRD2 Antagonist 2.8 608,611,619,623,664,694,700,735–738

DRD1 Antagonist 9.5

DRD5 Antagonist /

DRD3 Antagonist 7.2

DRD4 Antagonist 32

5-HT-2A Antagonist 0.08

5-HT-1A Antagonist 1.9

5-HT-1B Antagonist 0.99

5-HT-1D Antagonist 2.4

5-HT-1E Antagonist 360

5-HT-2C Antagonist 0.55

5-HT-3 Antagonist

5-HT-6 Antagonist 60.9

5-HT-7 Antagonist /

5-HT-5A Antagonist /

HH1R Antagonist 4.6

ADRA1A Antagonist /

ADRA1B Antagonist /

ADRA2A Antagonist 154

ADRA2B Antagonist 48

ADRA2C Antagonist 59

CHRM1 Antagonist 300

CHRM2 Antagonist 2440

CHRM3 Antagonist 1300

CHRM4 Antagonist 1600

CHRM5 Antagonist /

Zuclopenthixol Schizophrenia DRD2 Antagonist / 739,740

DRD1 Antagonist /

DRD5 Antagonist /

ADRA1A Antagonist /

ADRA2A Antagonist /

5-HT-2A Antagonist /

HH1R Antagonist /

Amisulpride Schizophrenia 5-HT-7 Antagonist / 664,741–748

5-HT-2A Antagonist 8304

DRD2 Antagonist /

DRD3 Antagonist /

MOR-1 Agonist /

DOR-1 Agonist /

KOR-1 Agonist /

Amoxapine Depression DRD2 Antagonist / 681,749–752

DRD1 Antagonist /

ADRA2 Antagonist /

ADRA1 Antagonist /

5-HT-2A Antagonist 1.77

5-HT-2C Antagonist /

5-HT-6 Antagonist 50

5-HT-7 Antagonist 500

DRD3 Antagonist /

DRD4 Antagonist 34

HH1R Antagonist /

CHRM Antagonist /

5-HT-2B Antagonist /

5-HT-3A Antagonist /

5-HT-1A Antagonist 221
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Table 2. continued

Drug Structure Indication GPCRs Mechanism Ki (nM) Reference

5-HT-1B Antagonist /
HH4R Binder 5012

Amphetamine Depression;
attention deficit
hyperactivity disorder

TAAR1 Agonist / 462,753–760

ADRA2 Agonist /

ADRA1 Agonist /

ADRB Agonist /

DRD2 Binder /

Buspirone Depression;
anxiety disorders

5-HT-1A Partial agonist 6.6 406,629,761–765

DRD2 Antagonist 13

DRD3 Antagonist /

DRD4 Antagonist /

ADRA1 Partial agonist /

Citalopram Depression;
anxiety disorder

HH1R Binder / 409

5-HT Antagonist /

Escitalopram Depression;
anxiety disorders

CHRM1 / / 766–769

HH1R Inhibitor /

5-HT-1A Inhibitor /

5-HT-2A Inhibitor /

ADRA1 Inhibitor /

5-HT-2C Inhibitor /

ADRA2 Inhibitor /

DRD2 Inhibitor /

Paroxetine Depression;
anxiety disorders

5-HT-2A Agonist >10000 428,770–772

ADRA1 Binder /

ADRA2 Binder /

ADRB Inhibitor /

DRD2 Other/unknown /

HH1R Inhibitor /

5-HT / /

CHRM / /

Hydroxyzine Anxiety disorders HH1R Inverse agonist / 773,774

Clomipramine Depression;
schizophrenia;
Tourette’s disorder

5-HT-2A Antagonist 35.5 775,776

5-HT-2B Antagonist /

5-HT-2C Antagonist 64.6

Desipramine Depression;
attention deficit
hyperactivity disorder;
anxiety disorders

5-HT-2A Antagonist 160 628,630,777–780

ADRB2 Antagonist /

ADRB1 Other/unknown /

HH1R Antagonist 60

ADRA1 Antagonist /

CHRM1 Antagonist 110

CHRM2 Antagonist 66

CHRM3 Antagonist 210

CHRM4 Antagonist 160

CHRM5 Antagonist /

5-HT-1A Binder 6400

5-HT-2C Binder 350

DRD2 Binder /
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Table 2. continued

Drug Structure Indication GPCRs Mechanism Ki (nM) Reference

ADRA2 Binder /
Dosulepin Depression;

anxiety disorders
5-HT-1A Antagonist / 781

5-HT-2A Antagonist /

HH1R Antagonist /

CHRM1 Antagonist /

CHRM2 Antagonist /

CHRM3 Antagonist /

CHRM4 Antagonist /

CHRM5 Antagonist /

ADRA2 Antagonist /

ADRA1 Antagonist /

Doxepin Depression;
anxiety disorders

HH1R Antagonist 0.09 233,383,782,783

HH1R Antagonist /

5-HT-2A Antagonist /

5-HT-2B Antagonist /

5-HT-2C Antagonist 27

CHRM1 Antagonist 38

CHRM2 Antagonist 23

CHRM3 Antagonist 52

CHRM4 Antagonist 82

CHRM5 Antagonist /

ADRA1A Antagonist /

ADRA1B Antagonist /

ADRA1D Antagonist /

5-HT-1A Antagonist 276

5-HT-6 Binder 105

HH4R Binder 105.9

Ephedrine Depression ADRA1A Agonist / 784–786

ADRB1 Agonist /

ADRB2 Agonist /

Fluoxetine Depression 5-HT-2C Antagonist 112.2 463,464

Flupentixol Depression DRD2 Antagonist / 628,630,787–789

DRD1 Antagonist 3

5-HT-2A Antagonist /

ADRA1A Antagonist /

DRD3 Antagonist /

DRD4 Antagonist /

5-HT-2C Antagonist /

CHRM1 Antagonist /

Imipramine Depression;
attention deficit
hyperactivity disorder

5-HT-2A Antagonist 94 671,680,790,791

HH1R Antagonist 16

ADRA1A Antagonist /

ADRA1D Antagonist /

CHRM1 Antagonist 42

CHRM2 Antagonist 0.13

CHRM3 Antagonist 60

CHRM4 Antagonist 112

CHRM5 Antagonist /

5-HT-2C Antagonist 150

ADRA1B Antagonist /

5-HT-7 Antagonist /

DRD1 Binder /
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Table 2. continued

Drug Structure Indication GPCRs Mechanism Ki (nM) Reference

DRD2 Antagonist 726
5-HT-1A Activator 5800

5-HT-6 Binder /

Maprotiline Depression;
anxiety disorders

HH1R Antagonist 0.79 680

CHRM1 Antagonist /

CHRM2 Antagonist /

CHRM3 Antagonist /

CHRM4 Antagonist /

CHRM5 Antagonist /

ADRA1 Antagonist /

5-HT-2A Binder /

5-HT-2C Binder /

5-HT-7 Antagonist /

DRD2 Binder /

ADRA2 Antagonist /

Mianserin Depression ADRA2A Antagonist 4.8 413,680,792–794

5-HT-2A Antagonist 1.58

HH1R Antagonist 0.36

HH4R Binder 750

5-HT-1A Blocker 398.1

5-HT-2C Antagonist 0.63

ADRA2C Antagonist 3.8

5-HT-2B Binder /

5-HT-1F Binder 12.58

ADRA2B Antagonist 27

DRD3 Binder 2841

KOR-1 Agonist /

5-HT-7 Antagonist 56

DRD2 Antagonist 2197

5-HT-6 Binder 55

ADRA1 Antagonist /

DRD1 Binder /

Mirtazapine Depression 5-HT-2A Antagonist 69 408,413,414,680,795–799

ADRA2A Antagonist 20

ADRA1 Antagonist /

5-HT-3 Antagonist /

5-HT-2C Antagonist 39

KOR-1 Agonist /

HH1R Antagonist 1.6

Notriptyline Depression 5-HT-2A Antagonist / 420,421

5-HT-1A Antagonist 294

HH1R Antagonist 6.3

ADRA1A Antagonist /

ADRA1D Antagonist /

5-HT-2C Antagonist 41

ADRA1B Antagonist /

ADRA2 Antagonist /

ADRB Antagonist /

DRD2 Antagonist /

5-HT-1C Antagonist /

CHRM Antagonist /

Nefazodone Depression 5-HT-2A Antagonist 5.8 410,411,628,795

5-HT-2C Antagonist 26

5-HT-1A Antagonist 80

ADRA1B Other/unknown /

ADRA2A Antagonist 84

ADRA1A Antagonist /
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Table 2. continued

Drug Structure Indication GPCRs Mechanism Ki (nM) Reference

Voltioxetine Depression 5-HT-3A Antagonist / 415

5-HT-7 Antagonist /

5-HT-1B Partial agonist /

5-HT-1A Agonist /

ADRB1 Ligand /

Propranolol Anxiety disorders ADRB1 Antagonist 0.02 432

ADRB2 Antagonist /

ADRB2 Antagonist 186

5-HT-1A Other 55

5-HT-1B Other 56.23

Perphenazine Depression;
anxiety disorders;
schizophrenia

DRD2 Antagonist / 629,800,801

DRD1 Antagonist /

Pindolol Depression ADRB1 Partial agonist 0.52 405,412,629,802,803

ADRB2 Partial agonist /

ADRB3 Agonist 44.1

5-HT-1A Antagonist;
Inhibitor;
Ligand

22.4

5-HT-1B Ligand;
Other/unknown

2600

Pipradrol Depression DRD1 Agonist /

Trimipramine Depression 5-HT-2A Agonist / 629

5-HT-1A Antagonist /

ADRA1A Antagonist /

ADRA1B Antagonist /

DRD2 Antagonist /

ADRA2B Other/unknown /

HH1R Antagonist 1.4

5-HT-2C Antagonist /

5-HT-3A Binder /

5-HT-1D Binder /

ADRA2A Antagonist /

DRD1 Binder /

ADRB Binder /

CHRM Binder /

5-HT-1C Binder

Pimozide Tourette’s disorder DRD2 Antagonist 11.7 453

DRD3 Antagonist /

Atomoxetine Attention deficit
hyperactivity disorder

KOR-1 Partial agonist / 460
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Table 2. continued

Drug Structure Indication GPCRs Mechanism Ki (nM) Reference

Bupropion Attention deficit
hyperactivity disorder;
depression

5-HT-3A Negative
modulator

/ 418

Clonidine Attention deficit
hyperactivity disorder;
Tourette’s disorder

ADRA2B Agonist 31.62 438,804

ADRA2C Agonist 9.33

ADRA2A Agonist 3.8

ADRA1A Agonist /

ADRA1B Agonist 316.22

ADRA1D Agonist 125.89

Dextroamphetamine Attention deficit
hyperactivity disorder

TARR1 Agonist / 755,760,805

ADRA1B Antagonist /

ADRA1 Inhibitor;
Inducer

/

ADRA2 Inhibitor;
Inducer

/

Guanfacine Attention deficit
hyperactivity disorder;
Tourette’s disorder

ADRA2A Agonist 50.3 451

ADRA2B Binder 1020

Lisdexamfetamine Attention deficit
hyperactivity disorder

TARR1 Agonist / 806,807

Metamfetamine Attention deficit
hyperactivity disorder

TARR1 Agonist / 760,807

ADRA2A Agonist /

ADRA2B Agonist /

ADRA2C Agonist /

Methylphenidate Attention deficit
hyperactivity disorder

5-HT-3A / / 459

Serdexmethylphenidate Attention deficit
hyperactivity disorder

5-HT-1A Agonist / 458

5-HT 5-hydroxytryptamine receptor, 5-HT-6 5-hydroxytryptamine receptor 6, 5-HT-1A 5-hydroxytryptamine receptor 1A, 5-HT-1B 5-hydroxytryptamine receptor
1B, 5-HT-1C 5-hydroxytryptamine receptor 1C, 5-HT-1D 5-hydroxytryptamine receptor 1D, 5-HT-1E 5-hydroxytryptamine receptor 1E, 5-HT-1F
5-hydroxytryptamine receptor 1F, 5-HT-2A 5-hydroxytryptamine receptor 2A, 5-HT-2B 5-hydroxytryptamine receptor 2B, 5-HT-2C 5-hydroxytryptamine receptor
2C, 5-HT-3 5-hydroxytryptamine receptor 3A, 5-HT-3A 5-hydroxytryptamine receptor 3A, 5-HT-5A 5-hydroxytryptamine receptor 5A, 5-HT-6 5-hydroxytryptamine
receptor 6, 5-HT-7 5-hydroxytryptamine receptor 7, ACM1 muscarinic acetylcholine receptor M1, ACM2 muscarinic acetylcholine receptor M2, ACM3 muscarinic
acetylcholine receptor M3, ACM4 muscarinic acetylcholine receptor M4, ACM5 muscarinic acetylcholine receptor M5, ADORA1 adenosine receptor A1, ADORA2A
adenosine receptor A2a, ADORA2B adenosine receptor A2b, ADRA1 alpha-1 adrenergic receptor, ADRA1A alpha-1A adrenergic receptor, ADRA1B alpha-1B
adrenergic receptor, ADRA1D alpha-1D adrenergic receptor, ADRA2 alpha-2 adrenergic receptor, ADRA2A alpha-2A adrenergic receptor, ADRA2B alpha-2B
adrenergic receptor, ADRA2C alpha-2C adrenergic receptor, ADRB beta adrenergic receptor, ADRB2 beta-2 adrenergic receptor, ADRB3 beta-3 adrenergic
receptor, ADRB1 (gene name) beta-1 adrenergic receptor, CB-2 cannabinoid receptor 2, CB-R or CB1 cannabinoid receptor 1, CHRM cholinergic receptor
muscarinic, CHRM1 muscarinic acetylcholine receptor M1, CHRM2 muscarinic acetylcholine receptor M2, CHRM3 muscarinic acetylcholine receptor M3, CHRM4
muscarinic acetylcholine receptor M4, CHRM5 muscarinic acetylcholine receptor M5, CXC-R4 C-X-C chemokine receptor type 4, DOR-1 delta-type opioid
receptor, DRD1 D(1A) dopamine receptor, DRD2 D(2) dopamine receptor, DRD3 D(3) dopamine receptor, DRD4 D(4) dopamine receptor, DRD5 D(5) dopamine
receptor, GABBR1 gamma-aminobutyric acid type B receptor subunit 1, GABBR2 gamma-aminobutyric acid type B receptor subunit 2, GPR18 N-arachidonyl
glycine receptor, GPR12 G-protein coupled receptor 12, GPR55 G-protein coupled receptor 55, HH1R histamine H1 receptor, HH2R histamine H2 receptor, HH3R
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expression is reduced in the brain of Alzheimer’s disease patients.
The GABAB1 protein level is negatively associated with the
neurofibrillary tangle.299 Results from a genome-wide association
study (GWAS) show that GABAB1 SNPs are a risk factor for
schizophrenia.300 GABAB2 SNPs are correlated with the develop-
ment of Huntington’s disease.301 Activating GABAB receptor can
ameliorate motor impairment and reduces inflammation/ oxida-
tive damage in Parkinson’s disease models.302

Metabotropic glutamate receptors. The excitatory neurotransmit-
ter glutamate mediates neuronal excitability via metabotropic
glutamate receptors (mGluRs). Functional mGluR is a homodimeric
receptor consisting of 8 members (mGluR1-8).303 Dysregulation of
mGluR signaling pathways is observed in both neurodegenerative
and psychiatric disorders.304

Group I mGluR composes of mGluR1 and mGluR5. mGluR1
localizes in the hippocampus, hypothalamus, periaqueductal gray,
and amygdala, which are associated with anxiety.305 mGluR5
activity is linked to the cognitive symptoms of Alzheimer’s
disease.306–308 Deleting mGluR5 improved spatial learning impair-
ment and decreased Aβ oligomers in Alzheimer’s disease
models.309 Interaction between mGluR5 and cellular prion protein
could also play a part in the pathogenesis of Alzheimer’s
disease.310,311 Activating mGluR5 promotes striatal neuron survival
in Huntington’s disease models.312,313 mGluR5 knockout mice
exhibit obvious schizophrenia symptoms, including reduced
spatial memory and reduced sensorimotor gating.314

Group II mGluR consists of mGluR2 and mGluR3. Activating
mGluR2 and mGluR3 can control panic-like behaviors and
ameliorates acute stress responses in the anxiety model.315

Mutant huntingtin in Huntington’s disease is toxic to neurons.313

In the mouse model, activating mGluR2 and mGluR3 could
enhance limb coordination by attenuating the generation of
huntingtin aggregate.316 mGluR2 and mGluR3 demonstrate
protective effects on the nigrostriatal system, which restores
functional deficits in Parkinson’s disease rat model.317,318 Over-
expression of mGluR2 in the neocortical layers, cerebellum,
striatum, hippocampus, and thalamus/hypothalamus could build
up glutamate-mediated excitotoxicity and promote Huntington’s
disease progression.319–322

Group III mGluR includes mGluR4/6/7/8. mGluR4 activation
ameliorates locomotion disorder in Parkinson’s disease rats.323

mGluR7/8 are associated with the anxiety-related pheno-
type.324,325 SNPs in mGluR7/8 are correlated to the susceptibility
of schizophrenia.326–329

GPCR dimers. GPCRs can function in homodimeric or hetero-
dimeric forms.330,331 The receptor complex consists of one
GPCR dimer with two orthosteric binding sites and a hetero-
trimeric G protein.332 GPCR dimer exhibits different biochemical
properties compared to the individual receptor. Activation of
either one of the receptors is sufficient to promote dimer
formation.333 Dimeric GPCR has a different ligand binding
affinity as compared to the monomer.331 Receptor dimerization
affects receptor trafficking in agonist-induced GPCR endocy-
tosis.330 Closely related GPCR subtypes are more efficient in
forming heteromers.334 Here, we focused on discussing two
physiologically existing GPCR heterodimers (A2AR-D2R and
mGluR2-5-HT2A).
Adenosine 2A receptor-dopamine D2 receptor (A2AR-D2R)

heterodimer is located in the ventral striato-pallidal GABA

neurons.335,336 A2AR-D2R heterodimer attracts attention in the
field of Parkinson’s disease medication as ligands for A2AR can
modulate dopamine signaling in Parkinson’s disease. Co-
administration of dopamine precursor L-DOPA (L-3,4-dihydrox-
yphenylalanine) and dopamine receptor agonists could
improve mobility in Parkinson’s disease.141 It has been shown
that adenosine antagonists such as caffeine could enhance
dopamine agonist action in Parkinson’s disease treatment.337

A2AR activation can suppress D2R-mediated Gi/o signaling.335

Stimulating A2AR with adenosine A2AR agonist in the nucleus
accumbens produces behavioural effects similar to local
dopamine depletion.338 Thus, the action of A2AR modulators
should be considered in the drug design for Parkinson’s
disease.
Serotonin type A 5-HT2A receptor and type C metabotropic

glutamate 2 (mGlu2) receptor regulates psychoactive behavior
in schizophrenia.339,340 5-HT2A receptor is a Gq-coupled
receptor, while mGluR2 receptor signals through Gi.341 5-HT2A
receptor is upregulated in the frontal cortex of schizophrenic
subjects compared with normal subjects. In contrast, the
expression level of mGluR2 is decreased.341 Balance between
Gq and Gi is a predictive indicator of antipsychotic drug
properties.342 5-HT2A receptor and mGluR2 can form stable
complexes in physiological conditions which regulate Gq-Gi
balance cooperatively.343 mGluR2 agonist reduces 5-HT2A
receptor/Gq signaling in the frontal cortex of schizophrenic
subjects.341 mGluR2 agonist can downregulate 5-HT2A receptor
expression.344 On the contrary, it has been shown that the
5-HT2A receptor controls mGluR2 expression at the epigenetic
level in the frontal cortex.342 Although the 5-HT2A receptor and
mGluR2 regulate the activity of each other remains elusive,
interrupting the functional crosstalk in the 5-HT2A receptor/
mGluR2 complex is a putative approach in schizophrenia
treatment.345

THERAPEUTIC DEVELOPMENT
The small molecules regulate GPCR activity by stabilizing receptors
at unique conformational state (Fig. 5). To explore the GPCRs-
based therapeutic strategies against neuropsychiatric disorders,
we examined the clinically approved drugs (Fig. 5a) and
compounds being tested in different stages of clinical trials (Fig.
5b) in the DrugBank database (https://go.drugbank.com/). In total,
92 drugs are being approved (Table 2). Forty-one candidates are
undergoing clinical trials (Table 3). Selected receptors/drugs
interaction are shown in Fig. 6.

Neurodegenerative diseases
Alzheimer’s disease. Alzheimer’s disease (AD) is a progressive
neurodegenerative disease. AD patients present with cognitive
deficits, memory loss, and personality and behaviour changes.
Currently, there is no curative treatment for AD. Reducing patients’
symptoms and delaying the disease’s progression is the primary
objective of treatment. α1-adrenergic receptor, dopamine recep-
tor, muscarinic acetylcholine receptor M3, histamine H1 receptor,
and serotonin receptors are the primary therapeutic targets.
Medication to control mental symptoms is another important
objective, as patients manifest neuropsychiatric symptoms fre-
quently.
Developing new drugs for AD is challenging, with high failure

rates and long development periods. Several trials attempt to

histamine H3 receptor, HH4R histamine H4 receptor, KOR-1 kappa-type opioid receptor, MCHR1 melanin-concentrating hormone receptor 1, MOR-1 mu-type
opioid receptor, S1PR1 sphingosine 1-phosphate receptor 1, S1PR3 sphingosine 1-phosphate receptor 3, S1PR4 sphingosine 1-phosphate receptor 4, S1PR5
sphingosine 1-phosphate receptor 5, TAAR1 trace amine-associated receptor 1
Overview of the approved drugs targeting GPCR for the treatment of neuropsychiatric disorders. The approved drugs and their affiliated items including
structure, indication, GPCR targets, mechanism, binding affinity (Ki) and related references were collected from the DrugBank database (Accessed May 2022).
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Table 3. Candidate drugs under development

Drug Structure Indication Phase
status

NCT Targets
(protein
short
names)

Mechanism Ki
(nM)

Reference

Resveratrol Alzheimer’s
disease;
schizophrenia;
Parkinson’s
disease;
depression

1;
2;
2;
4

NCT01504854;
NCT02062190;
NCT03384329;
NCT03095105;
NCT03093389;
NCT03094156;
NCT03097211

Mel-1A-R / / 808

Mel-1B-R / /

SGS-742 Alzheimer’s
disease;
schizophrenia;
attention
deficit
hyperactivity
disorder

2 NCT00093951 GABBR1 / / /

GABBR2 / /

SUVN-502 Alzheimer’s
disease

2 NCT02580305 5-HT-6 / / /

Nabilone Alzheimer’s
disease

3 NCT02351882 CB-R Agonist / 349

CB-2 Agonist /

Caffeine Alzheimer’s
disease

3 NCT04570085 adenosine
receptors

/ / 350

5-HT-1 Regulator

Velusetrag Alzheimer’s
disease

1 NCT01467726 5-HT-4 / / /

Brexpiprazole Alzheimer’s
disease

3 NCT03620981 DRD2 Partial
Agonist

/ 354

Prazosin Alzheimer’s
disease

3 NCT03710642 ADRA1A Antagonist / 809

CB-2 / /

GPR12 Inverse
agonist

/

GPR18 / /

GPR55 / /

5-HT-1A / /

5-HT-2A / /

DOR-1 / /
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Table 3. continued

Drug Structure Indication Phase
status

NCT Targets
(protein
short
names)

Mechanism Ki
(nM)

Reference

MOR-1 / /
Sarizotan Parkinson’s

disease
2;
3

NCT00009048;
NCT00314288;
NCT00105508;
NCT00105521

DRD2 Partial
agonist

/ /

DRD3 Ligand /

5-HT-1A / /

Melperone Parkinson’s
disease;
schizophrenia;
anxiety
disorders;
depression

2;
3

NCT02374567;
NCT00125138;

DRD2 Antagonist / /

Pardoprunox Parkinson’s
disease

3 NCT00407095;
NCT00406588;
NCT00335166;
NCT00335374;
NCT00332917;
NCT00269516

DRD2 / / /

DRD3 / /

DRD4 / /

5-HT-1A / /

Piribedil Parkinson’s
disease

3 NCT01007864 DRD2 / / 810

DRD3 / /

Centanafadine Attention
deficit
hyperactivity
disorder

3 NCT03605849;
NCT03605680;
NCT03605836;
NCT05257265;
NCT05279313;
NCT05428033

/ / /

Raclopride Parkinson’s
disease;
depression

1;
4

NCT00832221;
NCT05282277

DRD2 Antagonist / 811

Dipraglurant Parkinson’s
disease

2;
2/3

NCT01336088;
NCT05116813;
NCT04857359

MGLUR5 / / /

Arbaclofen Placarbil Multiple
sclerosis

3 NCT01359566 GABBR1 Agonist / 812

GABBR2 Agonist /

Plozalizumab Biotech Multiple
sclerosis

2 NCT01199640 CMKBR2 / / /

Nabiximols Multiple
sclerosis

3;
4

NCT01964547;
NCT00678795;
NCT00681538;
NCT00702468;
NCT00711646

GPR12 Inverse
agonist

/ 658

CB-R / /

CB-2 / /

GPR55 / /

5-HT-1A / /

G protein-coupled receptors in neurodegenerative diseases and psychiatric. . .
Wong et al.

31

Signal Transduction and Targeted Therapy           (2023) 8:177 



Table 3. continued

Drug Structure Indication Phase
status

NCT Targets
(protein
short
names)

Mechanism Ki
(nM)

Reference

5-HT-2A / /
DOR-1 / /

MOR-1 / /

Ceralifimod Multiple
sclerosis

2 NCT01226745 S1PR1 Modulator / 813

Tiapride Huntington’s
disease;
schizophrenia;
depression;
anxiety
disorders

1;
3

NCT00632645;
NCT02374567

DRD2 Blocker / 814

DRD3 Blocker /

5-HT Antagonist /

ADRA1 Antagonist /

ADRA2 Antagonist /

LY2140023 Not Available Schizophrenia 1;
2;
2/3;
3

NCT01307800;
NCT01328093;
NCT01487083;
NCT01452919;
NCT01129674;
NCT01125358;
NCT01052103;
NCT00149292;
NCT00520923;
NCT00845026;
NCT01086748;
NCT01606436;
NCT01354353

MGLUR2 / / /

MGLUR3 / /

BL-1020 Not available Schizophrenia 2;
2/3

NCT00480571;
NCT00722176

DRD2 / / /

5-HT-2A / /

Norclozapine Schizophrenia 1;
2

NCT00628420;
NCT00490516

CHRM1 / / /

DRD2 / /

DRD3 / /

Talnetant Schizophrenia 2 NCT00049946;
NCT00103727;
NCT00300963;
NCT00101985

NK3R Antagonist 1 815
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Table 3. continued

Drug Structure Indication Phase
status

NCT Targets
(protein
short
names)

Mechanism Ki
(nM)

Reference

Blonanserin Schizophrenia 4;
3

NCT01516424;
NCT03784222

DRD2 Antagonist / 816

DRD3 Antagonist /

5-HT-2A Antagonist /

Pipamperone Schizophrenia;
depression;
anxiety
disorders

2;
3

NCT00672659;
NCT01450514;
NCT02374567;
NCT01312922

DRD2 Antagonist / /

5-HT-2A Agonist /

ADRA1 Antagonist /

DRD4 Antagonist /

DRD1 Antagonist /

DRD3 / /

5-HT-2B / /

ADRA2A Antagonist /

Pavinetant Schizophrenia 2 NCT00686998 NK3R Antagonist / 817

Tetrahydrocannabivarin Schizophrenia 2 NCT01491490 CB-R Antagonist / 818

GPR55 Partial
agonist

/

5-HT-1A Agonist /

CB-2 Partial
agonist

/

JNJ-37822681 Schizophrenia 2 NCT00728195;
NCT01812642

DRD2 Antagonist / 819

SEP-363856 Schizophrenia;
Parkinson’s
disease

1;
2;
2/3;
3

NCT04865835;
NCT03370640;
NCT04325737;
NCT04369391;
NCT01940159;
NCT01972711;
NCT01994473;
NCT04038957;
NCT02970929;
NCT02969382;
NCT04825860;
NCT05359081;
NCT04092686;
NCT04072354;
NCT04109950;
NCT02969369

TAAR1 Agonist / 820

5-HT-1A Agonist /
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Table 3. continued

Drug Structure Indication Phase
status

NCT Targets
(protein
short
names)

Mechanism Ki
(nM)

Reference

Dimethyltryptamine Depression 1;
1/2

NCT04711915;
NCT04698603

5-HT-6 / 68 821,822

5-HT-2A / 65

Serotonin Depression;
bipolar
disorder;
anxiety
disorders

2;
3;
2/3;
4

NCT02137369;
NCT01324700;
NCT01811147;
NCT00183274;
NCT00157547;
NCT02356107’
NCT01155661;
NCT00361218

5-HT-2A / / 823

5-HT-3A / /

5-HT-3B / /

5-methoxy-N,N-
dimethyltryptamine

Depression 1/2 NCT04698603 5-HT-1A Agonist / 824

5-HT-2A Agonist /

Tianeptine Bipolar
disorder;
depression

3;
4

NCT00879372;
NCT01309776;
NCT04249596

MOR-1 Agonist / 440,441

5-HT-1A Inhibitor /

DRD3 Agonist /

Vofopitant Bipolar
disorder

1 NCT00907985 SPR / / 825

Naluzotan Anxiety
disorders;
depression

3;
2

NCT00248183;
NCT00448292

5-HT-1A Agonist / 435

Ansofaxine Depression 3 NCT04853407 5-HT / / /
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explore the use of GPCR agonism in AD treatment. SUVN-502 is in
the Phase II trial (NCT02580305) to evaluate its safety and efficacy
in moderate AD treatment.346 SUVN-502 is an orally active 5-HT6
receptor antagonist exhibiting effects by modulating cholinergic
and glutamatergic neurotransmission.347 Δ9-tetrahydrocannabinol
(THC) analog Nabilone (agonist targeting CB1/2 receptor) is under

phase III investigation (NCT02351882) for its benefit on agitation,
hyperactive behavioural symptoms of AD.348,349 Caffeine, the
antagonist of adenosine receptor antagonist, could modify brain
dysfunctions in various neurodegenerative diseases including AD,
Parkinson’s disease, Huntington’s disease. The efficacy of caffeine
on cognitive decline in AD dementia is undergoing examination in

Table 3. continued

Drug Structure Indication Phase
status

NCT Targets
(protein
short
names)

Mechanism Ki
(nM)

Reference

Roluperidone Schizophrenia 3 NCT03397134 5-HT-2A / / 402

Eltoprazine Schizophrenia;
Parkinson’s
disease (PD)

2 NCT01266174;
NCT02439125

5-HT-1A / / 401

5-HT-2B / /

Zicronapine Schizophrenia 3 NCT01295372 5-HT-2A / / 400

5-HT-2C / /

DRD1 / /

DRD2 / /

Brilaroxazine Schizophrenia 2;
3

NCT01490086;
NCT05184335

5-HT-7 / / 399

5-HT-2A / /

5-HT-1A / /

DRD2 / /

DRD3 / /

DRD4 / /

5-HT-6 / /

5-HT 5-hydroxytryptamine receptor, 5-HT-1 5-hydroxytryptamine receptor 1, 5-HT-6 5-hydroxytryptamine receptor 6, 5-HT-1A 5-hydroxytryptamine receptor 1A,
5-HT-1B 5-hydroxytryptamine receptor 1B, 5-HT-1C 5-hydroxytryptamine receptor 1C, 5-HT-1D 5-hydroxytryptamine receptor 1D, 5-HT-1E 5-hydroxytryptamine
receptor 1E, 5-HT-1F 5-hydroxytryptamine receptor 1F, 5-HT-2A 5-hydroxytryptamine receptor 2A, 5-HT-2B 5-hydroxytryptamine receptor 2B, 5-HT-2C
5-hydroxytryptamine receptor 2C, 5-HT-3 5-hydroxytryptamine receptor 3A, 5-HT-3A 6-hydroxytryptamine receptor 3A, 5-HT-3B 5-hydroxytryptamine receptor
3B, 5-HT-4 5-hydroxytryptamine receptor 4, 5-HT-7 5-hydroxytryptamine receptor 7, ADRA1 alpha-1 adrenergic receptor, ADRA1A alpha-1A adrenergic receptor,
ADRA1B alpha-1B adrenergic receptor, ADRA1D alpha-1D adrenergic receptor, ADRA2 alpha-2 adrenergic receptor, ADRA2A alpha-2A adrenergic receptor,
ADRA2B alpha-2B adrenergic receptor, ADRA2C alpha-2C adrenergic receptor, ADRB2 beta-2 adrenergic receptor, ADRB3 beta-3 adrenergic receptor, ADRB1 beta-
1 adrenergic receptor, CB-2 cannabinoid receptor 2, CB-R or CB1 cannabinoid receptor 1, CHRM cholinergic receptor muscarinic, CHRM1 muscarinic
acetylcholine receptor M1, CHRM2 muscarinic acetylcholine receptor M2, CHRM3 muscarinic acetylcholine receptor M3, CHRM4 muscarinic acetylcholine
receptor M4, CHRM5 muscarinic acetylcholine receptor M5, DOR-1 delta-type opioid receptor, DRD1 D(1A) dopamine receptor, DRD2 D(2) dopamine receptor,
DRD3 D(3) dopamine receptor, DRD4 D(4) dopamine receptor, DRD5 D(5) dopamine receptor, GABBR1 gamma-aminobutyric acid type B receptor subunit 1,
GABBR2 gamma-aminobutyric acid type B receptor subunit 2, GPR18 N-arachidonyl glycine receptor, GPR12 G-protein coupled receptor 12, GPR55 G-protein
coupled receptor 55, HH1R histamine H1 receptor, HH2R histamine H2 receptor, HH3R histamine H3 receptor, HH4R histamine H4 receptor, KOR-1 kappa-type
opioid receptor, MCHR1 melanin-concentrating hormone receptor 1, MOR-1 mu-type opioid receptor, SPR neurokinin 1 receptor, S1PR1 sphingosine
1-phosphate receptor 1, TAAR1 trace amine-associated receptor 1, Mel-1A-R melatonin receptor type 1A, Mel-1B-R melatonin receptor type 1B, MGLUR5
metabotropic glutamate receptor 5, MGLUR2 metabotropic glutamate receptor 2, MGLUR3 metabotropic glutamate receptor 3, CMKBR2 C-C chemokine
receptor type 2, NK3R neuromedin-K receptor
Overview of the clinical stage drugs targeting GPCR for the treatment of neuropsychiatric disorders. The clinical stage compounds and their affiliated items
including structure, indication, phase status, NCT number, GPCR targets, mechanism, binding affinity (Ki) and related references were collected from the
DrugBank database (Accessed May 2022).
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phase III clinical trial (NCT04570085).350

Guanfacine is an α2a-adrenergic agonist.351 Guanfacine could
increase brain noradrenaline levels. Dual actions of Guanfacine on
noradrenergic transmission and thalamocortical glutamatergic
transmission have been reported.352 Guanfacine is a drug for
treating children’s attention deficit/hyperactivity disorder (ADHD).
The efficacy for improving cognition in AD is evaluated in the
phase III trial (NCT03116126). The α1-adrenergic receptor

antagonist, Prazosin, is being tested for its effectiveness on
agitation in adults with AD in a phase III trial (NCT03710642).
Prazosin is a drug for hypertension, benign prostatic hyperplasia,
and post-traumatic stress disorder (PTSD) associated nightmares.
Prazosin can cross the blood-brain barrier and act on the active
α1-adrenoreceptor in the brain.
Brexpiprazole is classified as a novel class of antipsychotic with

serotonin-dopamine modulating functions. It is an atypical
antipsychotic that function as a partial agonist for serotonin and
dopamine receptors. As a partial agonist, Brexpiprazole exerts
smaller responses than the native ligands.353,354 The use of
Brexpiprazole in AD agitation is now in phase III study
(NCT03620981).

Parkinson’s disease. Parkinson’s disease (PD) is the second most
prevalent age-related disorder. Early stage with mild symptoms
did not require medication. Dopamine-like agonists, also known as
dopamine-replacement therapy, are the primary treatment for
symptomatic PD. As degeneration of the substantia nigra leading
to striatal dopamine reduction is a leading cause of PD, re-
introducing dopamine can improve motor problems dramatically
and slow down PD progression.348,355

Levodopa is a dopamine precursor. It has long been used in
controlling bradykinetic symptoms in PD. Levodopa can cross the
blood-brain barrier and is known as a well-tolerated drug for
dopamine-replacement therapy.356 However, Levodopa could
lead to motor and psychiatric side effects.357 Amantadine could
reduce dyskinesia (involuntary movements) in PD patients
receiving Levodopa.358 Amantadine is an antiviral medicine with

Fig. 6 Interactions between neuropsychiatric drugs with key residues in the orthosteric ligand binding pocket of GPCRs (e.g., adrenoceptors,
dopamine receptors, histamine receptors, melatonin receptors, S1P1/5 receptors, and serotonin receptor). The small molecules regulate GPCR
activity by stabilizing receptors at unique conformational state

Fig. 7 Structural features of class B1 GPCR. Binding of peptide
ligand activates calcitonin receptor-like receptor (PDB 6UVA)
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antiparkinsonian effects. Synergistic effects are observed when
used in combination with Levodopa.359,360 Lisuride functions as a
dopamine receptor agonist with 5-HT1A receptor agonist and
5-HT2B receptor antagonist for PD treatment.361 Piribedil is a
dopamine agonist used with or without Levodopa in a phase III
trial to treat idiopathic PD (NCT01519856).362 Bromocriptine is a
dopamine D2 receptor agonist for early PD treatment. Bromo-
criptine works by activating post-synaptic dopamine receptors.363

Apomorphine is a morphine derivative. It functions as a D2
dopamine agonist for treating hypermobile “off” episodes of
advanced PD, a stage in which PD symptoms get worse even with
scheduled medication. It also prevents dyskinesia by functioning
as a 5-HT1A receptor agonist.364 The A2A receptor in the basal
ganglia is involved in the motor control of PD.365 At present,
Istradefylline is the principal adenosine A2A receptor antagonist
employed in adult PD patients presenting “off” episodes
associated with Levodopa treatment.141

Pergolide is a long-acting dopamine receptor agonist approved
in 1982 for treating PD. It functions on various GPCRs, including
dopamine D2/3 receptor, α1/2-adrenergic receptor, and 5-HT
receptors. It is used as adjunct therapy with Levodopa and
carbidopa in the symptomatic treatment of PD.366 Ropinirole is a
non-ergoline dopamine agonist, approved as monotherapy and as
an adjunct to Levodopa in the treatment of PD.367

Benztropine is used to treat the molecular mechanism of
anticholinergics PD.368 Benztropine inhibits dopamine uptake and
exhibits varied binding affinities for muscarinic acetylcholine M1

and histamine H1 receptors.369 Biperiden, another anticholinergic
drug launched in 1954, has an antagonistic effect on the
muscarinic acetylcholine receptor.368

Pramipexole is a non-ergot-derived dopaminergic agonist for
PD treatment. Pramipexole treatment enhances DA and 5-HT
neurotransmission and increases tonic activation of post-synaptic
D2 and 5-HT1A receptors in the forebrain.370 Apart from PD,
Pramipexole can also be prescribed for psychiatric conditions such
as treatment-resistant depression and bipolar disorder.371

Multiple sclerosis. Multiple sclerosis (MS) results from an immune
attack by infiltrating inflammatory leukocytes in the central
nervous system, causing hard, mottled pathologic changes and
nerve conduction disorders.372,373 At present, medication aims to
control GPCR-regulated immune cell function as one of the
treatment regime for MS. In the database, 6 GPCR-related drugs
are recorded. The drugs target multiple GPCRs, including
adrenergic receptors, cannabinoid receptors, dopamine receptors,
GABA receptors, opioid receptors, orphan GPCRs (GPR12/18/55),
S1PR1/5, and chemokine receptors.
Baclofen is a derivative of the neurotransmitter γ-aminobutyric

acid (GABA). Baclofen can help relax the stiff muscle (muscle
spasticity) experienced by MS patients. Cannabidiol (CBD), one of
the active components in cannabis, could improve mobility in MS
by reducing depression, fatigue, inflammation, pain, and spasticity
(stiff muscle with feelings of pain or tightness) in MS patients.374

Modafinil is a partial agonist for brain α1b-adrenoceptor.

Fig. 8 Structural features of class B2 adhesion GPCR ADGRL3 (PDB 7SF7). a Schematic representation of ADGRL3 showing characteristic large
N-termini. Source: https://gpcrdb.org/protein/agrl3_human/. b GPCR of adhesion GPCR coupled to Gαs protein after activation by tethered
agonist. c Tethered agonist (TA) indicated in spheres. TA occupies the orthosteric pocket of ADGRL3 which as self-agonist for receptor
activation

Fig. 9 Structural features of class F GPCR. Smoothened homolog SMO (PDB 5L7D) with large extracellular and cysteine-rich (CRD) domain.
Solvent-accessible surface. Hydrophobic surface (red); hydrophilic surface (white)
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Pharmacological blockade of α1b-adrenoceptor shows benefit in
controlling fatigue syndromes in MS. Modafinil exhibits clinical
efficacy in psychiatric conditions, including treatment-resistant
depression and attention deficit/hyperactivity disorder.375

Ozanimod, Siponimod, and Fingolimod are S1PR agonists that
selectively bind to the S1PR1 and S1PR5 subtypes, inhibiting
lymphocyte egress from lymph nodes.376 Ozanimod demonstrates
a favourable safety profile in trials.377 Fingolimod may cause
undesirable effects because of its interaction with other S1PR
subtypes. Compared to Fingolimod, Siponimod has fewer off-
target effects.
Ceralifimod is a selective S1PΡ1/5 agonist under investigation in

phase II clinical trial NCT01226745 in patients with relapsing-
remitting multiple sclerosis (a condition with relapses or exacer-
bations of old and new symptoms).267 Plozalizumab is another
potential drug for MS treatment. It is a humanized anti-CCR2
monoclonal antibody targeting white blood cells.378 Plozalizumab
may regulate inflammatory responses by targeting the CCL2‐CCR2
axis in MS.

Huntington’s disease. Huntington’s disease (HD) is a hereditary
neurodegenerative disease. Symptoms include movement dis-
orders and cognitive and psychiatric manifestations. Blocking and
antagonizing dopamine are effective for HD treatment. Tetra-
benazine is a reversible vesicular monoamine transporter 2 (VMAT)
inhibitor that inhibits the reuptake of neurotransmitters in
presynaptic neurons. VMAT helps to repackage the unbound
dopamine taken up by the pre-synaptic terminal. Although it is
first designed for schizophrenia treatment, clinical trials demon-
strate efficacy in treating hyperkinetic movement disorders.379

Tetrabenazine also functions as a D2 post-synaptic receptor
blocker at high doses and is used to treat uncontrolled muscle
movement in HD.379 Haloperidol is a first-generation antipsychotic
for schizophrenia and psychotic disorders.380 As a dopamine
receptor antagonist, Haloperidol is used off-label for managing
chorea associated with HD.381 For cognitive impairment, no
effective targeted therapy is available at the present stage.
Tiapride is in phase III for the treatment of HD (NCT00632645).
Preclinical pharmacologic and behavioral research suggests that
Tiapride is a selective blocker of dopamine D2 and D3 receptors in
limbic brain regions.382

Psychiatric disorders
Schizophrenia. Schizophrenia is characterized by cognitive defi-
cits and positive and negative symptoms with complex inheri-
tance patterns.383 Patients may have positive, negative, cognitive,
and general psychopathological disorders. According to the
positive and negative syndrome scale (a psychiatric rating system),
positive symptoms include delusions, hallucinations, conceptual
disorganization, hallucinatory, excitement, grandiosity, suspicious-
ness, and hostility; Negative symptoms include blunted affect,
emotional withdrawal, poor rapport, passive social withdrawal,
difficulty in abstract thinking or stereotyped thinking and lack of
spontaneity and flow of conversation. Schizophrenia patients
could also present general cognitive disorders. Examples include
anxiety, guilt feeling, tension, depression, poor attention or
impulse control, and active social avoidance.384

Schizophrenia treatment is challenging because existing anti-
psychotics are antidopaminergic drugs that improve only positive
symptoms such as agitation and aggression but have limited
efficacy for negative and cognitive symptoms.385 Globally
marketed antipsychotic drugs include typical antipsychotic drugs
(mostly specific dopamine D2 receptor antagonists) and atypical
antipsychotic drugs (such as dopamine D2 and 5-HT2A dual
antagonists and D2/D3 partial agonists).
Aripiprazole, a blockbuster drug for controlling psychiatric

symptoms, has high affinities for 5-HT1A, 5-HT2A, D2, and D3
receptors. It is a partial agonist of D2, D3, and 5-HT1A receptors

and a 5-HT2A receptor antagonist.386 Aripiprazole is also a drug for
bipolar disorders.387 Brexpiprazole, developed by Otsuka, is
considered as the pharmacological successor to Aripiprazole.
Brexpiprazole can also be used as an adjunct for major depressive
disorder.388–390

Cariprazine is a D3/D2 partial agonist with moderate affinity for
the 5-HT2A receptor.391 FDA approved it in 2016 for treating adult
schizophrenia and bipolar disorder.
Lumateperone is an antipsychotic targeting multiple GPCRs. It is

a post-synaptic dopamine D2 receptor antagonist, a presynaptic
dopamine D2 receptor partial agonist, and a 5-HT2A receptor
antagonist.392 Lumateperone can be used for positive & negative
symptoms and cognitive dysfunction in schizophrenia.393 It can
also be used in bipolar disorder treatment.393

Chlorpromazine blocks dopamine receptors, α-adrenergic
receptors, and 5-HT receptors. It can quickly control the state of
agitation and gradually eliminate hallucinations and delusions.
Thus, it can apply as medication to control combativeness and
aggressive behaviour in children.394

Risperidone can be used for various mental disorders, including
schizophrenia and mood disorders. Risperidone has high affinities
for 5-HT receptors and dopamine receptors and mildly inhibits α1-
adrenergic receptors and histamine receptors.395

Olanzapine is developed based on clozapine with structural
modification. It was approved to be marketed by FDA in 1996.
Olanzapine not only inhibits dopamine receptors but also binds to
serotonin receptors, and its affinity with serotonin receptors is far
greater than its affinity with dopamine receptors.
Haloperidol is a widely used antipsychotic for positive

symptoms of schizophrenia, Tourette syndrome, and behavioural
disorders/hyperactivity in children.396 Haloperidol can block
dopamine, α-adrenergic, and serotonin receptors. It is highly
selective for dopamine receptors.
Spiperone is a potent dopamine D2 receptor antagonist bearing

the butyrophenone scaffold. Although it displayed efficacy in
treating drug-resistant schizophrenia, it is not yet approved by the
FDA.397 Zotepine is an atypical antipsychotic drug for treating
schizophrenia in Japan. It is a potent dopamine D1/D2 receptor
and 5-HT2A receptor antagonist.398

Medication for schizophrenia is an active research area.
Schizophrenia drugs generally target multiple GPCRs. For instance,
Brilaroxazine, an investigational antipsychotic drug developed by
Reviva, could stabilize the dopamine-serotonin system by partially
activating D2, D3, D4, 5-HT1A, and 5-HT2A receptors. In addition, it
antagonizes 5-HT6 and 5-HT7 receptors.399 A phase III clinical trial
of Brilaroxazine for the safety and efficacy of the treatment of
schizophrenia is now under recruitment (NCT05184335).
Zicronapine is a tetracyclic azepine developed by Lundbeck

with affinities for 5-HT2A/2 C and D1/2 receptors.400 Phase III study
of Zicronapine has been completed (NCT01295372).
Eltoprazine is a piperazine derivative that partially activates the

5-HT1A/2B receptor.401 It is tested in a phase II trial to investigate
the treatment of schizophrenia and cognitive impairment
(NCT01266174).
LuAF35700 is an antagonist targeting dopamine receptors,

serotonin receptors, and α-adrenergic receptors.399 The efficacy
and safety of the LuAF35700 have been examined in phase III
randomized, double-blind trial (NCT02717195).
Roluperidone is a novel 5-HT2A and σ2 receptor antagonist

developed by Minerva Neurosciences.402 Phase III studies have
shown that Roperidone may treat negative symptoms in
schizophrenia patients without causing post-synaptic dopaminer-
gic blockade due to low or no affinity for dopamine and histamine
receptors (NCT03397134).

Depression. The underlying mechanism of depression is not
clear. According to the record in the DrugBank database, a total of
31 antidepressants target GPCRs. Examples include tricyclic
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antidepressants, bioamine neurotransmitters (serotonin, norepi-
nephrine, and dopamine) reuptake blockers, and 5-HT2A receptor
inhibitors.
Imipramine and Desipramine are examples of tricyclic drugs for

major depressive disorders, anxiety, and ADHD.403 They have high
affinities to 5-HT2C and 5-HT2A receptor subtypes. The pharma-
cological properties of Amitriptyline are similar to Imipramine.
Amitriptyline can inhibit 5-HT reuptake with sedative, hypnotic
and anticholinergic effects. A combination of Amitriptyline and
Imipramine could block serotonin reuptake in the brain’s limbic
(emotional) regions.
Currently, monoaminergic alterations involving serotonin

receptors are a significant cause of depression.404 Selective or
non-selective 5-HT reuptake inhibitors are the first-line treatment
for depression. Representative drugs include Fluoxetine, Parox-
etine, and Citalopram.405–409 Fluoxetine, a weak antagonist of
5-HT2C and 5-HT2A receptors, was approved for marketing in
1988 to treat major depressive disorder. Later, Paroxetine was
approved in 1992. It is a highly selective reuptake inhibitor of
5-HT in neurons. Citalopram has a similar function in depression
treatment. It is also a serotonin reuptake inhibitor. Nefazodone
and Trazodone improve mood by antagonizing 5-HT2A/C
receptors. They showed affinity to the 5-HT1A receptor.410,411

Pindolol can accelerate the effects of selective serotonin reuptake
by antagonizing 5-HT1A and β-adrenergic receptors.405,412 Mean-
while, Mirtazapine and Mianserin have antagonistic properties on
5-HT2A/2C receptors. They exhibit inhibitory effects on pre-
synaptic A2-adrenergic receptors. Both drugs improve sleep
duration.408,413,414 Vortioxetine is a multi-mode antidepressant for
major depressive disorder treatment in adults. Vortioxetine
inhibits serotonin reuptake. It exerts different effects on different
members of the 5-HT receptor. On one hand, Vortioxetine is an
antagonist for 5-HT1D, 5-HT3, and 5-HT7 receptors. On the other
hand, it is a partial agonist for the 5-HT1B receptor.415–417

Bupropion and its primary metabolite hydroxybupropion function
by blocking 5-HT3A receptor.418 Agomelatine is an atypical
antidepressant acting as a melatonin receptor (MT1/2) agonist
and a 5-HT2C/2B receptor antagonist.419

Inhibitors of dopamine (DA) transporters are another class of
antidepressants. Nortriptyline can bind directly to the DA
transporter to inhibit dopamine uptake. It can be used in
treatment-resistant depression.420–422 Brexpiprazole is a partial
agonist on the 5-HT1A receptor and D2 receptor. Brexpiprazole
can also be used in adult patients with schizophrenia.
Ansofaxine is a reuptake inhibitor for 5-HT, norepinephrine, and

dopamine which is under clinical development for major
depressive disorder (NCT04853407).423 5-methoxy-N,
N-dimethyltryptamine (5-MEO-DMT) is a non-selective serotonin
receptors agonist for depression (NCT04698603).

Anxiety disorders. Anxiety disorders are the most common
psychiatric disorders. Anxiety is accompanied by other psychiatric
disorders, including major depressive disorders, substance use
disorders, and personality disorders.424

Partial agonists of the 5-HT1A receptor and selective 5-HT
reuptake inhibitors are frequently used in anxiety treatment.425,426

Buspirone, the partial agonist for the 5-HT1A receptor, is approved
for treating anxiety due to neurosis.427 Paroxetine428 and
Escitalopram, the 5-HT reuptake inhibitors, can relieve anxiety
symptoms and prevent recurrence in patients.409 Trazodone is
used to treat anxiety disorders with depressive symptoms and is
suitable for patients with significant psychomotor agitation,
anxiety, and insomnia.429

Hydroxyzine is the most studied antihistamine for anxiety and
the only FDA-approved antihistamine for treating anxiety. It is
commonly used for anxiety, panic attacks, and insomnia in
inpatients and outpatients.429,430

Drug targeting β-adrenoreceptor in the central nervous system

can also relieve anxiety.431 Propranolol, the selective β1/2-
adrenoceptor antagonist (β-blockers), is the first-line pharmacolo-
gical treatment for anxiety disorders.432,433 Doxepin can be used
for depression and anxiety. It is an antagonist of the histamine H1
and H2 receptors, 5-HT2A/2C receptors, and the muscarinic
acetylcholine receptors (M1–M5).434

Naluzotan, the selective 5-HT1A receptor agonist, has been
investigated for anxiety disorders and depression treatment
(NCT00248183).435 Ansofaxine, a reuptake inhibitor of serotonin,
norepinephrine, and dopamine, is a new-generation drug for
anxiety management. The drug has completed phase III clinical
trials in China to treat anxiety and depression (NCT04853407).

Bipolar disorder. Bipolar disorder (BD) is characterized by periodic
mood disorders. Medication is the primary treatment to improve
the psychosocial function and quality of life of patients with BD.
Pharmacological management of acute depressive/manic epi-
sodes and prevention of recurrence is also essential. Atypical
antipsychotics for bipolar disorder exhibit high affinities for
multiple serotonergic receptors, including 5-HT1A, 5-HT2A-C, 5-
HT6, and 5-HT7 receptors.
Quetiapine was approved by the FDA in 1997 for the

symptomatic treatment of schizophrenia and is used as a first-
line treatment to control depressive episodes of BD. It exerts
therapeutic effects may by antagonizing 5-HT1A, 5-HT2A, D1, D2,
and H1 receptors as well as α1/2- adrenergic receptors.436,437

Dexmedetomidine is an α2-adrenergic receptor agonist that can
be used for the acute treatment of agitation associated with
schizophrenia or bipolar I or II disorders.438 Risperidone, an
atypical antipsychotic drug, is now used as maintenance therapy
for patients with bipolar I disorder.439

Tianeptine is a novel antidepressant that stimulates serotonin,
increases levels of 5-hydroxyindoleacetic acid in brain tissue and
plasma, and decreases serotonin-induced behavior.440,441 Clinical
trials are underway for the adjuvant treatment for BD with
Tientidine (NCT00879372). Lumateperone, an antagonist with high
binding affinity to the 5-HT2A receptor and moderate affinity to
the post-synaptic D2 receptor, is being evaluated for treating BD,
depression, and other neuropsychiatric and neurological disorders
(NCT03249376, NCT02600507).

Tourette’s syndrome. Tourette’s syndrome (TS) is a neurodevelop-
mental disorder characterized by repetitive behaviours, including
motor/phonic tics. TS is commonly coupled with obsessive-
compulsive disorder (OCD) and ADHD.442 The underlying mechan-
ism of TS remains poorly clarified.443–445 Abnormalities in synaptic
neurotransmission involved in the cortico-striatal-thalamocortical
circuitry are implicated in TS pathogenesis.446,447 Dopaminergic
signaling in cortico-striatal-thalamocortical pathways might be
associated with TS progression.444,448,449 α-adrenergic agonists are
the first choice in TS treatment.450 Examples include Clonidine and
Guanfacine.438,451 Aripiprazole is a partial agonist of dopamine D2
and 5-HT1A receptors. It can stabilize dopamine receptor and
improves TS symptoms.452 In contrast, Pimozide exerts a
therapeutic effect by inhibiting the dopamine D2 receptor in the
central nervous system.453

Attention deficit hyperactivity disorder. Attention deficit hyper-
activity disorder (ADHD) is a common psychiatric disorder
affecting school-age children. It is a neurodevelopmental
disorder with multifactorial etiological risk factors. ADHD is
characterized by hyperactivity, impulsivity, and age-
inappropriate symptoms of inattention.454 Irregularities in
catecholamines circuits in the prefrontal cortex, such as
dopamine and norepinephrine, are a leading cause of
ADHD.455,456 Most ADHD drugs are designed to enhance
catecholamine transmission in the prefrontal cortex.457

Methylphenidate can significantly reduce hyperactive
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behavior, increase attention concentration ability, and effec-
tively improve the core symptoms of ADHD, so it is one of the
most widely used first-line drugs approved by the FDA.
Methylphenidate blocks dopamine D1 and D2 transporters,
resulting in increased levels of synaptic dopamine, and also
shows activity against serotonergic 5-HT1A receptors.351,458,459

Second-line drugs for ADHD include Atomoxetine, Guanfacine,
and Clonidine.351,438,460 Atoroxetine is a non-stimulant medica-
tion that acts as a selective norepinephrine reuptake inhibitor in
ADHD.440,461 Guanfacine is a phenylacetyl guanidine derivative,
which is more selective than Clonidine in activating the α2-
adrenergic receptor.351 Venlafaxine is a new type of selective
serotonin and dopamine reuptake inhibitor. It is a dual-channel
antidepressant. Venlafaxine inhibits the reuptake of serotonin by
neuron endings at low doses and inhibits the reuptake function
of neuron endings at a high dose to enhance attention.
Amfetamine (AMF) acts on the cerebral cortex and reticular
activation system. AMF stimulates adrenalin receptors and
enhances neurotransmitter secretion, such as 5-HT and dopa-
mine.462 Fluoxetine is a potent and selective serotonin reuptake
inhibitor for ADHD treatment.463,464

Edivoxetine is an adrenergic absorption inhibitor. It is now in
phase III development for ADHD with hyperactivity
(NCT00922636, NCT00965419). Centanafadine is a triple-
reuptake inhibitor for dopamine, norepinephrine, and serotonin
reuptake. It is currently in phase III clinical trials (NCT03605849,
NCT03605680, NCT03605836). SGS-742 has been investigated for
ADHD treatment. It acts as a GABA-B receptor antagonist and
could enhance the release of glutamate, aspartate, glycine, and
somatostatin.

EXAMPLE OF EMERGING GPCR TARGETS
Most of the GPCRs targeted by approved drugs for neuropsychia-
tric diseases belong to class A and C GPCRs. With the advance of
biotechnology and increase in understanding of GPCR functions,
new candidates are discovered in other GPCR families, including
class A (orphan), class B1 (secretin), class B2 (adhesion), class C
(calcium-sensing receptor), and class F.

Class A (orphan GPCR)
Orphan GPCRs are receptors whose cognate ligands are not
discovered or validated in cellular/ animal models. Deorphaniza-
tion with reverse pharmacology is currently an active area in GPCR
research.

GPR17. GPR17 is activated by two different endogenous ligands:
uracil nucleotides and cysteinyl-leukotrienes.465 Uracil nucleotides
trigger astrocytic migration by upregulating membrane integ-
rins.466 Cysteinyl-leukotrienes are lipid mediators secreted by
inflammatory cells and nervous tissues.467 Cysteinyl‐leukotrienes
can stimulate astrocyte proliferation via autocrine signaling.468

GPR17 is a sensor of local damage to the myelin sheath. GPR17
downregulation promotes the development of mature oligoden-
drocytes from myelin-producing oligodendrocyte precursors.469

GPR17 is involved in reconstructing and repairing demyelinating
plaques formed by ongoing inflammatory processes.470 In a
mouse model of multiple sclerosis, targeting GPR17 can delay the
onset of autoimmune encephalomyelitis.471

GPR26. GPR26 is a brain-specific GPCR. GPR26 has high
sequence homology with purinergic P2Y receptor and serotonin
5-HT5A receptor.472,473 GPR26 regulates emotion in animal
models. GPR26 knockout mice exhibits anxiety- and
depressive-like behaviors.474 Colocalization of GPR26 and
neuronal nuclear inclusions is observed in brain tissues
suggesting a potential link between GPR26 and neurodegen-
erative diseases.473

GPR37 and GPR37L1. GPR37 can be found in pre-myelinating/
myelinating oligodendrocytes, dopaminergic neurons, and hippo-
campal neurons.475 GPR37 shares high sequence homology with
peptide-activated GPCRs such as endothelin receptor B (ETB).475 In
Parkinson’s disease, GPR37 acts as an adenosine A2A receptor
inhibitor via receptor oligomerization;476 GPR37L1, in contrast, is
found mainly in astrocytes and oligodendrocyte progenitor
cells.475 GPR37L1 is involved in the adaptive myelination of
oligodendrocytes which is critical for neural plasticity, learning,
and memory in adults.477

GPR39. Zinc regulates behavior, cognition, and ability to
learn.478 Dysregulation in zinc homeostasis is associated with
progressive dementia and cognitive impairment. Zinc defi-
ciency gives rise to various neuropsychiatric disorders, includ-
ing epilepsy, seizures, and depression.479,480 Extracellular zinc
can activate zinc-sensing receptor GPR39.481,482 Zinc stimulates
GPR39-mediated signal transduction and induces calcium
mobilization in HEK293 cells.483 Zinc-activated GPR39 increases
expression of K+/Cl− cotransporter 2 (KCC2), the Cl- outward
transporter in neurons.484 Further, GPR39 increases Na+/H+

exchanger activity in hippocampal neurons in a pH-dependent
process.485

GPR40. GPR40 (also known as free fatty acid receptor 1) is the
receptor for medium and long-chain unsaturated fatty acids.
GPR40 activates the NOD-like receptor pyrin domain-containing
protein 3 (NLRP3) inflammasome pathway by blocking the
formation of apoptosis-associated speck-like protein containing
a CARD (an inflammasome component).486 GPR40 promotes
hypothalamic neurogenesis by enhancing cell proliferation and
survival.487 GPR40 may associate with the development of
epilepsy by altering N-methyl-d-aspartate receptor-mediated
synaptic transmission.488 In Alzheimer’s disease model, activating
the GPR40 receptor can reduce β-amyloid production and rescue
cognitive deficits.489,490

GPR50. GPR50 exhibits high sequence homology with melatonin
MT1/2 receptors. However, melatonin (the endogenous ligand for
MT1/2 receptors) cannot bind to GPR50 directly.491 GPR50 can be
detected in the pituitary, hypothalamus, and hippocampus
intermedia.491,492 GPR50 enhances neuronal differentiation via
notch and WNT/β-catenin.493 GPR50 might be involved in
psychiatric illness by interacting with neurite outgrowth inhibitor
NOGO-A.494 GPR50 is an X-linked gene (Xq28). It is suggested to
be a sex-specific risk factor in bipolar affective disorder, major
depressive disorder, and schizophrenia.495 GPR50 can antagonize
the MT1 receptor by forming a heterodimer.496 The inhibitory
effects are mediated via the large C-terminal tail, which blocks the
β-arrestin recruitment and G protein coupling.495 MT2 receptor
could also form a heterodimer with GPR50, but the functional
consequence remains to be defined.496

GPR52. GPR52, a striatal-enriched orphan GPCR.
GPR52 stabilizes HTT by cAMP-dependent but PKA-
independent mechanisms.497 GPR52 antagonist can ameliorate
Huntington disease-like phenotypes by diminishing mHTT
protein levels.498 GPR52 is a potential target of antipsychotic
drugs.499 GPR52 is associated with cognitive function, emotion,
and psychosis-related/antipsychotic-like behaviors.204,499,500

GPR52 has high sequence homology with histamine H2
receptor and 5-HT4 receptor.204 GPR52 agonist treatment
suppresses methamphetamine-induced hyperactivity suggest-
ing that GPR52 might be involved in neurochemical sensitiza-
tion.501 Recent study reveals that GPR52 is a self-activating
receptor.502 The extracellular loop 2 is immersed deeply into
the typical ligand binding pocket of GPR52, which maintains
the constitutive active state at physiological conditions.503
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Super-conserved receptors expressed in the brain. GPR27, GPR85,
and GPR173 are super-conserved receptors expressed in the brain
(SREB). GRR27 deletion is associated with speech delay, contrac-
tures, hypertonia, and blepharophimosis.504 GPR85 may function
as a negative regulator in hippocampal adult neurogenesis and
alters cognitive functions, including learning and memory.505 It
has been reported that GPR85 is a risk factor for schizophrenia.505

GPR173 may function by interacting with phoenixin (a recently
discovered peptide controlling reproductive hormone secretion,
visceral pain, and pruritus) in hypothalamic neurons, which
regulates memory and anxiety.506,507 In neuronal M17 cells,
phoenixin promotes neuronal mitochondrial activity and biogen-
esis by activating the CREB pathway.508 Further, binding of
gonadotropin-releasing hormone 1–5 (GnRH 1–5) to GPR173
could inhibit neuronal migration.509

GPR88. GPR88 expresses exclusively in the neuron of the rat
brain throughout the striatum.510 In GABAergic medium spiny
neurons (MSNs), GPR88 contributes to tonic GABAergic inhibition
and responses to GABA release.511 GPR88 might play a part in
prepulse inhibition of startle, apomorphine-induced climbing, and
amphetamine-stimulated locomotor activity.512 Co-expression of
GPR88 and D1 dopamine receptors is found in the brain.513 In
Parkinson’s disease (unilateral 6-hydroxydopamine-lesioned rats),
GPR88 expression is associated with L-DOPA-mediated beha-
vioural changes.510 Antidepressant treatments can modulate
GPR88 expression in rat brains.514 Morphine can regulate GPR88
expression in the amygdala via the mu-opioid receptor.515 GPR88
is genetically associated with various neuropsychiatric disorders,
including schizophrenia, bipolar disorder, speech delay, and
chorea.516,517

Class B1 (secretin)
Structural highlights. Class B1 GPCRs have a conserved extra-
cellular N-terminal domain (ECD) with a three-layered α-β-β/α fold
structure (100 to 160 residues) responsible for the binding of
peptide hormones (Fig. 7).518–520 Peptide ligands stabilize
receptors by interacting with both ECD and transmembrane
core.521 N-terminus of the peptide interacts with the orthosteric
pocket within the transmembrane domain.522,523 Class B1 GPCRs
recognize peptide ligands with different C-terminus, ranging from
disordered secondary structures to continuous α-helix.524,525 Like
class A GPCRs, the cavity formed by the receptor cytoplasmic part
allows anchoring of the α5 helix of G proteins.526,527 Among class
B1 GPCRs, calcitonin and calcitonin gene-related peptide recep-
tors, corticotropin-releasing factor receptors, and the glucagon
receptor family are frequently reported to be involved in
neurodegenerative diseases and psychiatric disorders.

Receptors for calcitonin and calcitonin gene-related peptides. Cal-
citonin (CT) and calcitonin gene-related peptides (CGRPs) are
ligands of the CT receptor. CGRPs also exert their biological
functions through CL (calcitonin receptor-like) receptors.528

The activity of CT and CL receptors is modulated by receptor
activity-modifying protein (RAMP1-3).

529 CT receptor-RAMP com-
plexes can also interact with amylin. Therefore they are also
known as amylin receptors (AMY1-3).

529 CT receptors are
implicated in neuroinflammation in Alzheimer’s disease.530

Antagonists targeting amylin receptors might be beneficial for
Alzheimer’s disease treatment.531

Corticotropin-releasing factor receptor. Corticotropin-releasing
hormone (CRF) regulates the neuroendocrine stress response.532

CRH exerts its biological function through two receptors: CRFR1
and CRFR2. Human corticotropin-releasing factor receptor 1
(CRFR1) exhibits widespread distribution in the central nervous
system. In contrast, human CRFR2 is predominately expressed in
peripheral tissues.532 CRFR1 signaling shows sex divergence in

Alzheimer’s disease.533 CRFR1 antagonist treatment delays Alzhei-
mer’s disease symptoms, including cognitive impairment and
accumulation of Aβ amyloid plaques, by regulating oxidative
stress in transgenic mice.534 CRF/CRFR1 signaling plays a crucial
role in stress-induced behaviour.532 It has been shown that noise
exposure can increase CRF/CRFR1 expression in the hippocam-
pus.535 CRFR1 could sensitize 5-HT2 receptor signaling to
modulate anxiety behavior.536 In addition, CRFR1 antagonist
modulates gamma-aminobutyric acid (GABA)-ergic activity in the
brain and controls fear response in rat anxiety models.537 Single-
nucleotide polymorphisms of CRFR1/2 are positively associated
with major depressive disorder.538–540

Glucagon receptor family. The glucose-dependent insulinotropic
polypeptide (GIP) and glucagon-like peptide-1/2 (GLP-1/2) are gut
peptide hormones.541 The hormones can pass through the blood-
brain barrier.542 GIP and GIP receptors are expressed throughout
the central nervous system.543,544 Protease-resistant analog of GIP
is designed to treat type 2 diabetes mellitus by controlling weight
and improving glycaemic control.545,546 Clinical trials indicate that
GIP and GLP-1 analogs exhibit therapeutic effects for neurode-
generative diseases.547 GLP-1 enhances the supportive function of
astrocytes to neurons.548 Activated GLP-2 receptor protects
hippocampal cells from glutamate-induced cell death and
increases the growth of astrocytes.549 GLP-1 mimetic reduces
oxidative stress and inflammation and promotes neuron forma-
tion.550,551 GIP can alleviate amyloid beta-induced toxicity in
Alzheimer’s disease and relieve symptoms of Parkinson’s
disease.541,542

Class B2 (adhesion)
Structural highlights. Class B2 GPCR, also known as adhesion
GPCR, has a large extracellular domain (ECD). ECD is responsible
for the adhesive function exhibiting high structural diversity
(Fig. 8a, b).552 Adhesion GPCRs are essential for the early
development of the nervous system and the brain.553 The
receptor allows neural cells to communicate with the surround-
ing environment and migrate to destinate sites to carry out
specific functions.554 In mouse Purkinje neurons, adhesion
GPCR is required to generate intricate dendritic structures for
synaptic connections.554 Adhesion GPCRs are further classified
into ADGRL, ADGRE, ADGRA, ADGRC, ADGRD, ADGRF, ADGRB,
ADGRG, and ADGRV subfamilies.555

Nearly all class B2 orthologs have the GPCR autoproteolysis
inducing domain (GAIN). The GAIN domain is located at the
juxtamembrane region.556 GAIN domain is crucial for the
maturation and function of adhesion GPCR. GAIN possesses
intrinsic autoproteolytic activity and cleaves at the integral
cysteine-rich GPCR proteolysis site (GPS).556 Autoproteolysis
give rise to two noncovalently associated fragments: N-terminal
fragment (NTF) with most of the extracellular domain; and
C-terminal fragment (CTF) consisting of a small proportion of
the GAIN domain and most of the entire transmembrane
domain (Fig. 8a).554,557,558

The activation mechanism of adhesion GPCR is the least
understood among different GPCR classes. Most adhesion
GPCRs are orphan GPCRs as their natural ligands remain poorly
defined.552 Receptor activation may follow the tethered-
peptide-agonist models.558 The stalk region bends approxi-
mately 180º downward into the core of the 7TM domain, which
functions as tethered agonist to initiate G protein signaling (Fig.
8c).559,560 Cleavage-independent mechanisms may exist for
receptor activation.560 Ligand binding at the GAIN domain
might induce conformational changes, which initiate transient
G protein signaling.561 Upon activation, the intracellular milieu
is in the open conformation facilitating G protein coupling.
Adhesion GPCRs could employ non–G protein such as PDZ/SH3
domain-proteins and arrestins for signal transduction.562
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Examples of class B2 GPCR. Adhesion G protein-coupled receptor
B1 (ADGRB1 or brain-specific angiogenesis inhibitor 1, BAI1)
regulates synaptic plasticity in learning and memory processes in
the hippocampus.563 ADGRB1 is a post-synaptic receptor control-
ling excitatory synapse development.564,565 Forced ADGRB1
attenuates toxin-induced neuronal cell death.566 ADGRB1 is
associated with dopaminergic neuronal loss in Parkinson’s
disease.566

Adhesion G protein-coupled receptor B3 (ADGRB3) is enriched
in post-synaptic density and cerebellar Purkinje cells.563,567,568

ADGRB3 modulates synaptic connection in the cerebellum.568

SNPs and gene amplification in ADGRB3 are associated with
familial schizophrenia.569 Other psychiatric conditions, such as
bipolar disorder, are suggested to be linked with ADGRB3.570

Adhesion G protein-coupled receptor L3 (ADGRL3) is genetically
associated with attention deficit/hyperactivity disorder (ADHD) in
adults.571 Knockout mice models show enhanced locomotive
activity, improved levels of impulsivity, and working memory
deficits.572 Maternal smoking during pregnancy is an environ-
mental risk factor for ADHD.573 In fibroblast cells, nicotine
exposure could stimulate ADGRL3 expression.571 The downstream
ADGRL3 signaling events leading to ADHD remains poorly
defined.574 ADGRL3 might alter monoaminergic signaling by
modulating the expression of dopamine and serotonin
transporters.575

Class C (glutamate)
Calcium-sensing receptor. Calcium-sensing (CaS) receptor partici-
pates in the regulation of Ca2+ homeostasis. In Alzheimer’s disease
model, elevated expression of CaS receptor is observed in the
hippocampal CA1 area and dentate gyrus, which is in accord with
the β-amyloid plaques increase.576 CaS receptor impeding
amyloid-β42 oligomers (Aβ42-os) proteolysis via direct interaction,
leading to Aβ42-os aggregation and oversecretion.577 CaS
receptor inhibitor sustains mental competence by promoting
Aβ42 proteolysis.577 Inhibiting the CaS receptor improves memory
and cognitive defects caused by β-amyloid in mice.578 CaS
receptor might induce cognitive defects via eliciting cytosolic
phospholipase A2 and prostaglandin E2 signaling pathway.578

Class F
Structural highlights of Class F GPCR. Class F GPCR contains a
large extracellular and cysteine-rich (CRD) domain (Fig. 9).579 CRD
is essential for the stability and activity of class F GPCRs.580 FZD
gene family is highly conserved in mammals with conserved
structural features. FZD is a receptor for the WNT family of
lipoglycoprotein, which mediates signal transduction via canonical
WNT-β-catenin pathway and β-catenin-independent noncanonical
pathways. The secretory WNT binds to the cysteine-rich domain at
the extracellular side. The Lys-Thr-X-X-X-Trp (KTXXXW) motif
located at the C-terminal is essential for activating the canonical
WNT/ β-catenin pathway.581,582 WNT signaling regulates neuronal
polarization and axon specification polarity by activating atypical
protein kinase C in rat hippocampal neurons.583 Further, WNT
signaling governs collateral or terminal branching of the axon,
dendrite outgrowth and guidance, dendritic spine formation,
synapse formation/plasticity, and elimination.584 WNT/FZD signal-
ing alterations are observed in several neurological disorders,
including Alzheimer’s disease and Huntington’s disease.585,586 The
transmembrane region is compact and hydrophilic.580,587 Similar
to class A GPCR, outward bending of TM6 and an inward shift of
TM5 at the cytoplasmic side is observed in the active class F
GPCR.580

Class F receptors frizzled (FZD1-10) and smoothened (SMO) are
closely associated with embryonic development and tissue
homeostasis.588 Reported FZD ligands include frizzled-related
proteins (SFRPs) and R-spondin.589,590 FZD1 is found in
dopamine-synthesizing neurons, which form an astrocyte-DA

autoprotective loop via WNT1/FZD1/β-catenin signaling.591 FZD1
enhances myelin preservation and neuronal survival;592 FZD3 is
genetically related to substance-induced psychosis and schizo-
phrenia;593,594 Neuronal degeneration observed in amyotrophic
lateral sclerosis is regulated by WNT5a/FZD4 signaling.595 WNT5a/
FZD5 activity is associated with neuronal inflammatory signal-
ing;596 Genetic FZD6 variants are associated with neural tube
defects in the central nervous system;597 FZD9 deletion is noted in
patients with Williams-Beuren syndrome, a rare genetic disorder
with mild to moderate intellectual disability or learning difficul-
ties598 FZD10 may play a role in brain vascular development;599

SMO is the receptor for hedgehog proteins involved in neuronal/
glial proliferation and tissue regeneration.600

CONCLUDING REMARKS
GPCRs are cooperatively involved in the manifestations of
neuropsychiatric disorders. Elucidating the intrinsic signaling
preference of G proteins or arrestins helps to improve drug
efficacy and side-effect profiles. GPCR can work in the dimeric
form in disease development. Characterizing the allosteric
interactions and the functional consequences of GPCR dimers
might provide insights into the pathogenesis of neuropsychiatric
disorders. Apart from acting directly in the nervous system,
GPCRs might contribute to disease development via the immune
system.220

Target identification is challenging as the clinical presentations
are resulted from heterogeneous biological, genetic, and environ-
mental factors. Nevertheless, the increasing understanding of
GPCR functions opens a new possibility in drug discovery. Most of
the drugs targeting GPCR lack subtype-selectivity.601 Local drug
administration may require to avoid debilitating side effects.602

The development of psychiatric medications remains slow as the
pharmaceutical industry pays more attention to antidepressants
and antipsychotic drug development.603 Therefore, developing
specific therapeutic modulators which could recognize subtypes
with high specificity is crucial for effective drug development.602

Benefiting from the advances in crystallography and cryo-
electron microscopy technology, the resolved GPCR structures
increase our understanding of GPCR functions in pathological
conditions. Detailed protein structures could reveal crucial ligand
binding features in physiological conditions.215,547,604 Detailed
receptor/ligand profile could facilitate lead compound identifica-
tion and drug optimization. Hence, harnessing our knowledge of
molecular mechanisms and structural information of GPCR will be
advantageous for developing effective treatments against neu-
ropsychiatric disorders.
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